

Technical Protocol for Supplementary comparison between PTB and VTT MIKES, Euramet project 1473

Water flow: 30 m³/h ... 200 m³/h

Pilot laboratory: VTT MIKES

Department of Liquid Flow

Tehdaskatu 15, Puristamo 9P19

87100 Kajaani

Finland

SC coordinator: Mika Huovinen

Phone: +358 50 4155 974 Email: mika.huovinen@vtt.fi

Software and electronic

support:

Torsten Jahn

Phone: +49-531-592 1322 Email: torsten.jahn@ptb.de

Florian Bürsing

Phone: +49-531-592 1354 Email: florian.buersing@ptb.de

Technical Protocol for SC supplementary comparison

Water flow within the range 30 m³/h \dots 200 m³/h

Table of Contents

1	INT	RODUCTION	3
2	ADI	MINISTRATIVE INFORMATION	3
3	DES	SCRIPTION OF THE TRANSFER STANDARD	3
	3.1	QUANTITIES THAT ARE SUBJECT OF THE COMPARISON MEASUREMENTS: METER K-FACTORS	3
	3.2	CALCULATION OF METER K-FACTORS	4
	3.3	Transfer meters	5
	3.4	AUXILIARY DEVICES	10
	3.5	ELECTRONIC BOXES 1 AND 2	11
	3.6	CHARACTERIZATION OF THE TRANSFER METERS PRIOR TO SC	14
	3.7	DATA ACQUISITION AND OPERATING SOFTWARE	15
4	ME	ASUREMENT PROCEDURE	16
	4.1	CALIBRATION METHOD	16
	4.2	MEASUREMENT PROGRAM: SC PARTICIPATING LABORATORIES	16
5	SHI	PPING THE TRANSFER STANDARD	18
	5.1	PACKING AND UNPACKING THE TRANSFER STANDARD	18
	5.2	MOUNTING AND DISMOUNTING THE TRANSFER PACKAGE	18
	5.3	Cleaning	19
	5.4	PACKING	19
6	REP	PORTING THE MEASUREMENT RESULTS	19
	6.1	ACQUISITION OF THE MEASUREMENT RESULTS	19
	6.1.	.1 Primary measurement data acquisition and collection	19
	6.1.	.2 Real-time acquisition of additional measurement and process data	20
	6.2	UTILIZATION AND DISSEMINATION OF THE MEASUREMENT RESULTS	20
7	DA	TA AND INFORMATION PROVIDED BY THE PARTICIPATING LABORATORIES	21
8	DA	TA ANALYSIS BY THE PILOT LABORATORY	21
	8.1	CALCULATION OF THE COMPARISON REFERENCE VALUE Y AND THE UNCERTAINTY U(Y)	21
	8.2	DIFFERENCES "LAB TO SCRV" AND "LAB TO LAB"	22
	8.3	FINAL CRITERIA FOR THE EVALUATION OF THE COMPARISON	23
9	REF	FERENCES	23
Α	PPENDI	ICES	24
	APPENI	DIX 1 - EXCEL SPREADSHEET FOR PRIMARY ACQUISITION OF SC CALIBRATION DATA	24
	APPENI	DIX 2 - STEPPING THROUGH SC DATA ACQUISITION FOR USING ELECTRONIC BOX 1	26
	APPENI	DIX 3 - DATA FILES GENERATED BY THE SC LABVIEW	34
	APPENI	DIX 4 - INSTRUCTIONS FOR USING ELECTRONICAL BOX 2	36
	APPENI	DIX 5 - LIST OF PARTICIPANTS	38
	Appeni	DIX 6 - CURRENT TIME SCHEDULE OF THE SC	39

1 Introduction

The purpose of the Supplementary Comparison SC for water flow measurement (Euramet ?) is to support the Calibration and Measurement Capabilities (CMC) entry of VTT MIKES, the National Metrology Institutes of Finland. For this goal a bilateral comparison between VTT MIKES and PTB Braunschweig will be realized. The laboratory "Hydrodynamic Test Field" of the department 1.5 "Liquid Flow" will act as the reference facility.

The special issues of SC comparisons have been outlined in "Guidelines for CIPM key comparisons" [] and comprise:

- Organization of a supplementary comparison;
- The technical protocol for a supplementary comparison;
- Circulation of the transfer standards;
- Reporting the results of a comparison;
- Preparation of the report on a supplementry comparison.

Note:

The official SCDB identifier will be updated after received from BIPM.

2 Administrative information

The transport of the equipment of the transfer package, which is packed in 2 metal cases (section 5.1), will be organized by VTT.

The sequence of the participating laboratories within the time schedule of the transfer meter round robin has been outlined in order to minimize the time requirements and under the aspect of customs efforts. The sequence is PTB-VTT-PTB.

3 Description of the transfer standard

The transfer standard used in SC comparison is the same transfer standard used in CCM.FF-K1.2015 key comparison. Within this document the transfer standard is referred with the identifier SC.

3.1 Quantities that are subject of the comparison measurements: Meter k-factors

Though there occur four measurands in fluid flow metering:

(Average) Volume/volumetric flow rate:

$$\overline{q_V} = V = \frac{V_{REF}}{T_{MEAS}} = \frac{m_{REF}}{\rho_{Water} \cdot T_{MEAS}}$$

(Average) Mass flow rate:

$$\overline{q_m} = m = \frac{m_{REF}}{T_{MEAS}}$$

Total(ized) volume flow measurement:

$$V_{M} = \int_{0}^{T_{MEAS}} V(t) dt = \overline{q_{V}} \cdot T_{MEAS}$$

Total(ized) mass flow measurement:

$$m_{M} = \int_{0}^{T_{MEAS}} m(t) dt = \overline{q_{m}} \cdot T_{MEAS}$$

In general, the **meter K-factor** of a flowmeter is the subject of flow calibration, regardless whether volumetric or gravimetric references are used in calibrating flowmeters, so it is in the SC water flow supplementary comparison.

 T_{MEAS} represents the measurement time of one calibration run during which the reference standard is filled with the test fluid due to the diverter operation.

Under certain circumstances, even flow calibration standards whose operation principle relies on the standing-start-and-finish operation may be utilized for metering flowrates and meter K-factors.

Note:

The meter K-factor was the measurand in the CCM.FF-K1 for Water Flow in 2003/2004, too [2], which was the subject of the calibration measurements and also in the CCM.FF-K1.2015. This supplementary comparison uses same standard and measuring methods.

Depending on the operating principle of the flowmeters that are used in SC, following meter-K-factors are the subject of measurement and have to be determined in SC:

1) Turbine flowmeter: volume-related frequency output:

K_{Tur_V} [pulses/unit volume]

2) Coriolis flowmeter: mass-related frequency output:

 K_{Cor_m} [pulses/unit mass]

3.2 Calculation of meter K-factors

For each single measurement a specific K-factor will be calculated by using equation 1, respectively, equation 2. The measurement error will be estimated by using equation 3 and 4. Both approaches are based on a specific nominal meter K-factor (Table 1 and Table 2). Finally, for each flow rate the mean measurement error $\bar{x}_{V,i}$ and $\bar{x}_{m,i}$ will be calculated by using equation 5, respectively, equation 6.

$$K_{Tur_V,i} = \frac{Pulse_{Tur}}{V_{ref,i}}$$
 Equ. 1

with Pulse_{Tur} - counted pulses of turbine meter (pulse)

V_{ref,i} - reference volume (Liter)

i - laboratory

$$K_{Cor_m,i} = \frac{Pulse_{Cor,m}}{m_{ref,i}}$$
 Equ. 2

with Pulse_{Cor,m} - counted pulses of coriolis meter - mass output (pulse)
m_{ref,i} - reference mass (kg)

$$x_{V,i} = \frac{K_{Tur_V,i} - K_{Tur_V,nom}}{K_{Tur_V,nom}} \cdot 100 \%$$
 Equ. 3

$$x_{m,i} = \frac{K_{Cor_m,i} - K_{Cor_m,nom}}{K_{Cor_m,nom}} \cdot 100 \%$$
 Equ. 4

$$\bar{x}_{V,i} = \frac{\sum_{j=1}^{n} x_{V,i}}{n}$$
 Equ. 5

$$\bar{x}_{m,i} = \frac{\sum_{j=1}^{n} x_{m,i}}{n}$$
 Equ. 6

with K_{Tur_V,nom} - nominal meter K-factor of turbine output (pulse/kg)

K_{Cor_m,nom} - nominal meter K-factor of coriolis mass output (pulse/kg)

 $x_{V,i}$ - single value of measurement error turbine meter at one flow rate (%) $x_{m,i}$ - single value of measurement error coriolis meter at one flow rate (%)

The installation of the transfer package comprising the above-mentioned transfer meters is shown in Figure 4.

Auxiliary measurands for diagnostic purposes:

These measurands are:

- 1) Water density (based on a signal delivered by the Coriolis flowmeter, see also Figure 2);
- 2) Pressure drop across the turbine meter (as an indicator for the proper operation of this meter)

They are acquired autonomously by the electronic equipment, which dedicated to the transfer package, during each calibration measurement **if electronic box 1 is used**. These devices and their arrangement in the calibration line are shown in Figure 3 and Figure 4, respectively.

3.3 Transfer meters

In addition to the transfer meters, all items that are necessary for installing the transfer meters are part of equipment provided by the pilot laboratory:

- 1) Pipework for meter installation: providing connectivity to both DIN and ANSI flanges Figure 3
- 2) Cables for connecting transfer meters and the auxiliary devices to the electronic boxes, respectively to the laptop computer
- 3) Electronic boxes 1 and 2 (Figure 9 and Figure 10)

The whole pipework consists of elements which were manufactured in stainless steel. The installation spacing of the meters and the KC pipework elements amounts to approx. 3,430 mm in total.

In order to provide optimum reproducibility conditions, the transfer package meters and the interconnecting pipework are equipped with pin-in-hole alignment capabilities (see Figure 1 and Figure 3).

Figure 1: KC1 transfer meter - Turbine meter, DN 100, Manufacturer, KEM (Germany)

Figure 2: KC1 transfer meters - Coriolis flowmeter, DN 100, Manufacturer, E+H (Switzerland)

Transfer meter #1:

Table 1: Turbine flowmeter (Figure 1)

Manufacturer:	KEM Küppers Elektromechanik GmbH	Germany
Туре:	HM 100.71.FDB40-TS15-P	For further details see manual
Serial No.:	010995521	
Pipe size:	DN 100	Nominal: 100 mm
Signal pick-up:	Type: VTE*/P-Ex	Signal voltage: ca. 24 V
	Carrier-frequency pulse amplifier	
	Serial No.: 02497623	
Output signal:	Frequency	(0 Hz) 450 Hz (at 240 m³/h)
	Nominal meter K-factor: K _{Tur_V,nom}	6.633 Pulses/L
Connecting cable:		Plug with green marker
Process connections:	Flanges	according to DIN standard
Additional equipment:	Tube-bundle flow conditioner	Permanently attached to meter
Special provision:	Pin-in-hole alignment	Steel pins located in precision
		holes on both ends

Transfer meter #2:

Table 2: Coriolis flowmeter (Figure 2)

Manufacturer:	ENDRESS + HAUSER	Switzerland
Type:	Proline Promass 83 F	For further details see manual
Serial No.:	D702C102000	
Pipe size:	DN 100	Nominal: 100 mm
Signal output #1:	Mass-flowrate related: frequency	0 kHz 10 kHz
	Nominal meter K-factor: K _{Cor_m,nom}	100 Pulses/kg
Signal output #2:	Fluid density: current signal	4 mA 20 mA
Signal input:	Activate RE-ZERO of flowmeter	Binary signal:
Communication line:	Reading parameters from flowmeter	HART protocol (current output)
Connecting cable:	All signal lines are combined in a single cable	Plug with blue marker
Process connections:	Flanges	according DIN standard
Special adoptions:	A cage-like meter extension in order to isolate the meter from external forces and torques	With rubber damping elements included
Special provision:	Pin-in-hole alignment	Steel pins located in precision holes on both ends

