EMPIR project on optical clocks contributes to computation of international time


Project produces tools and data to correct for systematic frequency shifts and enable automated validation supporting redefinition of the SI second

Advances in telecommunications and navigation technologies place increasing demands on the stability and accuracy of international reference timescales. Optical clocks offer better frequency stability and uncertainty than the currently used caesium primary frequency standards. Also a redefinition of the second, a base unit of the International System of Units (the SI), is anticipated based on the potential for orders-of-magnitude improvements to accuracy. However, most optical clocks contribute only intermittently to international timescales as human monitoring and intervention is required to achieve high uptimes. Automated data validation and correction for systematic frequency shifts is also necessary.

EMPIR project Robust Optical Clocks for International Timescales (18SIB05, ROCIT) is using optical fibre and satellite links to compare frequencies, while traceability to the present definition of the SI second is provided by absolute frequency measurements relative to caesium primary standards. The techniques and hardware being developed should lead to more reliable optical clocks. In addition, significant science and innovation impacts are expected to arise from international consistency and long-term reliability through realisation and dissemination of a new SI unit of time. For example, networks of optical clocks could be used to measure the Earth’s gravity potential with high temporal and spatial resolution via the gravitational redshift of their operating frequencies.

Project highlights so far include:

Project Coordinator Helen Margolis from NPL said

‘The scientific and technical objectives of the ROCIT project are closely aligned with important milestones on the international roadmap towards a redefinition of the SI second. Improving the robustness of optical clocks so that they can run unattended for long periods is a key enabler for their use in international timescales, and by the end of the project we expect that several European optical clocks will be contributing on a regular basis to International Atomic Time, improving its stability and accuracy.’.

This EMPIR project is co-funded by the European Union's Horizon 2020 research and innovation programme and the EMPIR Participating States.

Want to hear more about EURAMET?

Sign up for EURAMET newsletters and other information

Follow us on LinkedIn and Twitter

Select your area of interest
EMPIR project supplies time and frequency dissemination for aerospace industry

An EMPIR project has extended the size of its time and frequency dissemination test-beds to supply two prominent aerospace companies more

EMPIR project on biomethane contributes to several ISO projects

Methods proposed by the project have been accepted by an ISO working group, as part of a standards collaboration with CEN more

Comprehensive guide to detecting mercury in the environment publicly available

Mercury is highly toxic to humans, animals and ecosystems. Its oxidised forms are particularly harmful but prior to the work of this project lacked va... more

EMPIR project assesses European facilities for calibrating radon detectors

Work by an EMPIR project to improve radon monitoring has completed an assessment of 15 radon calibration facilities in Europe more

EMPIR project protects European gas networks while promoting key biofuels

Improving the quality of biomethane injected into existing European gas networks more

Page 1 of 197.