

#1288 EURAMET Project

Final Report – Appendix 1

TIGen – Time Interval Generator based on PLL loops and programmable logic and counters

Final Report – Appendix 1

Central Office of Measures

TIGen standard – developed by AGH-GUM

TIGen – the main features

Reqiured: Ext. 10 MHz input

AGH

127 different Time Intervals between 1 pps outputs (from about: 20 ns to 12 μs)

> Precise matching of 1 pps outputs = close the same shape of output signals

> > **Rising slope:**

1 pps outputs Auxiliary display

SMA connectors 50 Ω

< 0.5 ns/V

Electronic board mounted inside and auxiliary display

Electronic based Time Interval generator (PLL loops and programmable logic and counters) ³

TDev of output TI measurements

Examplary continuous measurements of output signals

Examplary continuous measurements of output signals

Influence of temperature - TIGen

Influence of Ext. time base

freq. offset <1E-7 gives <2 ps TI change

The choice of trigger levels of the measured signals

0.2 V and 0.6 V of the trigger levels

Trigger levels should be fixed to c. 0,5 V

Characterisation of TIGen by pilot comparison (June 2015-March 2016): "Comparison of time interval measurement with high speed oscilloscopes" **Participants: AGH, NIT** The measured time intervals: (Poland), UME (Turkey), dn1, dn4, dn111 and dn115 **SASO** (Saudi Arabia), **SIQ** from about 70 ns to about 11 us (Slowenia) Obtained the best U = 4 ps and 6 ps (at all time intervals)

U_{weighted_mean} ≈ 2.9 ps

GENERATOR

All results are equivalent: $|E_n| < 1$

