Magnetism, magnetic materials and measurements

The course will provide the basis to understand the metrological aspects of magnetism, the physics of modern magnetic materials and the associated measurement techniques. It will give an introduction to

- basic concepts in magnetism
- quantum origin of ferromagnetism
- theories of magnetization process
- materials for technological applications
- experimental techniques

The course will be held in English language online via the platform provided by the Politecnico di Torino (virtual classroom). At the end of the course it will be possible to participate to a lab visit at INRIM.

Interested students should send a confirmation email to m.kuepferling@inrim.it, v.basso@inrim.it, to receive the links to the lectures and to be updated on last minute changes.

Dates:						
Mon/Lun	Tue/Mar	Wed/Mer	Thu/Gio	Fri/Ven	Sat/Sab	Sun/Dom
May 16	May 17	May 18	May 19	May 20	May 21	May 22
		9-12 CET L1		9-12 CET L2		
May 23	May 24	May 25	May 26	May 27	May 28	May 29
9-12 CET L3		9-12 CET L4		9-12 CET L5		
May 30	May 31	June 1	June 2	June 3	June 4	June 5
9-12 CET L6		9-12 CET L7				

Program (20 hours – 14 units):

Each lecture is split in two units of about 45-60min. Before and after each unit there will be time for Q&A and between the units there will be a 15min break.

Lecture 1: Introduction to magnetism and magnetic materials

- 1.1 Magnetism and technology: importance of magnetic materials (MK)
- 1.2 Magnetic media in Maxwell equations (VB)

Lecture 2: Magnetostatics and microscopic origin of magnetism

- 2.1 Magnetostatics (VB)
- 2.2 Magnetic Moments; Dia- and Paramagnetism (MK)

Lecture 3: Ferromagnetism and magnetic energies

- 3.1 Ferro-, antiferro- and ferrimagnetism (MK)
- 3.2. Energy relations (VB)

Lecture 4: Micromagnetics and magnetic domains

- 4.1 Micromagnetics (VB)
- 4.2 Domains and domain walls (MK)

Lecture 5: Magnetization processes and soft magnetic materials

- 5.1 Magnetization processes (VB)
- 5.2 Soft magnetic materials (MK)

Lecture 6: Hard, magnetostrictive and magnetocaloric materials

- 6.1 Hard magnetic materials (MK)
- 6.2 Magnetostrictive and magnetocaloric materials (VB)

Lecture 7: Spintronics with magnetic materials

- 7.1 Magnetism and electric currents (VB)
- 7.2 Spintronics and spin currents (MK)

Lab visit at INRIM (2 hours): Measuring and preparing magnetic materials

References:

- G. Bertotti, Hysteresis in Magnetism. Academic Press, 1998
- S. Blundell, Magnetism in condensed matter, Oxford University Press, 2001.
- R. O'Handley, *Modern magnetic materials. Principles and applications*, John Wiley & Sons, 2000.
- B.D. Cullity, Introduction to magnetic materials, Addison-Wesley, 1972.
- S. Chikazumi Physics of ferromagnetism, Oxford University Press, New York, 1997.
- M.D. Coey, Magnetism and magnetic materials, Cambridge University Press, 2009.
- R. Skomski, Simple models of magnetism, Oxford Graduate Texts, 2008.
- A.H. Morrish, The physical principles of magnetism, Wiley, 2001.

F. Fiorillo, Measurement and characterization of magnetic materials, Elsevier, 2004.