

Outline

- Global trends in the energy mix
- Growing importance of LNG
- The LNG distribution chain
- Impact of measurement uncertainty
- Overview of R&D on LNG metrology
- LNG calibration facility sneak preview

Energy: grand challenge

What everyone wants

- Security of supply
- Sustainability, clean energy
- Competitiveness, affordability

- Availability of affordable energy is a global issue, so are the consequences for environment
- Metrology supports 'policies & strategies'

- Various 'levels of approach'

- Development, optimization and efficiency of components in the energy chain, e.g. PV cell manufacturing, specifications of materials, development of fuel cells, reliability of windmills
- Local energy consumption: households, energy efficiencies, industrial equipment
- Primary energy, overall energy consumption/production, energy mix, energy system integration, transmission and distribution

Global Trends: energy demand

Global Trends: energy mix

What is LNG?

Liquefied Natural Gas

- Alternative to pipeline
- Volume ratio gas to liquid is 600:1 (efficient)
- Allows trading without connecting pipelines (flexible)
- EU energy policy: diversified and secure energy supply
- Reduced emissions (cleaner and higher calorific value than oil)
- Globalization and short term contracts
- Strong growth
- LNG as fuel for trucks, ships, trains

Growing importance of LNG

Worldwide production of LNG

1990 50 Mtpa*

2007 130 Mtpa

2014 246 Mtpa

* Million ton per annum

Large numbers

2014 Worldwide production capacity 301

Mtpa (Liquefaction capacity utilisation 82%)

- 301 Million ton LNG = = 4295 TWh = 15.462 PetaJoule
- This is 1000x the total electricity consumption in the city of Amsterdam

2015 128 Mtpa of liquefaction capacity under construction => mainly Australia (58 Mtpa) and US (44 Mtpa)

LNG imports in Europe

LNG imports outside Europe

Developments in LNG

2007

- Worldwide LNG production at 130 Mtpa
- Predominantly large scale LNG
- LNG as transport fuel hardly existing outside US
- Floating production storage and offloading (FPSO) units still on drawing tables
- First LNG metrology project (primary mass flow standard)

2016

- Worldwide LNG production capacity >350 Mtpa
- LNG as transport fuel fast growing market, Europe taking the lead, small scale LNG installed capacity 20 Mtpa in 2014
- 3 FPSO's under construction (6.8 Mtpa) >20 FPSO proposals announced (168 Mtpa)
- Many European NMIs and industrial partners collaborating in Metrology for LNG II program (Metrology for LNG III)

LNG DISTRIBUTION CHAIN

Measurements of LNG

Large scale LNG business => measurement of energy

Small scale LNG business => measurement of energy?

or

measurement of kilograms?

or

measurement of liters?

Dutch Metrology

Large scale LNG

Energy = Volume x Density x Gross Calorific Value

Source: GIGGNL Custody transfer handbook, 3rd edition

Impact of Measurement Uncertainty

Large Scale LNG

- Typical terminal (10 bm³(N)/year)
 Measurement uncertainty equivalent to
 25 M€/year
- One cargo load (Qmax) Measurement uncertainty equivalent to 500 k€

Small Scale LNG

 Measurement capabilities not at par with other fuel legal metrological requirements

Overview of R&D projects since 2007

Metrology for LNG I and II

- Developing traceability for LNG flow meters (WP1)
- Testing and evaluating LNG quantity metering systems (WP2)
- Improving LNG composition measurement systems (WP3)
- Reducing uncertainties in LNG density calculations (WP4)

Gross Calorific Value

- Improving LNG composition measurement systems (WP3)
- Reducing uncertainties in calorific value calculations (WP4)

WP5

Measurement Guidelines

Written Standards

Legal Metrology

Metrology for LNG I was designed for reducing energy measurement uncertainty

Metrology for LNG II

WP No	Work Package Name	Active JRP-Participants (WP leader in bold)
WP1	Mass & Volume Flow Measurements	CESAME, CMI, FORCE , JV, SP, VSL
WP2	Composition Measurements	CMI, NPL , SP, VSL, REG(RUB)
WP3	Methane Number	NPL, PTB, SP, VSL , REG(TUB)
WP4	Density, Enthalpy and Calorific Value	INRIM, NPL, PTB , VSL, REG(RUB)
WP5	Creating Impact	CMI, FORCE, INRIM, JV , NPL, PTB, SP, VSL
WP6	Management and Coordination	FORCE, JV, NPL, PTB, VSL

Project partners Metrology for LNG II

Some preliminary results

Flow metering

- CMC of combined primary mass flow standard and flow m.u.t.: 0.12 0.15%.
- Coriolis type flow meter tested with the primary LNG flow standard and reference setup (weigh bridge test method)
- Improvements primary mass flow standard => uncertainty below 0.10%
- mid-scale mass and volume flow standard designed and engineered
- new ISO working group working on a draft ISO standard for LNG flow metering
- prototype LDV (Laser Doppler Velocimetry) flow metering standard built and tested

Composition

- state-of-art of sampling based systems and Raman analyzer method
- reference composition measurement system designed, engineered, constructed
- sampling line system designed and built

Level metering

- uncertainty evaluation report for tank gauging systems completed
- conclusion: uncertainty commonly used by the industry for transferred volume is underestimated.

Density

- advanced primary LNG densitometer system => new reference data (very low uncertainty)
- measured data (expanded uncertainty between 0.06 and 0.08%)
 agreed better with the revised Klosek McKinley (within maximum 0.08 %) than with the GERG-2008 Equations of State
- primary densitometer now further improved to reach 0.05% uncertainty => validate and improve Equations of State

LNG calibration facility

Scope of facility (flow and composition)

Planning

Sneak preview

Mid-scale flow standard

General

- Traceable to primary standard
- No boil-off, venting of methane to air minimized

Control parameters

• Flow Rate $5 - 200 \text{ m}^3/\text{h} (40 - 1600 \text{ kg/min})$

Expandable to 400 m³/h

Line pressure 1 – 10 barg(g)

Temperature -123 to -175 °C

Composition Measured, not controlled

Mid-scale flow standard

Composition Standard

 Special design sampler (subcooled conditions)

 Vaporization at conditions above critical pressure

Sampling flow rate at 7,5 ml/min (LNG) / 5 l/min (gas)

LNG CALIBRATION FACILITY Project milestones

Functional design

Preliminary engineering

Permitting

10% accurate cost estimation
 Go-no-go decision

Detail engineering

Placing orders

Fabrication

• Site preparation (civil)

Installation & commissioning

Validation and research program

Completed

Completed

Completed

Completed

Completed

In progress

In progress

next stage

July 2016

Aug - Dec 2016

Jan - May 2017

Location

Location

Overview of Mid Scale & Primary LNG Test Loops

Battery of Coriolis Master Meters

3 Adaptable Meter-under-Test Runs

Submerged Cryogenic Pumps and LNG Subcoolers

State of the Art Fieldbus Instrumentation, Controllers and Data Acquisition System

Partners Joint Industry Project LNG calibration facility

