Metrology of automated data analysis for cardiac arrhythmia management
Short Name: MedalCare, Project Number: 18HLT07
Validating software for automatic diagnoses of cardiovascular diseases
Cardiovascular disease (CVD) is responsible for 3.9 million deaths a year in Europe. Currently, Electrocardiography (ECG) is used for a non-invasive and cost-effective way for initial clinical examinations and subsequent patient monitoring. Automated detection systems and computer-based machine learning techniques are becoming available for diagnosing and monitoring CVD such as ischemia and arrhythmia. To build trust in automated CVD diagnostics, and help reduce healthcare costs, a standardised procedure needs development to validate complex underlying algorithms and machine learning techniques.
This project developed a synthetic reference ECG measurement dataset, including healthy variations and selected CVD pathologies, to performance test CVD diagnostic devices. The project has, for the first time, provided traceability for CVD data analysis techniques. Such standardised testing will help manufacturers develop new ECG devices with improved CVD diagnosis reliability, thus helping promote uptake of the technology, both in clinical use and for monitoring equipment for use in the home.
Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences
Journal of Clinical Medicine
Medical Image Analysis
IEEE Journal of Biomedical and Health Informatics
APL Bioengineering
Current Directions in Biomedical Engineering
2019 Computing in Cardiology Conference (CinC)