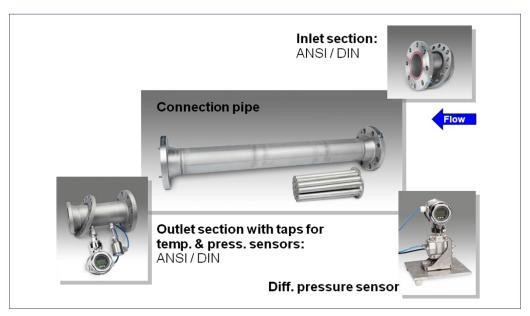


Figure 3: KC1 pipework

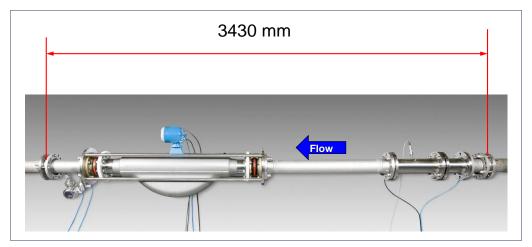


Figure 4: KC1 transfer meter package and pipework – Overview

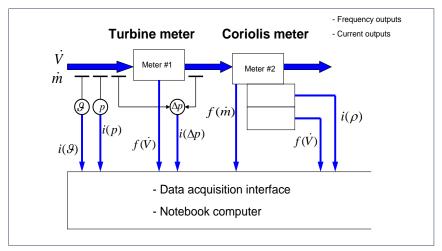


Figure 5: Electronic Box 1 - Signal acquisition during comparison measurements

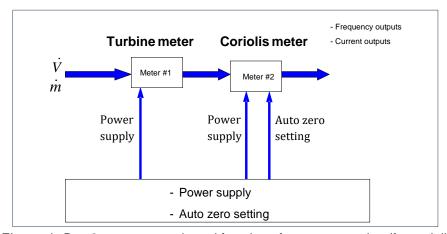


Figure 6: Electronic Box 2 – power supply and function of auto zero setting (for coriolis meter)

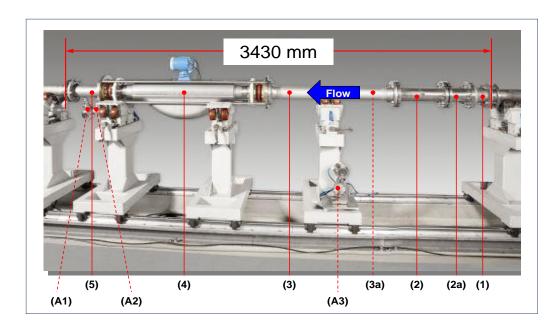


Figure 7: KC1 transfer meter package and pipework - Sample installation

- (1) Inlet pipe section (adaptable to both ANSI and DIN flange connections)
- (2) Turbine meter
- (2a) Tube-bundle flow conditioner dedicated to the turbine
- (3) Connecting pipe section with
- (3a) Integrated tube-bundle flow conditioner
- (4) Coriolis flowmeter
- (5) Outlet pipe section (adaptable to both ANSI and DIN flange connections)

Auxiliary devices:

- (A1) Pressure transmitter
- (A2) Temperature transmitter
- (A3) Differential pressure transmitter

In Figure 8, the operating characteristics of the transfer package as a function of pressure loss vs. flowrate (derating curve) is shown, which could be useful in order to estimate the operability of transfer package in a calibration facility.

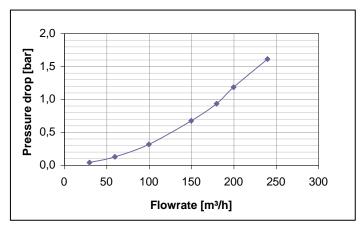


Figure 8: Pressure drop (pressure loss) across transfer meter package (derating curve)

Inlet pipe section upstream meter #1:

Table 3: Inlet section (Figure 3)

Material:	Stainless steel	
Length:	150 mm	
Pipe size/diameter:	Nominal: 100 mm	
Process connections:	Flanges: - Inlet side: - Outlet side:	- Connectable both to DIN and ANSI pipework - According to DIN standard
Special provisions:	Pin-in-hole alignment	On the outlet side: Flange connection to meter #1

Interconnection pipe section between meter #1 and meter #2:

Table 4: Connection pipe (Figure 3)

Material:	Stainless steel	
Length:	1,000 mm	
Pipe size/diameter:	Nominal: 100 mm	
Sub-item.:	Tube-bundle flow conditioner (inlet)	Fastened inside by screws
Process connections:	Flanges	According to DIN standard
Special provisions:	Pin-in-hole alignment	On either end

Outlet pipe section downstream meter #2:

Table 5: Outlet section (Figure 3)

Material:	Stainless steel	
Length:	300 mm	
Pipe size/diameter:	Nominal: 100 mm	
Process connections:	Flanges: - Inlet side: - Outlet side:	According to DIN standardConnectable both to DIN and ANSI pipework
Special provisions:	Pin-in-hole alignment	On the inlet side: connection to meter #2

3.4 Auxiliary devices

a) Temperature transmitter

Table 6: Temperature transmitter

Manufacturer:	ENDRESS + HAUSER	Switzerland
Type:	TR10 – ARA1CAR4H300L	For further details see manual
Serial No.:	D301FB14152	
Length of sensing element:	80 mm	
Process connections:	Male thread:	Permanently screwed to tap at outlet pipe section
Sensor head transmitter:	TMT182 - A	
Signal output:	Current signal	4 mA 20 mA
Communication line:	Not in use	HART protocol (current output)
Connecting cable:		Plug with red marker

b) Pressure transmitter:

Table 7: Pressure transmitter

Manufacturer:	ENDRESS + HAUSER	Switzerland
Type:	Cerabar PMC71	For further details see manual
Serial No.:	D502B90109C	
Calibration label:	PTB 30295 14	
Process connections:	Male thread:	Permanently screwed to tap at outlet pipe section
Signal output:	Current signal	4 mA 20 mA
Communication line:	Not in use	HART protocol (current output)
Connecting cable:		Plug with grey marker

c) Differential pressure transmitter:

Table 8: Differential pressure transmitter

Manufacturer:	ENDRESS + HAUSER	Switzerland
Type:	Deltabar PMD70 - ABR7HCAUA	For further details see manual
Serial No.:	H201CC0109D	
Calibration label:	PTB 30293 14	
Process connections:	Flexible hoses: - blue: "Pressure +" - black: "Pressure –"	Pluggable connections
Signal output:	Current signal	4 mA 20 mA
Communication line:	Not in use	HART protocol (current output)
Connecting cable:		Plug with blue marker

d) Densitometer:

Signal is delivered by the Coriolis flowmeter:

- 4 mA ... 20 mA; Measurement principle: See manual of Coriolis meter
- Signal connection: See Table 2

3.5 Electronic boxes 1 and 2

The transfer meters and the auxiliary devices have to be connected **to one** of the following electronical boxes. The electronic of both boxes was developed as a parallel working system, which does not affect the standard recording of the laboratories (impulse counting). Additionally, tests in the PTB-lab verified the use of both boxes. A negative influence of the electronics to the impulse counting itself was not detected.

- a) electronic box 1 data logger system by National Instruments (Figure 9)
 either
- b) electronic box 2 power supply and auto zero setting (Figure 10)

In generally, all measurements should be done by using box 1. Only under special circumstances (see text below) it could be necessary to use box 2. In that case or if you are not sure about the next steps it is essential to contact a member of the pilot lab (For contact details see Page 1).

The main purpose of **electronic box 1** is to log impulses and process parameter during calibration. Additionally, power supply of the measurement instruments is provided by the box. The data of the box will be used for a long-term characterization of the transfer meters and an interpretation of the measurement conditions in the laboratories during the whole round-robin. Therefore the KC1 transfer package comprises special sensors and these extended measurement data acquisition electronics. For more detailed description of the logged data set see Appendix 2. The connectors and inlet/outlet sockets of electronic box 1 is given in Table 9.

Due to the diverse conditions of the laboratories (e.g. electronical compatibility) it was necessary to develop an alternative junction device for the transfer meters. For the scenario, if the use of electronic box 1 doesn't work in the intended function (power supply of the transfer meters and data logging) **electronic box 2** has to be used instead. The main purpose of **electronic box 2** is the power supply of the turbine and coriolis meter. Additionally, auto zero setting for the Coriolis meter can be activated. The connectors and inlet/outlet sockets of electronic box 2 are given in Table 10.

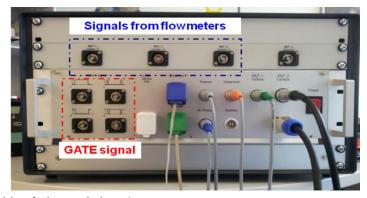


Figure 9: Front side of electronic box 1

Figure 10: Electronic box 2 (alternative junction) for power supply of both transfer meters and auto zero setting for coriolis meter

Table 9: Connectors and inlet/outlet sockets of electronic box 1 (Figure 10)

Ite m No.	Signal / power supply	Plug type	Signal type	Voltage / Signal level	Color code of connector
1	Mains switch	/	/	/	/
2	Mains connector input (on the rear side)	National adapters (adequate types of adapters are part of the transfer package)	AC mains	110 V 240 V (50 Hz – 60 Hz)	/
3	Input signal from diverting device (1 of 4)	BNC socket (BNC cable & BNC-to-banana-plug adapter included)	Binary signal (TTL voltage level)	Digital logic levels: LOW: 0 to 0.8 V HIGH: 2 to 24 V	black
4	Power supply to laptop computer	Mechanically coded		20 V (DC)	/
5	Computer-to-electronics interface	RJ45 socket (connecting cable included)	Ethernet	Ethernet	1
6	Line pressure	Mechanically coded	Current input	4 mA 20 mA	grey
7	Differential pressure	Mechanically coded	Current input	4 mA 20 mA	blue
8	Fluid temperature	Mechanically coded	Current input	4 mA 20 mA	light red
9	MUT #1: Turbine meter - volume flowrate	Mechanically coded	Voltage input: pulse signal Supply voltage	ca. 24 V 24 V (DC)	green
10	MUT #2: Coriolis meter: - mass flowrate - volume flowrate - fluid density	Mechanically coded	Voltage input: pulse signal	ca. 18 V	black
11	Outlet socket: Power supply to Coriolis meter	Mechanically coded	Voltage (AC)	110 V 240 V (AC)	blue
12	Outlet socket: - turbine meter	BNC socket (BNC cable & BNC-to-banana-plug adapter included)	Voltage input: pulse signal	ca. 22 V	/
13	Outlet socket: - Coriolis meter (mass)	BNC socket (ditto)	Voltage input: pulse signal	ca. 22 V	/
14	Outlet socket: - Coriolis meter (mass)	BNC socket (ditto)	Voltage input: pulse signal	ca. 22 V	/
15	Outlet socket: - NOT in use here	BNC socket	/	/	/
16	- USB socket: provides connectivity to laptop computer	USB socket	USB signal	USB voltage level	white cover

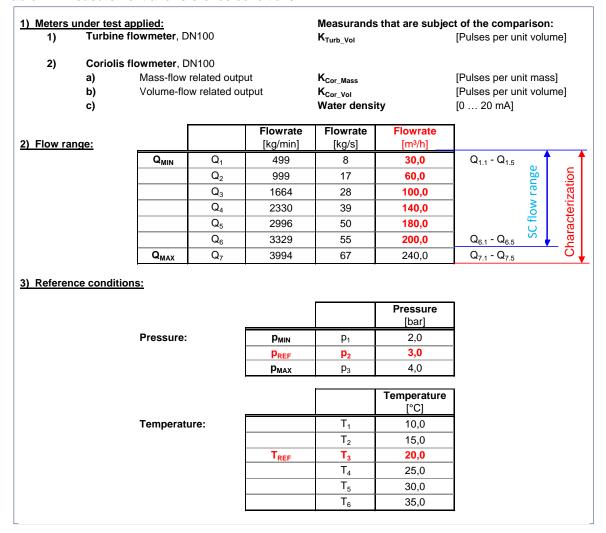
¹⁾ National Instruments, Inc.: NI 9411 - Operating instructions and specifications, 6-channel differential digital input module [www.ni.com/manuals]

Table 10: Connectors and inlet/outlet sockets of electronic box 2 (Alternative junction) - (Figure 10)

Item No.	Signal / power supply	Plug type	Signal type	Voltage / Signal level	Color code of connector
1	Mains switch	/	/	/	/
2	Mains connector input	National adapters (adequate types of adapters are part of the transfer package)	AC mains	110 V 250 V (50 Hz – 60 Hz)	black
3	constant voltage power supply (24 V DC) input	Banana-plug	DC mains	24 V	Black: - Red: +
4	Outlet socket: - turbine meter MUT 1	BNC socket (BNC cable & BNC-to- banana-plug adapter included)	Voltage input: pulse signal	ca. 22 V	/
5	Outlet socket: - Coriolis meter (volume) MUT 2	BNC socket (ditto)	Voltage input: pulse signal	ca. 22 V	/
6	Outlet socket: - Coriolis meter (mass) MUT3	BNC socket (ditto)	Voltage input: pulse signal	ca. 22 V	/
7	Input socket: MUT #1: Turbine meter - volume flowrate	Mechanically coded	Voltage input: pulse signal Supply voltage	ca. 24 V 24 V (DC)	green
8	Input socket: MUT #2: Coriolis meter: - mass flowrate - volume flowrate	Mechanically coded	Voltage input: pulse signal	ca. 18 V	black
9	Outlet socket: Power supply to Coriolis meter	Mechanically coded	Voltage (AC)	110 V 240 V (AC)	blue

3.6 Characterization of the transfer meters prior to SC

The two flowmeters were subjected to extensive test measurements. These calibrations were made under defined conditions (Table 11) during KC1 and included the following reference conditions of the SC. All measurements were made by installing the complete SC setup (Figure 4).


