News

Optical clock comparison shows new high accuracy, resulting in a Nature paper

Image showing a Large Modern Hourglass
Hourglass, an early timekeeping device

A recently completed EMPIR project confirms unprecedented ultra-low deviation between two independent single-ion optical clocks

The project 'Optical clocks with 1E-18 uncertainty' (15SIB03, OC18) compared two optical clocks, based on single ytterbium ions, for more than 1000 hours. The relative deviation between the "tick" rates of the clocks was found to be less than 3×10-18, in agreement with the previously estimated accuracy. This means that after approximately ten billion years these clocks would deviate from each other by one second.

The current definition of the SI second is based on energy levels in the caesium-133 atom, and the best atomic clocks that realise this definition achieve uncertainties in the range of 2×10-16. Even though this accuracy is far superior to that of all the other SI units, it needs to be improved further in order to address many of the scientific challenges emerging in modern physics.

One of those challenges is at the focus of a Nature publication that reports the ytterbium clock comparison experiment in the EMPIR project.

This new measurement not only has implications on plans to redefine the SI second but will also aid those working in fields where such very high accuracy is needed – including satellite navigation, geodetic height measurement, radio astronomy, and in some exciting quests into fundamental physics.


This EMPIR project is co-funded by the European Union's Horizon 2020 research and innovation programme and the EMPIR Participating States.

Want to hear more about EURAMET?
Sign up for EURAMET newsletters and other information

Follow us on LinkedIn and Twitter

 

Select your area of interest
EMPIR project contributes to more accurate observations of ocean acidification
2024-04-18

Carbon dioxide, released from man-made activities, is lowering the pH of the Earth’s oceans, and impacting the health of marine organisms worldwide more

Partnership project helps improve the thermal comfort of public buildings in Rwanda and South Africa
2024-04-11

Working with external project Cool White to test and suggest improvements on the locally available white paints more

EMPIR project establishes new calibration capabilities and guide for Ultra-high voltage measurements
2024-04-10

The project FutureEnergy has provided new calibration services for ultra-high voltages and a good practice guide on Lightning Impulse dividers more

EMPIR project releases software and optical constants for the photonics industry
2024-04-08

For many of the 5000 photonics companies in Europe a precise knowledge of a material’s optical properties is vital for industrial competitiveness more

Page 1 of 226.