EMPIR project research on atomic clocks published in high-profile journals

The next generation of atomic clocks will support the growing industry need for accurate time

Atomic clocks form the basis of international time keeping, providing highly accurate time to a wide range of sectors around the world. The next generation of atomic clocks are based on optical frequencies using laser-cooled trapped ions.

European Metrology Programme for Innovation and Research (EMPIR) project Coulomb Crystals for Clocks (17FUN07, CC4C) is working to investigate laser-cooled trapped ions for optical clocks, examining the characteristics of multi-ion sources. It will also implement an advanced form of laser cooling, and develop transportable equipment to enable experiments to be carried out at nuclear physics and optical measurement laboratories. By supporting the reliability and precision of trapped ion optical clocks, this project will help to meet growing industry need for accurate time, provide an essential contribution to the revised International System of Units (SI unit) system, and open new perspectives for fundamental research with novel types of clocks.

The work of this project has featured in a number of high-profile initiatives, including journal articles, seminars and newspaper articles.


The work of the project consortium has resulted in publications in some high-profile journals:


A virtual series of seminars was set up by the precision physics and quantum information community during the COVID-19 shutdown. Seminar on Precision Physics and Fundamental Symmetries has been attended by around 300 participants, and work from this project was presented in two talks:

Newspaper article

The largest newspaper in Finland, Helsingin Sanomat, featured a 2-page article in July 2019 on the Finnish timescale showcases the optical trapped-ion clocks developed at VTT Mikes, Finland’s centre for measurement science.

Project Coordinator Ekkehard Peik from PTB said

‘This project provides us with a better understanding of the performance of this new generation of atomic clocks with trapped ions, and it opens some new perspectives for fundamental research, for example by bringing nuclear spectroscopy into the realm of  precision frequency measurements. Several experiments are ongoing that have been designed for the project, taking data on the structure of two-species Coulomb crystals and on collision processes between the trapped ions and neutral background gases. Some of the results will likely be of relevance also for the rapidly expanding field of quantum computing with trapped ions’.

This EMPIR project is co-funded by the European Union's Horizon 2020 research and innovation programme and the EMPIR Participating States.

Want to hear more about EURAMET?
Sign up for EURAMET newsletters and other information
Follow us on LinkedIn and Twitter


Select your area of interest
Partnership project helps improve the thermal comfort of public buildings in Rwanda and South Africa

Working with external project Cool White to test and suggest improvements on the locally available white paints more

EMPIR project establishes new calibration capabilities and guide for Ultra-high voltage measurements

The project FutureEnergy has provided new calibration services for ultra-high voltages and a good practice guide on Lightning Impulse dividers more

EMPIR project releases software and optical constants for the photonics industry

For many of the 5000 photonics companies in Europe a precise knowledge of a material’s optical properties is vital for industrial competitiveness more

EMPIR project raises awareness of new calibration methods for electronic brachytherapy devices

The project partners publicised the metrological developments for electronic brachytherapy and were able to contribute to several standards more

EMPIR project develops procedures needed for traceability in molecular radiotherapy

EMPIR project established clinical procedures that allow use of traceable methodologies for molecular radiotherapy across Europe more

Page 1 of 226.