Reference conditions of SC:

- Flowrate range: 30 m³/h ... 200 m³/h

- Reference temperature: 20 °C- Line gauge pressure: 3 bar

For flowmeter characterization purposes, i.e. in order to analyze the temperature and pressure impacts on the meters' characteristics (error curves), the fluid temperature and the line gauge pressure had been subject of systematic variations (Table 12). Due to short time period after the finish of the CCM.FF-K1.2015 and the beginning of the SC, there is no need to repeat the whole range of the characterization range. This assumption is valid for temperature and pressure characterization as well for additional measurement days at pilot laboratory (day#4 to day day#6). It is sufficient to measure only at the operation conditions i.e. the 20 °C and 3 bar.

Table 11: Measurement and reference conditions

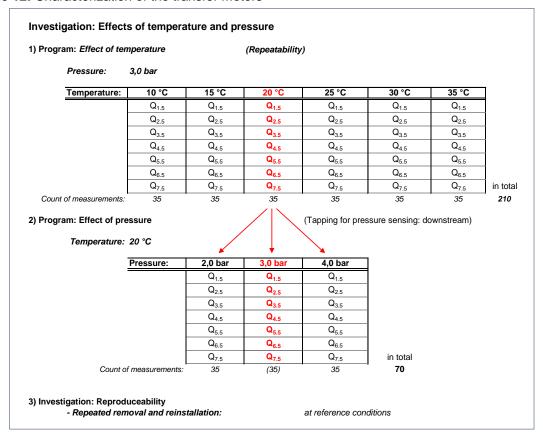


Table 12: Characterization of the transfer meters

3.7 Data acquisition and operating software

<u>If using electronical box 1</u>, the data acquisition and operating software relies on a LabVIEW application program (National Instruments, Inc.) that is run on a Windows 7-based laptop computer.

The LabVIEW program comprises a HMI (human machine interface) which run as a Virtual Instrument (VI) on the Windows computer as well as the operating part which was downloaded to be run on the FPGA-based process interface, realized in a CompactRIO subsystem from National Instruments, Inc.

In order to start the measurement program, do start up the laptop's Windows 7 operating system and log in:

User: .**Lab#XX** (placeholder: XX, stands for sequence number of NMI)

Password: Lab#XX (default; password should be changed under Windows 7)

To start the measurement program, double click on the NI (National Instrument) icon and LabVIEW's welcome VI window will appear.

Please follow the instructions, which are described in Appendix 2.

<u>If using electronical box 2</u>, no data acquisition and operating software is running. It is not necessary to start the SC laptop.

4 Measurement procedure

4.1 Calibration method

The flow calibration facilities of PTB and MIKES are operating by practicing the calibration method of Flying-start-and-finish in combination with diverter-operated static weighing. This method provides the highest accuracy in liquid flow calibration. The set of transfer meters and the auxiliary electronics are prepared to be run in this operation mode.

The manual data input during each single flow point, when calibrating the transfer meter is described in Appendix 1

The **main objective of the measurement program** during SC is to verify and confirm the future CMC entries of the National Metrology Institute (NMI) of Finland.

The test and measurement program(s) for SC Water Flow has been derived under this special aspect.

4.2 Measurement program: SC participating laboratories

The SC calibration measurements of the participating laboratories provide following data and information:

- Lab-to-lab reproducibility: Meter error drifts of the transfer meters during the SC meter round robin from lab to lab (measurements on the 1st day).
 - Of course, these values inherently comprise both meter and laboratory related effects.
 - In order to isolated meter and laboratory related effects, the PTB's SC program comprises a more extended calibration and test program part.
- 2) **Flowmeter calibration capabilities** of the labs under "normal" operation conditions in order to prove the CMC entries in BIPM's CMC data base (2nd day).

These measurement results represent the basis to determine The **Supplementary Comparison Reference Value** (SCRV).

As the transfer meter package comprises flowmeters based on both volume-flow metering:

- a) through the turbine meter volume flow output signal;
- and mass-flow metering principles:
 - b) through the Coriolis meter's mass flow output signal;

Both participating labs have to prove their mass flow as well their volume flow calibration capabilities, regardless whether a participating laboratory's calibration facility primarily relies on a gravimetric or a volumetric reference system.

3) **Repeatability** of the laboratories' calibration measurements: For this purpose, meter calibration is run at selected flowrates:

flow flowrate: 30 m³/h, medium flowrate: 100 m³/h, high flowrate: 200 m³/h; with a higher number of 10 repeated measurements.

Behind this background, the SC measurement program for both laboratories has been derived as follows:

1) 1st day of calibration measurements

Reproducibility (Lab-to-lab reproducibility)

Preparations: Installation of transfer meters

Coriolis meter: re-zero **YES** (flowrate = 0)

Start-up (flowrate > 0)

Calibration: at 6 flowrates (according to Table 11: 30 m³/h, 60 m³/h, 100 m³/h,

140 m³/h 180 m³/h 200 m³/h) with 5 repeated measurements

Finish: Shutdown of calibration facility

Transfer package remains in calibration line

2) 2nd day of calibration measurements: Main measurement of SC

Day-to-day repeatability

Preparations: Coriolis meter: re-zero NO

Start-up (flowrate > 0)

Calibration: at 6 flowrates (according to Table 11: 30 m³/h, 60 m³/h, 100 m³/h,

140 m³/h 180 m³/h 200 m³/h) with 5 repeated measurements

Finish: Shutdown of calibration facility

Transfer package remains in calibration line

3) 3rd day of calibration measurements

Repeatability

Start-up: 1st flowrate: 30 m³/h (10x repeated measurements)

2nd flowrate: 100 m³/h (ditto) 3rd flowrate: 200 m³/h (ditto)

Finish: Shutdown of calibration facility

Transfer package is removed from calibration line and prepared for

shipment.

4) Shipment of transfer package

5 Shipping the transfer standard

5.1 Packing and unpacking the transfer standard

An overview how the elements of the transfer package, the electronic hardware and the laptop computer are arranged in their transport case for shipment can be seen in **Figure 11**.

The two shipment cases, destined for shipping the SC transfer package meters, data acquisition electronics and laptop computer, have following sizes and weights (Mass):

Case #1: Transfer package meters

Size: Length x Width x Height (1700 x 800 x 860) mm

Weight / mass: 351 kg

Case #2: Electronic devices, computer

Size: Length x Width x Height (800 x 600 x 410) mm

Weight / mass: 45 kg

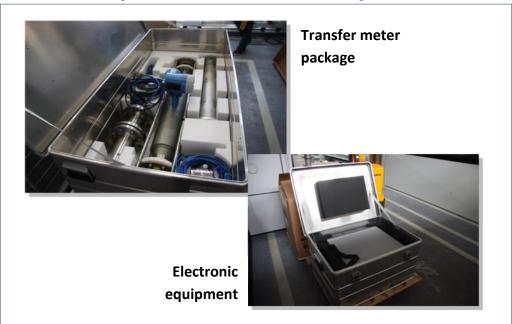


Figure 11: Transfer standard, shipping conditions (two metal boxes)

5.2 Mounting and dismounting the transfer package

The elements of the SC flow instruments and connecting pipework were prepared for high-reproducibility installation by means of pin-and-hole design as a mounting aid for a precise alignment of the flowmeters and connecting pipe segments.

A description how to proceed when mounting the transfer package hardware will be placed in the shipment case - in addition to a list of all parts of the transfer package.

Prior to installation works, the completeness of the contents of the shipment boxes should be checked.

In case of missing parts or damaged devices (due to visual inspection) the co-ordinator or another representative of the PTB laboratory is to be informed.

For smaller parts such as screws or electrical connectors, spare parts were added to the equipment.

5.3 Cleaning

It is a prerequisite that the transfer package meters will be run in a flow calibration standard facility where no pollutant occurs. It is not necessary to apply a special cleaning procedure to the transfer meters after having finalized the SC measurement program.

Before preparing the flowmeters for shipment again, be sure that the inner surfaces of these meters, which were wetted during measurement, are dry. Otherwise, dried carbonate remainders could be deposited in the flowmeters. Especially in case of the turbine meter, these carbonate deposits could cause an effect to the meter characteristics. Additionally, damages due to frost could occur if wet meters will be transported.

5.4 Packing

Before packing the transfer meters and other equipment, make a visual check whether any damages occurred to SC component parts. Please check the whole equipment is complete when being shipped.

6 Reporting the measurement results

6.1 Acquisition of the measurement results

For reporting calibration results of the laboratories, in addition to the approach generally practiced in a participating laboratory, following ways of data acquisition and collection will be applied.

6.1.1 Primary measurement data acquisition and collection

An EXCEL spreadsheet has been developed for reporting calibration results. Please enter here results of the calibration facility. An example of the EXCEL sheet is shown in Appendix 1; it comprises following data and information:

1) Measurement configuration: Meter K-factors of the transfer meters; and type of reference

standard

2) Density coefficients: Depending on the density calculation/approximation which is

used in the laboratory

3) Pipe / flow conditions: Serve to calculation the Reynolds number(s)

4) Ambient conditions: Ambient air density for buoyancy correction purposes;

5) Measurement data: According to the numbers of tests/calibrations, in the positions

of the main part (shaded light green), 30 data sets have to be

entered.

The example EXCEL sheet in **Appendix 1** contains **dummy data**, which were placed there, in order to avoid that the main table indicates a greater number of **Error codes**.

The EXCEL spreadsheet which is destined to be used for collecting and acquiring the measurement data in KC1 comprise 3 tables which tabbed (named) as follows:

- Day #1 Acquisition of calibration data on the first day of the laboratory's SC measurements (Lab-to-lab reproducibility)
- Main_Day #2 Acquisition of calibration data on the second day of the laboratory's SC measurements;

These measurement results represent those values that will be used to determine the **Supplementary Comparison Reference Values** SCRV), which are:

- SCRV(mass flow): acquired data from Coriolis meter output
- SCRV(volume flow): acquired data from turbine meter output
- SCRV(volume flow): acquired data from Coriolis meter output

- 3) Day #3_Repeatability Acquisition of calibration data on the third day of the laboratory's KC1 measurements;
 - In addition to the calibration data of the transfer meters during the comparison measurements, which are represented by the measurement values of the second, here meter characteristics are determined which provides a greater emphasis on the repeatability behavior or flow standard.
- 4) **Density_Water** This table contains an example how the water density, which is needed in the tables #1 through #3, might be determined. The laboratories will apply their own approaches and algorithms to determine water density and will modify and adapt this table in accordance with their practices in this issue.
- 5) **Auto zero values** The table has to be completed in case of using electronic box 2 and to minute the set values of Auto zero.

