World’s first standard in small magnetic measurements is published

Inductor coil

The project

The development of smaller, higher-performance electronic devices demands the measurement of magnetic fields on ever smaller scales. Although magnetic fields at the macro level can be measured accurately and reliably traced back to magnetic reference standards, measurements at the micro and nano level cannot – this is hindering high-tech industries’ ability to conduct the quantitative analysis and quality control needed to develop innovative products such as as the batteries used in mobile phones and the motors for electric cars.

Completed EMPIR project Nano-scale traceable magnetic field measurements (15SIB06, NanoMag) has developed European metrology capabilities to extend the accurate and traceable measurement of magnetic fields to micrometre and nanometre scales. This has contributed to the international harmonisation of high-resolution magnetic field measurement, and allows European industry to measure and manipulate fields with previously unattainable levels of precision. Industrial users in fields including computing, magnetic sensing and biomedicine will be able to develop new standards in quality control and product performance.

The newly published standard

Project outputs have led to the publication of the first international standard in the field of nano-scale magnetic measurements IEC TS 62607-9-1: Nanomanufacturing - Key control characteristics - Part 9-1: Traceable spatially resolved nano-scale stray magnetic field measurements - Magnetic force microscopy

This standard will be useful to companies and research centers active in the field of magnetic imaging and the research and development of nanomagnetic materials and devices.  

The abstract of the standards explains:

IEC 62607-9-1: 2021 establishes a standardised method to characterise spatially varying magnetic fields with a spatial resolution down to 10 nm for flat magnetic specimens by magnetic force microscopy (MFM). MFM primarily detects the stray field component perpendicular to the sample surface. The resolution is achieved by the calibration of the MFM tip using magnetically nanostructured reference materials.

The objective of this IEC Technical Specification is to define and describe:

  • reference materials for traceable high resolution magnetic stray field measurements
  • the calibration procedures to determine the instrument calibration function (ICF) and, if required, MFM key parameters entering the deconvolution process
  • the deconvolution process which allows to calculate quantitative stray field data from the measured MFM data using the ICF
  • the evaluation of the measurement uncertainty, including the prevention of potential artefacts which can occur during the measurement leading to a misinterpretation of the results

This EMPIR project was coordinated by Dr Hans Werner Schumacher at PTB, who said

‘This is the world’s first international standard in the field of nanomagnetism. I consider this an important step for quantitative materials research of nanomagnetic materials and for the development and production of reliable nanomagnetic sensors and devices.’

This EMPIR project is co-funded by the European Union's Horizon 2020 research and innovation programme and the EMPIR Participating States.

Want to hear more about EURAMET?

Sign up for EURAMET newsletters and other information

Follow us on LinkedIn and Twitter




Select your area of interest
Partnership project helps improve the thermal comfort of public buildings in Rwanda and South Africa

Working with external project Cool White to test and suggest improvements on the locally available white paints more

EMPIR project establishes new calibration capabilities and guide for Ultra-high voltage measurements

The project FutureEnergy has provided new calibration services for ultra-high voltages and a good practice guide on Lightning Impulse dividers more

EMPIR project releases software and optical constants for the photonics industry

For many of the 5000 photonics companies in Europe a precise knowledge of a material’s optical properties is vital for industrial competitiveness more

EMPIR project raises awareness of new calibration methods for electronic brachytherapy devices

The project partners publicised the metrological developments for electronic brachytherapy and were able to contribute to several standards more

Page 1 of 226.