Josephson travelling wave parametric amplifier and its application for metrology

Short Name: ParaWave, Project Number: 17FUN10
Image showing an electronic circuit board with graphical waveform overlay
Electronic circuit board with graphical waveform overlay

Developing technology for microwave quantum optics


Technologies that harness quantum mechanical phenomena are expected to advance a wide range of industries, from communications to medical imaging, by offering functionality unattainable to classical machines.

The emerging field of microwave quantum optics has garnered significant interest for the development of such technologies, but its progress critically depends on the availability of devices, cooled to extremely low temperatures, that amplify microwave signals. Currently, even state-of-the-art cryogenic amplifiers suffer electrical noise that is too high for quantum experiments and circuits.

The Josephson Travelling Wave Parametric Amplifier has been proposed conceptually as a potential solution.

 

This project has developed a Josephson Travelling Wave Parametric Amplifier (JTWPA), and prepared components and processes to characterise its properties. The project also aimed to integrate the JTWPA with quantum sensors and macroscopic quantum systems.

Investigating the capabilities of the JTWPA is a first step towards the advancement of microwave quantum optics, which could impact many fields of science and technology, such as artificial intelligence, cryptography, and brain scans.

 

This project builds on from EMRP project EXL03 MICROPHOTON.

 

Coordinator: Ralf Dolata (PTB)

 

For more information, please contact the EURAMET Management Support Unit:

Phone: +44 20 8943 6666

E-mail: empir.msu@euramet.org

 

 

Project website
Publications
Other Participants
Lancaster University (United Kingdom)
Royal Holloway and Bedford New College (United Kingdom)