6.1.2 Real-time acquisition of additional measurement and process data

In order to provide information concerning the long-term characteristics of the transfer meters and the measurement conditions in the laboratories, the SC transfer package comprises special sensors and measurement data acquisition electronics (see also chapter 3.5). The handling and the Human Machine Interface (HMI) of the LabVIEW-based software, which is dedicated to this auxiliary measurement equipment, is described in Appendix 2. During the SC, measurements flowmeter output signals and measured values of process variables will be measured and acquired in real time.

After the successful completion of the whole measurement program in a laboratory, the compilation of data files will be generated on the operator's demand. A detailed description of this data handling procedure is given in Appendix 3.

Note:

The recorded data of the SC electronic will be used for an internal interpretation of the calibrations and for a bilateral discussion with the related laboratory. The data will not be forwarded to any third party.

The generated data sets comprise follow data files:

File name := user_flowrate_run_General.txt

File name := user_flowrate_run_LabDATA.csv

File name := user_flowrate_run_Meters.csv

File name := user_flowrate_run_ProcessValues.csv

File name := user_flowrate_run_Transition.csv

File name := user_flowrate_run_Zeroing.txt

6.2 Utilization and dissemination of the measurement results

The calibration data **taken during the second day** of the SC measurements will be applied for calculating the meter K-factors of the transfer meters. These data will be used for determining the corresponding SCRVs of the three measurands which are subjects of SC:

1) Turbine flowmeter: - volume-related frequency output:

K_{Tur_V} [pulses/unit volume]

2) Coriolis flowmeter:

- mass-related frequency output:

K_{Cor_m} [pulses/unit mass]

7 Data and information provided by the participating laboratories

- Piping & instrumentation diagram and description of the calibration facility

For preparing the report on SC, the participating laboratories are asked to deliver a short description of their water flow standards. This description should refer to a classification of the calibration principle as it is given in **Fehler! Verweisquelle konnte nicht gefunden werden.** and contain a simplified piping and instrumentation diagram.

- Photos of the transfer package when installed in the calibration rig

In addition to the measurement data, the situation of the experimental setup is to be documented by photographs. The pictures should show at least the installed transfer meters in the calibration line, the complete inlet section to the transfer standard and the outlet section of the calibration line.

Instruments used by the laboratory in the comparison measurements

The laboratories are expected to deliver information (technical specifications etc.) relating to instruments whose measuring properties contribute to the measurement uncertainty of the flow standard facility (claimed as CMC entry).

- Measurement model (i.e. equations) applied for uncertainty analysis purposes

An essential contribution of the laboratories of SC will be the measurement model, which describes the calibration of the water calibration facility individually. In order to provide a better comparability of the single uncertainty figures of the laboratories the recommendation is given to enter all uncertainty relevant information into an uncertainty calculation spreadsheet which has been prepared.

 Measurement uncertainty results (CMCs) based upon a unified EXCEL spreadsheet (which will be provided by the pilot lab)

For a most effective evaluation of the laboratories' SC measurement data, the laboratories are expected to finish their calibration results to fit into the unified EXCEL spreadsheet shown in Appendix 1.

8 Data analysis by the pilot laboratory

8.1 Calculation of the comparison reference value *y* and the uncertainty *U*(*y*)

The following analysis are based on [3, 4, 5, 6]. The reference value of the comparison will be estimated by using Equ. 7.

$$y = \frac{\left(\frac{\overline{x_1}}{u^2(\overline{x_1})} + \frac{\overline{x_2}}{u^2(\overline{x_2})} + \dots \frac{\overline{x_l}}{u^2(\overline{x_i})}\right)}{\left(\frac{1}{u^2(\overline{x_1})} + \frac{1}{u^2(\overline{x_2})} + \dots \frac{1}{u^2(\overline{x_i})}\right)}$$
 Equ. 7

with y - Reference value of the comparison (in %)

 \bar{x}_i - Mean of measurement error at one flow rate (in %)

Participating laboratory

The standard uncertainty u(y) is:

$$\frac{1}{u^2(y)} = \frac{1}{u^2(\bar{x}_1)} + \frac{1}{u^2(\bar{x}_2)} + \dots + \frac{1}{u^2(\bar{x}_i)}$$
 Equ. 8

with u(y) - Standard uncertainty of the comparison reference value y with k = 1 (in %)

The extended uncertainty U(y) is:

$$U(y) = 2 \cdot u(y)$$
 Equ. 9

with U(y) - Extended uncertainty of the comparison reference value y with k = 2 (in %)

8.2 Differences "Lab to SCRV" and "Lab to Lab"

When the SCRV was determined, the differences between the participating laboratories and the SCRV will be calculated according to

$$d_i = \bar{x}_i - y$$
 Equ. 9

$$d_{i,j} = \bar{x}_i - \bar{x}_{i,j}$$
 Equ. 10

$$d_k = \bar{x_i} - KCRV$$
 Equ. 11

with d_i - deviation of \bar{x}_i to SCRV (in %)

 $d_{i,j}$ - deviation of \bar{x}_i to reference laboratory (in %)

 d_k - deviation of \bar{x}_i to KCRV (in %)

Based on these differences, the normalized Degree of Equivalence will be calculated according to:

$$E_{N,i} = \left| \frac{d_i}{U(d_i)} \right|$$
 Equ. 12

$$E_{N,ij} = \left| \frac{d_{ij}}{U(d_{i,i})} \right|$$
 Equ. 13

$$E_{N,k} = \left| \frac{d_k}{U(d_k)} \right|$$
 Equ. 14

with $E_{N,i}$ - normalized Degree of Equivalence of a single laboratory (-)

E_{N.i.j} - normalized Degree of Equivalence between the laboratories (-)

E_{N,k} - normalized Degree of Equivalence of a single laboratory to KCRV (-)

a) Differences to the SCRV (independent laboratories with contribution to the SCRV)

The covariance between the result of a laboratory (with contribution to the SCRV) and the SCRV is the variance of the SCRV itself:

$$u(d_i) = \sqrt{u(x_i)^2 + u(y)^2 - 2 \cdot u(y)^2} = \sqrt{u(x_i)^2 - u(y)^2}$$
 Equ. 15

b) Lab to Lab Differences

All of the participants in this comparison have independent traceability chains. There is no covariance between the results of two independent laboratories i and j and the uncertainty of the difference between two labs is:

$$u(d_{i,j}) = \sqrt{u(x_i)^2 + u(x_j)^2}$$
 Equ. 16

c) Linkage to the KCRV

Results of this Suplementary Comparison could be linked to CCM.FF-K1.2015 Key Comparison. The uncertainty between lab and KCRV is:

$$u(d_k) = \sqrt{u(x_i)^2 + u(KCRV)^2}$$
 Equ. 17

Equations 15 to 17 use the standard uncertainties. The expanded uncertainties $U(d_i)$, $U(d_{i,j})$ and $U(d_k)$ are determined by using a coverage factor of 2 to obtain an approximately 95 % confidence level value.

8.3 Final criteria for the evaluation of the comparison

a) Chi2-Test

This test will not be applied because of the bilateral character of the measurements.

b) Criteria A – the E_N -value

- the results of a laboratory were equivalent (passed) if Eni or Enij ≤ 1.
- the laboratory was determined as not equivalent (failed) if Eni or Enij >1.

c) Criteria B – the ratio between u_{Comp} und u_{Lab}

The ratio between ucomp and ulab \leq 2,0 verifies the capability of the transfer standard for a confirmation of the aimed CMC values.

9 References

- [1] BIPM: Measurement comparisons in the CIPM MRA, CIPM MRA-D-05, Version 1.6, March 2016, https://www.bipm.org/en/cipm-mra/cipm-mra-documents/
- [2] Paik J.S. et al: Final report on CCM.FF-K1 for water. In: Metrologia, Volume 44, 2007
- [3] Cox M. G., Evaluation of key comparison data, Metrologia, 39, 589 to 595, 2002.
- [4] WGFF Guidelines for CMC Uncertainty and Calibration Report Uncertainty, Working Group for Fluid Flow, October 21, 2013, http://www.bipm.org/utils/en/pdf/ccm-wgff-guidelines.pdf.
- [5] WRIGHT, J. et al. (2016): Transfer standard uncertainty can cause inconclusive inter-laboratory comparisons. In: Metrologia 53 (2016)
- [6] Benková, M., Makovnik, S.: Final report on CIPM key comparison CCM.FF-K6.2011: Comparison of the primary (national) standards of low-pressure gas flow In: Metrologia 51 (2014)

Appendices

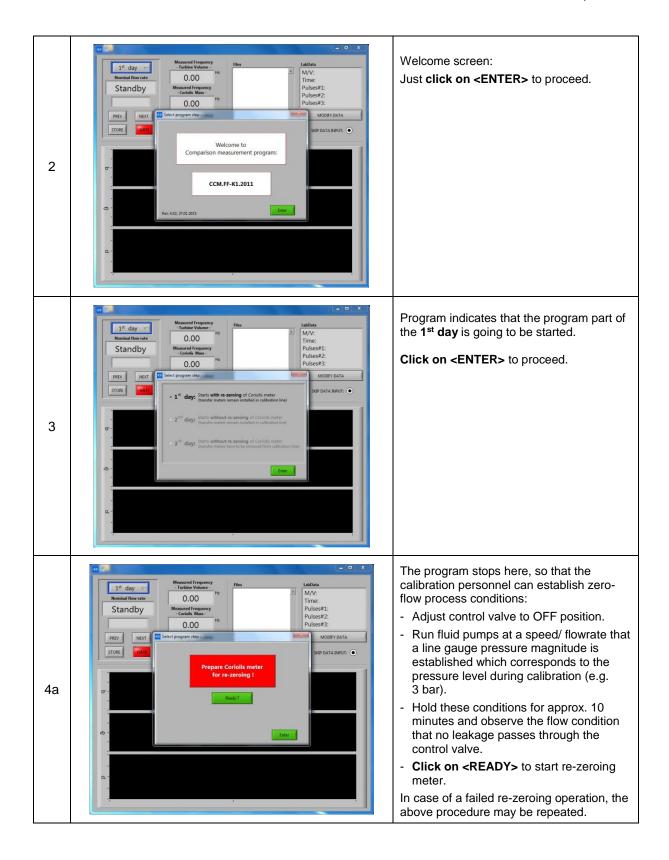
Appendix 1 - EXCEL spreadsheet for primary acquisition of SC calibration data

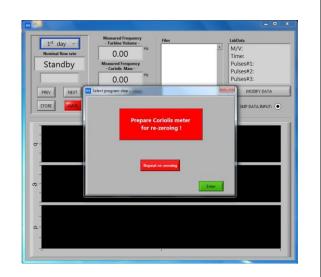
Table A 1: Excel sheet – example for Day #1 and Day #2

1. Measurement Configuration	onfigurat					2. Density	2. Density Coefficients (due to measurment)	licients			3. Pipe	3. Pipe / flow conditions	dons		4. Ambient conditions	CONTINUE	2											
Grav. reference	Vol. reference	Prover Meter K-factor	[Pulses/L]	[Fulses/kg]	eserwoh 226M	e e	,e				Diameter [m]	Pipe cross- section area [m²]			Ambient air density [kg/m ²]													
Referenc X MUT #1 MUT #2 MUT #3		20000	66,540 200000,000	6,664	×	0,93960	4,5689	738:06	3,415.08		101.0	0,000011847			2													
			L		+	References	nces										_						Meters under test	der test				
PCS = Process control system	system					Gravimetric standard	standard			Reference values	e values			Testfluid	1	Ambient conditions	litions		Meter under Test #1 Turbine meter	r under Test #1	\vdash	20	Meter under Test #2 Coriolis flowmeter: Mass	Test#2		- 3	Meter under Test #3 Coriolis flowmeter: Volume	r Test #3
Date Time	Nominal flowrate	Flowrate Mass	-	Measurement Bald	Balance True	mass Buoy.	factor mass	ard Standard	Reynolds No.	o. (true mass)	Volume	Water	Kinematic		Water temp.	Alr temp.	î —	Pulse count (Volume) K-factor			Meter error (Max	Pulse count K-factor (Mass)	Meter output frequency	tput Meter error	Pulse count (Volume)	2	Meter output frequency	Aput hcy Meter error
.mm.yyyy [h:min]	[m/m]	[mim]	4	E E	П	[kg]	[t/h]		Z	[kg]	[m ₆]	[kg/m²]	[m ⁹ /s]	[pac]	2	П		Puls count	s/Liter] [Hz]	A	%] [Pute	Puls count] [Pulses/kg]	kg] [Hz]	[%]	[Puls count	rand] [bulses/	iter] [Hz]	H
2011 07-28 2011 07-22 2011 07-55 2011 08-10	000000	29,978 30,027 29,996 30,022		302,0766 2715 324,2519 2715 324,2509 2715 334,2809 2714	2712,029 2716 2713,626 2716 2712,696 2716 2713,489 2716	7715,293 1,00120 2716,992 1,00120 2715,961 1,00120 2716,795 1,00120	20 30,1642 20 30,1642 20 30,1540 20 30,1540	32,417	104449 104654 104524 104630	2715,293 2716,892 2715,961 2716,795	2,72013 2,72174 2,72080 2,72180 2,72180	998,221 998,218 998,220 998,221	1,00504E-06 1,00461E-06 1,00490E-06 1,00487E-06	3,040	19,932 19,938 19,938	21,847	012,597 1012,736 1012,893 013,044 11	8137 66.6789 8134 66.6284 8129 66.6311 8139 66.6263	3311 65.9 3311 65.9 331 65.9 331 65.9 343 65.9	750	0,2058 18 0,1299 18 0,1297 16 0,1248 18	124 6.674 134 6.679 142 6.679 36 6.712 36 6.712	888888	0.312	7 543517 7 543788 3 543584 0 54377 7 543877	199812 34 199796 70 199798 77 199798	784 1799,269 281 1676,992 745 1676,461 296 1676,848 298 1677,487	52 0,004 51 0,107 88 0,101
MIN AVG MAX MAX MAXMIN		29,978 30,004 30,027 0,049		302,0766 271 319,0283 271 22,2044	2712,0291 27 2713,2716 27 2714,5174 27 2,4883	2715,293 1,0 2715,537 1,0 2717,785 1,0 2,491 0,0	1,00120 30,16 1,00120 30,96 1,00120 32,36 0,00000 2,32	30.2 30.8 30.8 30.8 30.8 30.4 30.8	08 104449 56 104554 17 104554 214,47	2715,29 2715,29 34 2717,784 77 2,481	2,72013 2,72138 6 2,72263 3 0,00250	998,218 996,220 998,221 0,0036	1,00461E-06 1,00487E-06 1,00804E-05 4,32114E-10	3,036	19,932 19,939 10,018	21,820 21,829 21,847 0,027	1012,597 1012,988 1013,170 0,573	18129 69 18134,400 69 18139 69	66,6231 66,6368 66,6769 0,0639	66,9104 66,7462 60,0411 4,1307	0,1248 0,1454 0,2058 0,0810	18174,400 6,6 18236 6,7 112 0,0	6,6745 66 6,9903 96 6,7124 59 0,0379 4	56,9057 66,9889 59,9880 4,0724	0,3087 543517 0,5452 643726,200 0,8780 543977 0,5693 460		199795,515 167 199797,515 170 199812,784 179 26,103 12	676,461 701,412 799,269 122,808
2011 08.47 2011 08.68 2011 09-10 2011 09-21	6000	60,101 60,101 60,087 60,056 60,078	, <u>(3)</u>	2583 2583 2573 2573	2/45/E-04 3/45 2714,730 2718 2714,436 2717 2713,821 2717 2714,001 2717		20 60,2971 20 60,2971 20 60,2840 20 60,2840	60,485 60,485 60,464 60,469	209624 2093674 209365 209365	2721,3085 2720,9642 2720,9642 2720,9530	27262 27262 27263 27263 27254	998,217 998,217 998,217 998,217	1,0047E-06 1,0047E-06 1,0047E-06 1,0047E-06	3,134 3,131 3,130 3,130	19,956 19,956 19,956 19,956	21,736 21,736 21,736	1013,431 1013,431 1013,637 11 1013,668 11	121E-UA 3.2 8160 66.6 8153 66.6 1154 66.6	112 1118 104 1118	7779 0.1 1861 0.1	106 170 18 18 18 18 18 18 18	236 6.701 236 6.702 36 6.703 36 6.703	112,38	9 0,721 9 0,721 1 0,737	2 643910 9 643836 4 543893 7 643711	5	316 3362.1 413 3361.6 422 3360.9 904 3360.9	224 27 0.244 31 0.248
MIN AVG MAX MAXMIN	009	60,041 60,073 60,101 0,060	16.	2802 162,2543 162,2617 162,2802 0,0259	2713,860 2717 2713,8211 27 2714,1736 27 2714,7696 27 0,9486	17,087 1,001 17,440 1,0 18,037 1,0 0,950 0,0	00120 60,2761 1,00120 60,27 1,00120 60,37 0,00000 0,00	751 60,456 902 60,471 947 60,485 286 0,029	208318 208425 209425 209524 209524 209524 209524	2720,38 2720,35 3720,71 3720,71 3720,306	7 2,735 7 2,735 6 2,736 9 0,000	998,216 996,217 996,217 0,0001	1,00445E-06 1,00445E-05 1,00447E-05 1,49297E-11	3,127	396, 61 39, 93, 93, 93, 93, 93, 93, 93, 93, 93,	21,764 21,764 21,788 21,810 0,047	1013,653 18 1013,431 1013,585 18 1013,668 0,236	18153 66.6 18153 68 18155 500 69 18160 69	66,6105 111,8 66,6104 11 66,6147 11 0,0042	11,5621 0,10 111,5603 111,5003 0,0683	0,1083 0,1083 0,1122 0,000,0	979	3,7027 112 3,7027 112 3,7036 112 0,00023 0	2013 2015 2015 2015 2015	0,7092 543683 0,7092 543683 0,7313 543766,500 0,744 543910 0,0952 227	33 199496 565 43683 199497 834 5 500 199505 534 43910 1995 14,316 227 16,512	5,504 335 5,504 335 6,512 335	73 - 0 0,273 1,171 1,852
	88888	4,020E-04 96,810 99,560 99,502 99,502	8 88 88	97,4859 2701 97,4879 2701 97,4859 2700 97,4859 2700 97,4859 2700	6,970 263 11,624 270 0,063 270 0,422 2703	2704.875 1,0013 2704.875 1,0013 2703,303 1,0013 2703,672 1,0013	1,00120 99,1267 1,00120 99,847 1,00120 99,847 1,00130 99,847 1,00130 99,847	7 97,4177 7 100,1636 9 100,178	77 337633 347096 38 34694 8 346964 8 346964	2033,2973 2708,1309 2706,5567 2706,9362	2,6380 2,7130 2,7114 2,7118	998,215 998,216 998,216 998,216	1,00405E-06 1,00447E-06 1,00427E-06 1,00423E-06	3,340 3,340 3,341 3,339 3,339	19,972 19,957 19,966 19,966	21,750 21,750 21,790 21,784	1013,712 1013,757 1013,948 111,794 111,794	7605 66,7 1109 66,7 1101 66,7 1101 66,7	245-05 2 359 180/ 497 185/ 517 185/ 888 185/ 888 185/	3904 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	944 162 181 181 181 183 183 183 183 183 183 183	18236 6,925 18236 6,733 18236 6,737 18236 6,736 18236 6,736	2 187,06 8 187,06 7 187,06 8 187,06	3 4 075 5 1 198 5 1 244	1,898E 11 528204 12 641164 11 540842 13 540916	28 199489 54 199489 12 199470 16 199489	217 215 5397,7 215 5660,9 221 5660,9 39 5680,6 30 5680,6	00000
MIN AVG MAX MAX:MIN		96,810 99,580 2,750	6	1979 1979 1979 1979 1979	9886	2839,174 1,00120 2839,174 1,00120 2704,875 1,00120 74,744 0,00000 1,2298,072 2,1088,090	0120 99,71 0120 99,31 0120 99,88 0000 2,75	267 97,4177 164 99,6138 847 100,1836 2,7860 10 1,7998,00	337633 38 345122 36 347129 10 949654	28 262,4106 29 2708,1309 74,8336	2,6380 6 2,630 6 2,7130 6 0,0750	996,212 996,215 998,217 0,0042	1,0097E-06 1,00423E-06 1,00447E-06 5,01742E-10	3,339 3,340 3,341 0,001	19,996 19,905 19,976 0,021	21,750 21,750 21,792 0,042	1013,712 17805 1013,864 18026,400 1014,096 18218 0,383 613 1,6481-04 1,31911-07	17805 6 1026,400 6 18218 6 613	66,7369 18 66,8369 18 67,1759 18 0,4369 1	186,5904 184,9005 186,8784 5,2890	0,2944	18236 6, 18236 000 18236 6, 0	6,738 187 6,739 187 0,1914 0	187,0891 187,1561 0,0990	1,992 536204 1,8026 538019,200 4,0761 541154 2,8769 14950	26204 199469,215 19,200 199471,296 41154 199471,296 19950 199471,296 19950 19950 19950 19950 19950 19950	В	5397,749 6519,470 6550,986 153,236
	0.001	139,960 140,527 140,480 140,435	88888	69,7075 2715,281 69,8865 2724,795 69,8815 2724,112 69,8845 2724,899 69,7115 2736,654		718546 1,00120 2728,075 1,00120 2727,738 1,00120 2727,778 1,00120 2738,946 1,00120	20 140,397 20 140,932 20 140,947 20 140,920 20 141,443	2 14136 4 14136 9 14134	29 487926 39 489903 31 489738 35 489683 491321	2721 8213 2731 3589 2730 6731 2731 0612 2742 2430	27267 27362 27366 27369 27369	998.217 998.217 998.217 998.217	1,0047E-06 1,0047E-06 1,0047E-06 1,0047E-06	3,637 3,635 3,635 3,632	9 9 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	21,776 21,790 21,808 21,810	1013,974 1013,938 1013,946 013,960 113,728	8218 66. 9281 66. 8277 66. 1279 66.6	1138 261 1107 262 107 2623 112 2632	2453 2520 108 108 108 0.4	0,4114 180 0,4098 180 0,4101 180 0,4068 180	18238 6.599 18238 6.678 18238 6.678 18238 6.678	251,69 251,73 251,73 251,73	2 0,360 2 0,363 3 0,066	1 543899 11 543899 18 545670 16 545742 17 547997	199472 39 199466 10 199471 12 199471	290 7802,5 206 7832,0 476 7833,1 444 7831,6 293 7880,7	00000
		139,960 140,467 140,934 0,974		69,6816 277 69,6903 272 69,7116 273 0,0499 2	2715,2812 27 2724,8882 27 2735,9538 27 20,3726 3	27.18,549 1,00120 27.28,148 1,00120 27.38,946 1,00120 20,397 0,00000	0120 140,93 0120 140,93 0120 141,44 0000 1,04	283 141,3500 431 141,8664 454 1,0466	487926 489694 64 491321 66 3394,66	26 2721,8213 2731,4314 21 2742,2430 20,4217	2,7367 4 2,7363 0 2,7471 7 0,0306	998,217 998,217 998,217 0,0000	1,00447E-06 1,00447E-06 1,00447E-06 0,00000E-00	3,632	396, 81 386, 81 00,00	21,776 21,799 21,810 0,034	1013,728 1013,959 1013,974 0,246	18218 69 18281 800 69 18554 69 136 03	66,8107 26 66,8118 26 66,8118 26 0,0001	261,3493 262,3292 263,2863 1,9980	0,4063 182 0,4066 0,0046	18236, 800 18236, 800 18236 5 0 0 0 0 0 0 0 0 0	6,6500 261 6,6763 261 6,699 261 0,0499 0	261,5926 261,5922 261,7902 0,1976	0,3354 543899 0,3354 545817,400 0,5802 547967 0,7499 4089	547967 199456,926 547967 199471,986 547967 199475,233 4069 6,357		7802,591 7832,044 7860,789 58,198
21 18.01.2011 112.05 22 18.01.2011 12.06 23 18.01.2011 12.25 24 18.01.2011 12.25 35 18.01.2011 12.25	0,081 0,081 0,000 0 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0 0,000 0	179,507 119,507 181,076 180,903	क्ष क के के व			7726,989 1,00120 7721,746 1,00120 2737,339 1,00120 2734,554 1,00120 778,677 1,00120	20 180,8780 20 180,8780 20 181,5636 20 181,4700	181,41 6 182,10 6 182,10 8 182,01	52 628470 86 627189 80 631286 80 631680	2730,2711 2730,2711 2736,0223 2737,8456 2779,8456	27361 2738 2738 2746 27427	988,217 988,217 988,217 988,217	10047E-06 10047E-06 1,0047E-06 1,0047E-06	88888	0000000	21 814 21 825 21 839 21 839	013,754 013,639 013,643	8271 66,8008 8286 66,8012 8323 66,8034 88223 66,8034 88323 66,8035	0008 336/ 0012 336/ 004 337/ 065 337/ 065 337/	000000	919 926 968 961 91 18	236 6,572 236 6,572 236 6,721 70 6,746	355,96 1 335,98 1 339,38 2 340,47	1,385	545553 9 548547 14 547648 9 547095 9 547095	199480 17 199480 18 199475 19 199470	773 10051, 777 10001, 777 100000, 777 100000, 777 10000, 777 10000, 777 10000, 777 10000, 777 10000, 777 100000, 777 10000, 777 10000, 777 10000, 777 100000, 777 100000, 777 10000, 777 10000, 777 10000, 777 10000, 777 10000, 777 1000000, 777 100000, 777 100000, 777 100000, 777 100000, 777 100000,	888888
		179,907 180,624 181,076 1,169		737	2718,4745 27. 2728,1474 27. 2734,0380 27. 15,5836	2721,746 1,0 2731,431 1,0 2737,329 1,0 15,982 0,0	7,00120 1,00120 1,00120 1,00100 1,00000 1,00000	559 180,9969 772 181,7194 536 182,1069 001,1100	627189 94 629689 68 631286 00 4076,36	2725,0223 89 2734,7165 86 2740,6233 36 15,6010	2,728 6 2,738 3 2,786 0 0,0156	996,217 996,217 996,217 0,0000	1,00447E-06 1,00447E-06 1,00447E-06 0,00000E-400	800 A A 00 0	326, 81 326, 81 326, 81 326, 81	21,814 21,830 21,839 0,025	1013,564 18236 1013,657 18301,200 1013,754 18341 0,191 105	18236 1301,200 18341 6	0000	336 p659 337 2023 337 9285 2 0706	0,3919 0,3943 0,3991 0,0072	18366,400 6,1 18470 6,234 0,0	6,6792 336 6,7462 340 0,0670 4	335,8659 338,4038 340,4730 4,5171	0,3796 544547 0,9912 548467,200 1,3953 547648 1,0069 3101	26 26 26	60,073 10029,02 69,390 10068,73 75,745 10090,22 15,673 61,19	9,025 8,737 0,222
(#ISTD 1201 12-49 18-01-201 12-69 18-01-2011 13-18 18-01-2011 13-18 18-01-2011 13-18	000000	2,811E-03 202,001 202,179 202,322 202,544 202,566	8 8 8 8 8		2,484E-03 2,46 2723,711 2726 2718,475 2721 2734,038 2737 2731,267 2734 2733,247 2736		20 2005 20 200,000 20 200,401 20 201,428 20 201,428	200,238 200,338 300,338 300,338 300,338 300,338	~	2730,2711 2730,2711 2740,6233 2740,6233 2737,8456 2737,8456	2,84E-03 2,726 2,726 2,746 2,746 2,747	998,217 998,217 998,217 998,217	0,000E+00 1,00447E-06 1,0047E-06 1,00447E-06 1,00447E-06		19,956 19,956 19,956 19,956	4,728E-04 21,846 21,849 21,849 21,858 21,850	7,162°C05 2 1013,248 1013,240 1013,240 1013,324 1013,324 113,324 113,324	499E-03 3,1 8427 67 8428 67,6 8470 67,2 493 67,2	88888	5548 616 616 616 616 617 617 617 617 617 617		67.6	3 3 3 3 3	28 K ± K			200 2,70 200 11280, 505 11280, 505 11280, 507 11297, 507 11297, 507 11297,	88 51 88 51 88 51 88 51 88 51 88 51 88 51 88 51 88 51 88 51 88 51 88 51 88 51 88 51 88 51 88 51 88 51 88 51 88
AVG MAX MAXMIN		202,342		48,8449 271 48,8523 272 48,8739 273 0,0289 1	2718,4745 27. 2728,1474 27. 2734,0360 27. 15,5636	2721,746 1,00 2731,431 1,00 2737,329 1,00 15,582 0,00	1,00120 1,00120 20120 17,102 20127 17,102	422 201,0811 422 201,8444 321 202,3367 1 2527	11 704213 44 705403 57 706453	13 2725,0223 08 2734,7185 53 2740,5239	2,7396	998,217	1,00447E-06 1,00447E-06 1,00447E-06	X 2 2 1	996, 61 996, 61	21,846 21,863 21,860	1013,240	18453,600 6 18493 6	7,3963 37	377,0548 377,8702 378,3896	1,2854 184	18473,000 6, 18473,000 6,	775 377 5,7550 378 6,777,8	377,8912 378,0625 378,3401	1,5182 6512 1,5182 6512 1,9889 6	561289,400 2012 662157 2017	0851,596 1126 1231,623 1128 1787,559 1129	8,789 2,596 7,814

Table A 2: Excel sheet – example for Day #3

1. Measurement Configuration	Configurati	uo				2.6	2. Density Coefficients	efficients			3. PIL	3. Pipe / flow conditions	onditions		4. Ambi	4. Ambient conditions	ous												
esnerience	Vol. reference	Prover Meter K-factor	Meter K-factor	(Enisesikg)	Mass flowrate		a0 a1	- a ₂	2 93		Diameter [m]	ster Pipe cross section area	** =		Ambient air density [kg/m ²]	_													
Referenci X MUT #1 MUT #2 MUT #3			99 000	3	×	860	0,999653566 4,58931E-05	315.05 -7,335.06	6.06 3,416.08	8	n.to	0,000011847	847		Ç														
				ŀ	1	Refer	References	-															Meters	Meters under test	ts ts				
PCS = Process control system	nl system					Gravimet	Gravimetric standard			Refer	Reference values	\perp		Testfluid	7	Ambient conditions	suditions		Meter	Meter under Test #1	#		Meter L	Meter under Test #2	#2		Meter	Meter under Test #3	volume
Test Date Time	Nominal Flo	Flowrate N	Mass Measurement flowrate time	-	Balance True	True mass Buoy.	Buoy, factor mass	dard Standard	dard Ime Reynolds No.	ds No. (true mess)	ss Volume	ne Water density	r Kinematic by Viscosity	_	Water temp.			Pulse count (Volume)	K-factor M	Meter output frequency	Meter error P	Pulse count (Mass)	K-factor fi	Meter output frequency N	I error	Pulse count (Volume)	K-factor	Meter output frequency	Meter error
[dd.mm.yyyy] [h: min]	ш	H	Ц	Ħ	Н	[kg]	[1/1]	+	Whi I	[kg]	[m]	Ħ	+	+	1,0	5,		[Puls caunt] [Pulses/Liter]	Oulses/Liter]	[Hz]	[%]	[Puls count] [Pulses/kg]	ulses/kg]	[Hz]	[96]	[Puls count] [Pulses/Liter]	[Pulses/Liter]	[Hz]	[%]
18.01.2011 07.28	300	30,027	302,0766 324,2519		13,626 27	2712,029 2715,293 1,00120 32 2713,626 2716,892 1,00120 30 2713,636 7716,691 1,00130 30	00120 32.3	32,3596 32,4 30,1642 30,2	32,417 1044 30,218 1046	49 2716, 54 2716,	293 2,720 392 2,721 361 2,721	74 9882	1 100604E	06 3,040 06 3,037	19,932	21,847	1012,597	18134	96,6769	60,0411 55,9257	0,2068	18124	6,6748	86,56	0,3124	543517	199812,784	1676,992	0.107
4 18.01.2011 08.10 5 18.01.2011 08.24		9969	324		13,489 27	16,765 1,0	0120 30,1	714 30,2	25 1046	31 2716	756 2,721	3862	1 1,00494E	3038	19,936	21,827	1013,044	18133	66,6263	65,9176 55,9361	0,1297	18236	6,7124	86,235 86,235	0,8780	543770	199796,066	1676,948	9 0 0
18 01 2011		0,022	324,		14 426 27	17,693 1,0	0120 30,1	742 30.2	266 1046	13 2720,9	2721,3086 2,726	88 998.2	17 1,00447E-06 21 1,00494E-06	3,134	19,956	21,796	1013,431	18160	96,6136 96,6136	66,0008	0,1106	18236	6,7020	56,235	0,7092	543836	199614,316	1677,280	0,243
9 1801.2011 09:21	+++	0,022	324		14,001 27	17.267 1.6	00120	759	75 1046	2720.5	20,5380 2,725 2720,3871 2	54 988.2	7 1,00447E-06	3 123	19,956	21,783	1013,567	18154	95,5104 95,6104	55,9623 FF 9844	0,1069	18236	6,7031	56.235	0,7377	543711	199497,804	1676,666	0.251
100	-	30,008	7.00	58	712,0291 2	716,283	1,00120	30,1540		104449 2715 104584 2718	ш	7201	216 1,00445L 219 1,00476E	90	36 19,932		1012,597	18145,000	66,6104	55,9104 56,3672	0,1069	18205 200	6,6745	65,9257	0,3087	543745.900	7 199497,8044	1676,4610	
MAX MAX-MIN	- Z	30,027		22,2044 22,2044	2714,7696 27	2718,037	0,00000 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	32,3696 3 2,2066	a		2721,3085 2, 6,0152 0, 8 481E-04 8 482	2,7262 998 0,0080 0,0	2 998,221 1,00504E-06 0,0049 5,86008E-10	506 31 510 00 1570 1570 1570 1570 1570 1570 1	34 19,966 98 0,024	21,810	1013,668	31	0,0665	4,1307	0,2058	18236 112 2 734E-03	0,0379	69,9980 4,0724	0,9780	460	314,9797		0,0936
18.01.2011	П	6,810	4.76		26,970 26	30,132 1,6	00120 97.1.	267				30 398.2	3 1,00406E-	3,340	19,972	21,750	1013,712	17605	66,7359	180,5904	0.2944	18236	6,9252	187,063	4,0751	526204	199469,982	5397,749	-0,265
18 01 2011		79,580 19,517	97.8		00,063 270		1,00120 99,99		3,1768 3469 1,1768 3469	2706,5867 64 2706,5867 64 2706,9362	3667 271	11 986.2 8 988.2 8 988.2	7 1,00447E-06 7 1,00447E-06 6 1,00428E-06	33341	19,956	21,792	1013,906	18109	66,7517	186,7491	0,3161	18236	6,7377	187,059	1,2881	540842 540842	199470,221	5650,534 5548,661	98,98
18.01.2011		9,523	97.6	Ш	16,281 271			Ш	0,1496 3471	29 2707,1	1416 271. 213 2726	77 998,2	1 1,00397E	3,339	19,976	21,766	1014,095	18218		186,8784	0,9565	18236	6,7363	187,063	1,2362	543899	199477,171	5549,318 5579,261	-0,261
17 18.01.2011 11.10 18 18.01.2011 11.20 19 18.01.2011 11.30	0,000	99,523 99,523 99,523	97,4869 97,4869 97,4869		2724,796 2728,075 2724,112 2727,390 2724,499 2727,778			100,7435 101 100,7183 101 100,7326 101	101,0196 3469 101,0196 3469 101,0340 3469	56 2731 56 2730 56 2731 5	731,3683 2,736 730,6731 2,736 731,0612 2,736	2885	7 1,00447E-06 7 1,00447E-06 7 1,00447E-06	3,635	19,956	21,790	1013,946		66,8107 66,8128 66,8107	187,5246 187,4836 187,5041	0,4068	18233 18236 18238	6,6782 6,6780	187,082 187,063 187,084	0,3638	545789 545670 545742	199466,926 199473,476 199471,444	5699,648 5697,428 5698,166	0,263
18.01.2011		96,810	97,8	4379	626,9699 2 706,4046 2		1,00120 97		8		2	6380 988,7	217 1,00447E	06 3,632 5-06 3,339	6	21,810	1013,728	17805	66,8112 66,7369 66,8277	189,3662 180,5904	0,4076	18236 18233 18736 ann	6,6500	187,0323		526204 621018 300	199475,293 199466,9257	"	07
MAX		2,750		97,4879 2	2736,6638 27	2738,946	1,00120 101			347129 2742	2742,2430 2,108,9456 0,	2,7471 998	998,217 1,00447E-06		36 61 76		1014,095	18354		7,7758	0,9565	18238	6,9252	187,1551	4,0751	21783	199477,1705	5623,9624	0,2614
R 01.2011		647E-03 02,644	48,8	줐	23,711 275		3E-08		® F		26E-02 1,12	5E-02 1,528 11 998,2	E-08 1,913 7 1,00447E	5-04 4,454E-02 06 4,027	02 0,000E+00 19,956	21,814	1,207E-04 1013,754	1,168E-02 18271	1,922E-03 66,8008	1,171E-02 373,8399	0,3919	6,965E-05 18236	1,148E-02 6,6792	2,215E-04 373,124	0,3786	1,126E-02 646663	1,535E-05 199460,073	1,130E-02 11162,471	-0,270
8 01 2011	_	02,322	48.6	Ť	24 028 27		_	1	201,0933 7053	31 2725,1	2723 272	986.2	7 1,00447E	06 4,029	19,956	21,825	1013,699	18236	66,8012	373,1465	0,3926	18236	6,6921	373,147	0,5719	544547 547548	199475,745	11142,585	0,262
801.2011		202,322	488	Ħ	33 267 27.		-	Ш	2,1307 7053	31 2737.8	8456 27427	7447 998.7	7 1,00447E-06	06 4 022	1996	21,839	1013,643	18323	96,806,8	375,0957	0,3991	18470	6,7462	378,105	1,3863	547095	199470,456	11199,749	0,285
8.01.2011		02,001	488	Ħ	18 475 27		-	Ш	201 55714 7042	13 2730,	273 273	998.2	7 1,00447E-06	06 4,233	19,956	21,846	1013,448	-	67,3711	377,2247	1,2490	18471	6,7663	378,125	18569		201787 559	11263,865	0,584
28 18.01.2011 13.08 29 18.01.2011 13.18	200,0 20	202,322	48,8489		2734,038 273	2734,554 1,0	1,00120 201,7321		202,3357 7053	G1 2740 k	456 2,742 456 2,742	2,7455 998,2 2,7427 998,2	7 1,00447E	06 4,227	19,956	21,849	1013,240	18470	67,2732	378,1050	1,1020	18470	6,7393	378,105	1,2826	551442 552167	201316,058	11289,738	0,426
18.01.2011 N	+	202 001	48,6	8449		-			1	82	5 0223 274	7293 998,2	217 1,00447E	4,2	19	21,860	1013,324	18480	67,3291	378,3401	0.3919	18480	6,7449	373.1298	1,3867		201033,967	11296,626	0,5
AVG		202,364		48,8627 2	2728,1474 27	2731,431	1,00120	201,2406 20	202,336	705479 2734 706453 2740		00 00	,217 1,00447E-06 ,217 1,00447E-06	4,126		21,841	1013,505	18382,400	67,0988	376,2056	1,5597	18419,700	6,7365	376,9689	1,2247	548880,300	200350,5067	11233,1242	0,1753
reISTD	-1	004E-03	<u> </u>	C MARKS			0,00000				15,6010 0,	0,0156 0,0	0,0000 0,000000 0	7007	2000				04440				th contract of		4400	0766	2000 4000	2000	


Appendix 2 - Stepping through SC data acquisition for using electronic box 1


This section is only valid if electronic box 1 is used. In case of connecting box 2 please follow the instructions of Appendix 4

- Before connecting the GATE signal cable to the data acquisition electronics (Figure 5), check
 by means of an appropriate measurement device (e.g., a scope that the signal levels of this signal, definitely, corresponds to the specification (TTL signal specification), in accordance with the logic level OFF and ON.
- The GATE signal may be defined both LOW active (logic voltage < 3.0 V corresponds to ON) and HIGH active (logic voltage > 3.0 V corresponds to ON).
- After this checking operation, the GATE signal cable can be connected to the electronic box.
- Now the LabVIEW KC1 software can be started as described in Table A 3.
- During the start-up of the LabVIEW program, the GATE signal, definitely, must be logically OFF, for the software derives the definition of the logic states of the GATE signal from this initial signal condition.
- In order to guarantee the correct gating function of the GATE signal, it is absolutely necessary that this functionality is being verified during the software operations: **Step #5** in Table A 3.
- As the computer shuts down after a longer period of non-operation, it "loses" connectivity to the external data acquisition electronics.
- To reestablish the LAN connection between laptop computer and external data acquisition electronics, do switch off the electronics and restart it again on the second and on third day before starting the calibration measurements.

Table A 3: Stepping through the KC1 measurement program

Step No.	Screen display	Activity
1	The state of the s	Initial screen of Windows 7: Double-click on LabVIEW icon in centre position. Check before clicking to start KC1 software that GATE signal is OFF: - Positive logics: GATE level is LOW; - Negated logics: GATE level is HIGH.
1a	Connection failed! Restart box and start program again!	If this message appears, no networkconnection to the box could be established. After confirmation of the <ok>-button the program will be closed. Switch the box off and on again (by using the powerswitch on frontpanel of the box), then restart program.</ok>

The re-zero operation of the Coriolis meter has shown to be successful:

 Click on <ENTER> to proceed and step into the data acquisition part of the program.

Alternative decisions:

- **<ENTER>**: Re-zeroing has been

successful.

- <REPEAT>: If the operator

recognizes that rezeroing the Coriolis meter has **not** been successful (e.g.: process conditions had been instable during autozero operation), the re-zero action may be repeated.

Measured frequency

Turbine Valume

Standby

Measured frequency

Consist Mans

D.00

Measured frequency
Consist Mans

D.00

Measured frequency
Consist Mans

D.00

Measured frequency
Consist Valume

Consist Valume

Total

MCDET DATA INPUT:

SUP DATA INPUT:

D.00

Measured frequency
Consist Valume

Total

D.00

Measured frequency
Consist Valume

Times

Pulses #2:
Pul

1st day:

SC program is in **STAND-BY** mode:

- Click on <NEXT> to proceed and step into data acquisition part of the program.

Attention:

In order to guarantee the correct gating function of the GATE signal, it is absolutely necessary that this functionality is being verified during the software operations.

The GATE indicator will change from RED to GREEN if the GATE signal is operating properly.

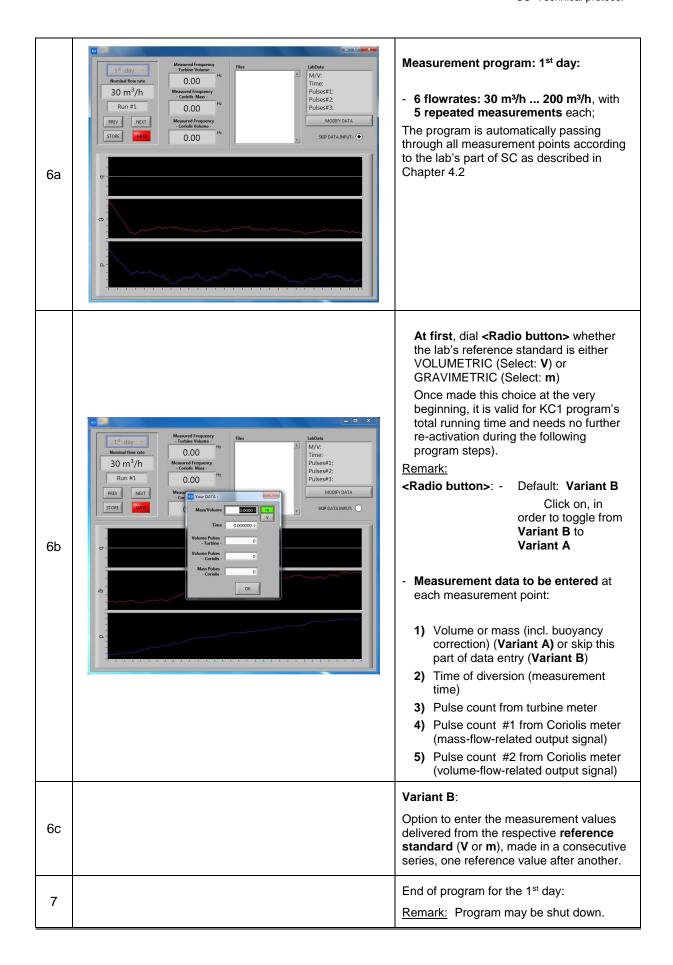
Input options:

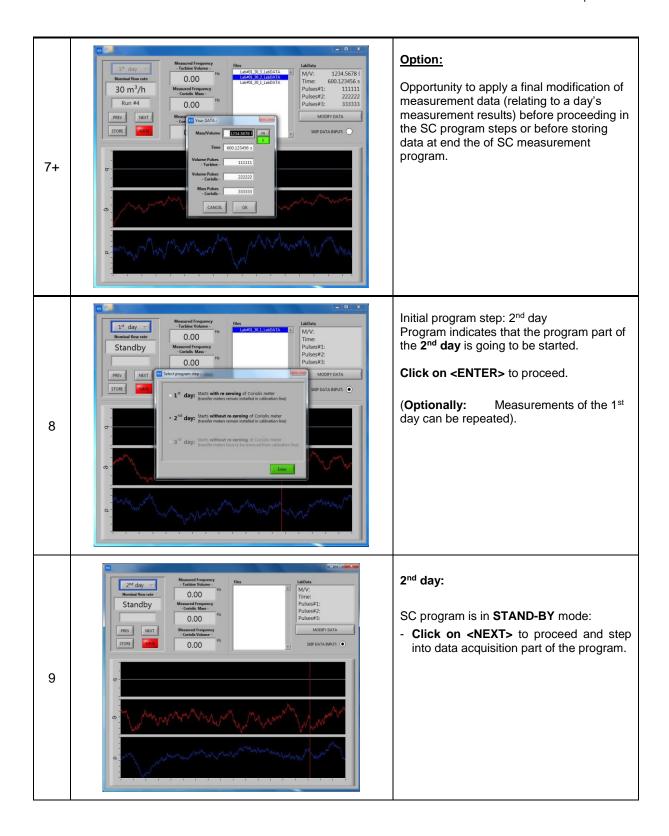
PREV> Skip backward to prevous data series **NEXT>** Initially: Selection of 1st measurement

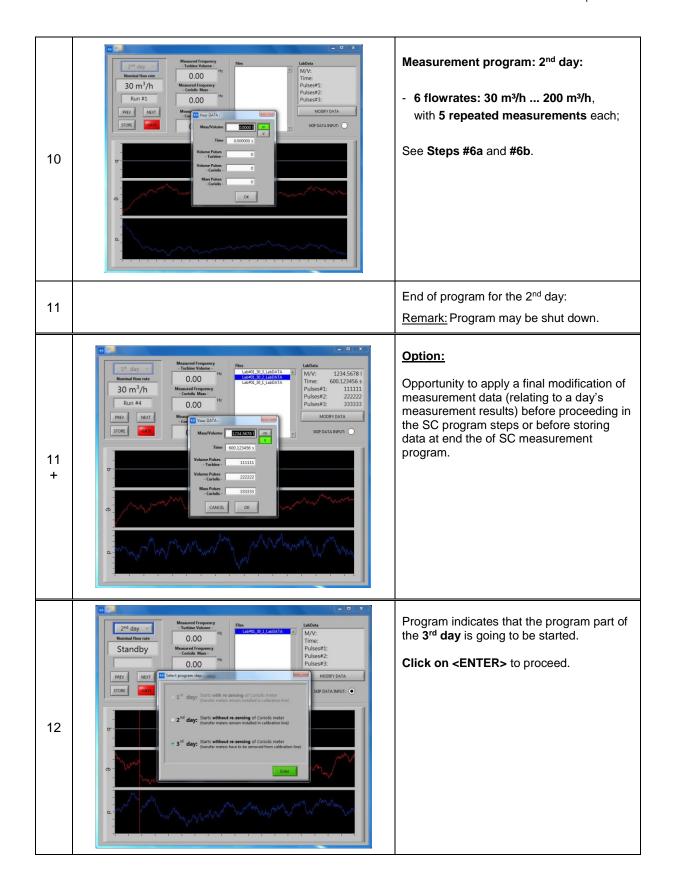
point

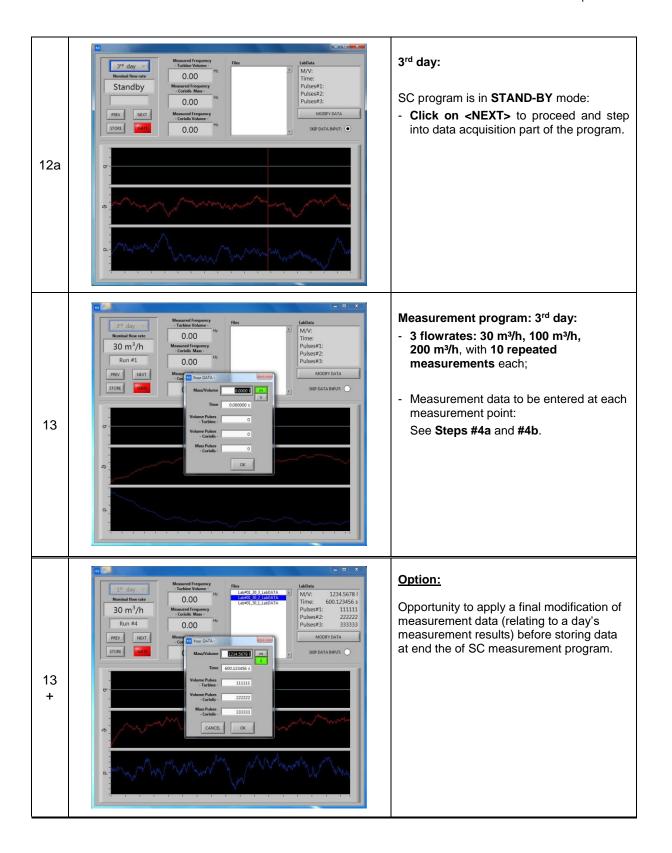
5

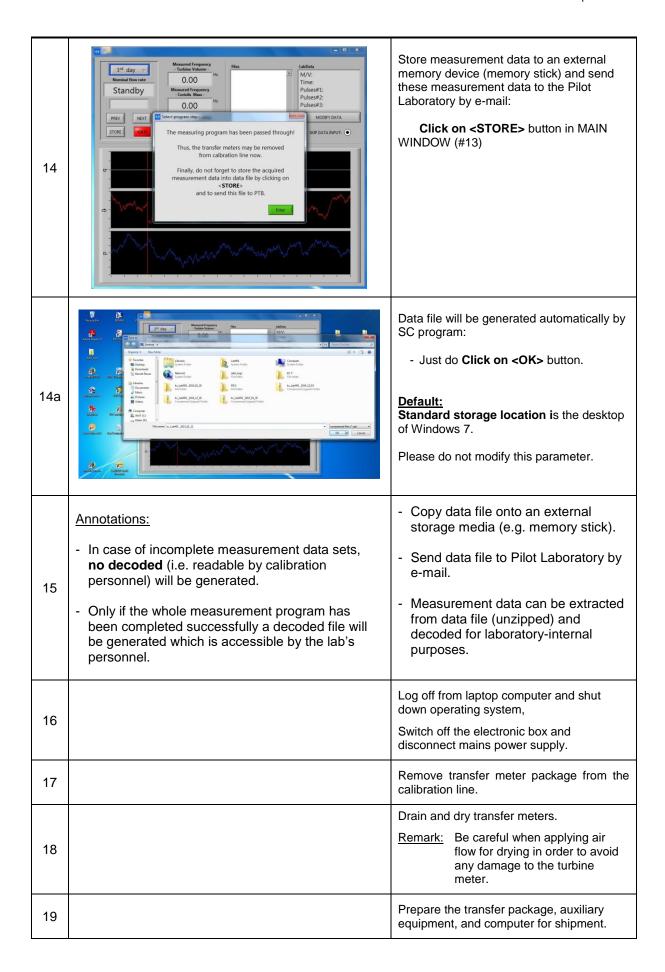
4b


STORE> Store measurement data after the completion of the SC measurement


data acquisition program


Status indicator:


<GATE> Indication of GATE signal status:


<red> inactive <green> active

Appendix 3 - Data files generated by the SC LabVIEW

In the description following below, the file names comprise placeholders, which stand for:

- user <Lab#number> (e.g.: <Lab#01>)

- flowrate- runNo. of measurement at a certain flowrate> (e.g. <30>)

Example: File name := Lab#01_30_1_General.csv

In an analogous way, the sample file names can be formed as follows:

Lab#01_30_1_LabDATA.csv Lab#01_30_1_Meters.csv

Lab#01_30_1_ProcessValues.csv Lab#01_30_1_Transition.csv Lab#01_30_1_Zeroing.csv

File name := user_flowrate_run_General.txt

--- The measurement data represent summarized values each which were derived from

the corresponding files: user_flowrate_run_**ProcessValues**.csv

user_flowrate_run_Meters.csv ---

Gate time: Time of diversion (Measurement time) [μs]

T_mean : delta T: P_mean: delta P: Meas.density:

--- Coriolis volume flow ---

Pulse count: f_mean: delta f:

--- Coriolis mass flow ---

Pulse count: f_mean: delta f:

--- Turbine volume flow ---

Pulse count: f_mean: delta f: mean_flow:

File name := user_flowrate_run_LabDATA.csv

Volume [L] or mass [kg] (incl. buoyancy correction)

Time of diversion (measurement time) [s]

Pulse count from turbine meter

Pulse count #1 from Coriolis meter (mass-flow-related output signal)
Pulse count #2 from Coriolis meter (volume-flow-related output signal)

File name := user_flowrate_run_**Meters**.csv

1st row of values: Represents the periods of time between the active edge of the diverter's

START signal and the first active edge each of the meter signals which are

dedicated to rows #1 through #3, as described below;

1st column of values: Pulse-interspacing period of the Coriolis meter's volume-flow output signal;
2nd column of values: Pulse-interspacing period of the Coriolis meter's mass-flow output signal;

3rd column of values: Pulse-interspacing period of the turbine meter's flow signal;

All periods of time are measured in microseconds [µs].

File name := user_flowrate_run_ProcessValues.csv

Logging file of measurement data:

- Sampling time: 200ms
- **256 sampled values** (>51,2 s) prior to the diverter's transition to measurement position (into weigh tank),
- These pre-measurement logged values are followed by a zero-value row.
- The rows of "regularly" logged measurement values follow now.
- Data logging will be stopped when, after measurement, the diverter returns to its initial position again.

T : Temperature [°C] P : Gauge pressure [bar]

Dm : Fluid density (Coriolis meter) [kg/L]
P_diff : Differential pressure across turbine [mbar]

File name := user_flowrate_run_Transition.csv

Logging file of measurement data from turbine output:

- Logging pulse-interspacing periods of time (1/frequency): [µs]
- Logging starts 512 data samples prior to diverter actuation into measurement position.
- Signal logging is stopped until the diverter actuation redirects the fluid stream from measurement position back to flow-bypass position; then another 512 data samples will be acquired and stored.

File name := Zeroing.txt

File contains data (device parameter) which refer to re-zeroing of Coriolis flowmeter as follows (sample data set):

4.08.2016-13:36:23 ++ PIPO: -11.0000 ++ CALIF: 1.6614 ++TEMP: 23.46 ++ PRESS: 1.23 ++ <read>

04.08.2016-13:38:51 ++ PIPO: -11.0000 ++ CALIF: 1.6614 ++TEMP: 20.00 ++ PRESS: 3.00 ++ <set>

04.08.2016-13:40:10 ++ PIPO: -11.0000 ++ CALIF: 1.6614 ++TEMP: 23.44 ++ PRESS: 1.23 ++ <set> ((To be continued automatically by LabVIEW measurement program))

Appendix 4 - Instructions for using electronical box 2

This section is only valid if electronic box 2 is used. In case of connecting box 1 please follow the instructions of Appendix 2.

If you have any problems or suggestions for using the electronical box please contact the SC staff at PTB (see page 1)

Instructions for start-up box 2:

- Connect all relevant cable (see Table 10) to the alternative junction box.
- Connect a constant voltage power supply (24 V DC) to the box and switch on.
- Switch on the main power button.
- The system is ready for calibration if the following requirements are achieved:
 - The display of Coriolis meter is at the status "On" and the screen display is like the example in step #1 of Table A 4.
 - o If the flow rate at the meters under test is > 0 m³/s you should record impulses with your impulse counting system.

Setting Autozero

- Before starting measurements of day #1 it is necessary to set Auto zero of the coriolis meter.
- Please use only the intended key at the box 2. **Don't try to set auto zero directly at the coriolis display.**
- After installing the setup und refilling the pipe line be sure of all air is excluded from the water.
- Adjust control valve to OFF position.
- Run fluid pumps at a flowrate that a line gauge pressure magnitude is established which corresponds to the pressure level during calibration (e.g. 3 bar).
- Hold these conditions for approx. 10 minutes and observe the flow condition that no leakage passes through the control valve.
- **Before** setting auto zero please note the current value. The procedure for identifying the value is described in Table A 4.
- Insert the Auto zero key into box 2 and turn the key shortly to the right. The key will turn back to starting position automatically.
- Read out and note the new Auto zero.
- Please repeat this procedure of zero setting at least 3 times.
- If the value doesn't chance significant (differences < 3) the Auto zero setting is finished successfully.
- Please use for reporting zero values the provided EXCEL spreadsheet (Table "Auto zero values"), see also Section 6.1.1

Figure A 1: Electronic box 2 and the plugged key for setting Auto zero of coriolis meter

Table A 4: Stepping through the auto zero process if using electronic box 2

Step No.	Coriolis display	Activity
1	+59.982 + 69.813 NA 89.9981 NA ESC	 Standard display of the Coriolis meter (if switched on) Press "E" to go to step 2
2	BLOCK SELECTION G BASIC FUNCTION SUPERVISION MEASURED VARIABL	 Main menu of the Coriolis meter Press "+" six times to select "Basic Function" Press "E" to go to step 3
3	BASIC FUNCTION GNA SENSOR DATA HART PROCESSPARAMETER	 Basic function menu of the Coriolis meter Press "+" three times to select "Sensor Data" Press "E" to go to step 4
4	SENSOR DATA 688 CONFIGURATION FLOW COEF. DENSITY COEF.	 Sensor data menu of the Coriolis meter select "Configuration" Press "E" to go to step 5
5	ZEROPOINT 6883 -11.888	 Configuration menu of the Coriolis meter Press "E" three times to select "Zeropoint" Please note the current value of Auto zero

Appendix 5 - List of participants

Table A 5: List of participants

1	Germany (EURAMET)	PTB Braunschweig Contact: Enrico Frahm Shipping address: Physikalisch-Technische Bundesanstalt Department Liquid Flow Bundesallee 100 38116 Braunschweig Germany	Email: enrico.frahm@ptb.de Phone: +49-531-592 1333
2	Finland (EURAMET)	VTT MIKES Kajaani Contact: Mika Huovinen Shipping address: VTT MIKES Kajaani Sokajärventie 9 Puristamo 9D3 87100 Kajaani Finland	Email: mika.huovinen@vtt.fi Phone: +358-50-4155 974

Appendix 6 - Current time schedule of the SC

Table A 6: Time schedule of SC (03/2019)

Date	Country	NMI	Measurement Status
05/2018	Germany	PTB	done
08 – 12 /2018	Finland	VTT MIKES	done
04/2019	Germany	PTB	estimated