ILC Euramet report #1361 Water flow

Bilateral Comparison between Metrologi-LIPI and LNE-CETIAT

Final report

Isabelle CARE

LNE-CETIAT (France)

SOMMAIRE

1. INTRODUCTION	2
2. ORGANIZATION	2
2.1. Participants	2
2.2. Schedule	3
3. Artefacts	3
3.1. Description of the artefacts	3
3.2. Stability of artifacts	3
3.2.1. Artifact FT-12	3
3.2.2. Artifact FT-24	4
4. MEASUREMENT INSTRUCTIONS	6
5. RESULTS AND ANALYSIS	6
5.1. Results	6
5.1.1. Artifact FT-12	6
5.1.2. Artifact FT-24	6
5.2. Analysis	8
5.3. Discussion of results and conclusion of EURAMET 1361 bilateral comparison	8
5.4. Metrologi-LIPI comments	9
ANNEXE A DESCRITION OF THE TEST RIGS OF THE LABORATORIES	2
ANNEXE B UNCERTAINTY BUDGET FOR EACH LABORATORY	5

1. INTRODUCTION

The metrological equivalence of national measurement standards and of calibration certificates issued by national metrology institutes is established by a set of key and supplementary comparisons chosen and organized by the Consultative Committees of the CIPM or by the regional metrology organizations in collaboration with the Consultative Committees.

The comparison is organized within the EU-Indonesia Trade Support Programme II, Sub-project Number APE12-06b, "Improvement of traceability of Metrology and Calibration measurements of RCM- LIPI".

Two National Metrology Institutes take part in this comparison: LNE through CETIAT as Designated Institute (France) and Metrologi-LIPI (Indonesia).

LNE-CETIAT is acting as the pilot laboratory and in this function is responsible for writing the protocole, evaluating the measurement results and writing the final report.

The comparison will be accomplished in accordance with the EURAMET Guidelines on Conducting Comparisons and BIPM Guidelines for Planning, Organizing, Conducting and Reporting Key, Supplementary and Pilot Comparisons.

The comparison was registered by EURAMET as project #1361; artifacts circulation started in March 2015 and was completed in September 2015.

2. ORGANIZATION

2.1. Participants

Laboratory Code	Contact Person, Laboratory	Phone, email
LNE-CETIAT	Ms Isabelle CARE CETIAT Domaine scientifique de la Doua 25, avenue des Arts 69100 Villeurbanne France	Tel. +33 4 72 44 49 92 e-mail : isabelle.care@cetiat.fr
Metrologi-LIPI	Mr. Bernadus Herdi Sirenden Pusat Penelitian RCM- Lembaga Ilmu Pengetahuan Indonesia (Puslit RCMLIPI) Kompleks PUSPIPTEK Gedung 420 Tangerang Selatan Banten Indonesia	Tel. +62-21-7560533 e-mail: ben@kim.lipi.go.id

Table 1 - List of participant's laboratories and their contacts

2.2. Schedule

RMO	Laboratory	Original schedule	Date of measurement	Results received	
APMP	RCM- LIPI	April 2015	May 2015	June 2015	
EURAMET	LNE-CETIAT	May 2015	July 2015	August 2015	
APMP	RCM- LIPI	June 2015	September 2015	October 2015	

Table 2 - Schedule of the comparison

3. ARTEFACTS

3.1. Description of the artefacts

The travelling standards are two turbines provided by RCM--LIPI covering the range of $0.5 \text{ m}^3.\text{h}^{-1}$ to $30 \text{ m}^3.\text{h}^{-1}$ (about 8 dm³.min⁻¹ to $500 \text{ dm}^3.\text{min}^{-1}$).

Their specifications are as the following:

Table 3 - List of artefacts

Name	FT-12	FT-24
Manufacturer	FTI	FTI
Model	FT-12AEU3-LEA-0	FT-24AEU3-LEA-0
SN	12013288	2407168
Nominal range	7.57 - 75.71 dm³/min	56.78 - 567.81 dm³/min
Output	Pulses	Pulses

3.2. Stability of artifacts

As the owner of the artifacts, Metrologi-LIPI has measured the standard according to the technical protocol twice. First, measurements were performed in April (labeled #1), the second measurements were performed in September (labeled #2).

3.2.1. Artifact FT-12

During the measurement at LNE-CETIAT, the ball bearings of the FT-12 turbine broke as shown on the photos below.

Figure 1 - Photos of the broken FT-12 turbine

The comparison was, as a consequence, stopped for this turbine.

3.2.2. Artifact FT-24

Table 4 - Stability measurements done by Metrologi-LIPI on artifact FT-24 at the beginning (#1)) and
the end (#2) of the comparison	

	May 2	015 (#1)			Septembe	er 2015 (#2)	
Q _{ref}	K factor	S	u	Q _{ref}	K factor	S	u
(l.min ⁻¹)	(pulse.l ⁻¹)	(pulse.l ⁻¹)	(pulse.l ⁻¹)	(l.min ⁻¹)	(pulse.l ⁻¹)	(pulse.l ⁻¹)	(pulse.l ⁻¹)
58.2	147.4	0.12	0.18	58.1	147.5	0.13	0.19
75.0	147.2	0.07	0.10	75.2	147.2	0.15	0.22
168.8	146.3	0.20	0.31	166.8	146.4	0.12	0.18
332.6	146.0	0.15	0.23	336.4	144.9	0.67	1.02
500.9	145.6	0.45	1.68	512.8	145.2	0.78	1.19

In the table above, the following notations are used:

- Qref, reference flow rate measured by the reference test rig (described in Annex)
- K factor of the turbine, calculated from the measurements of pulses and time
- s, repeatability observed during the tests
- u, standard uncertainty of the K factor

Figure 2 - Stability of the artefact FT-24

The differences between second measurements and first ones are plotted in the figure above, where the errors bars represent the expanded uncertainties (k=2).

For flow rates equal or higher than 332 l.min^{-1} , during the final tests, at the end of the comparison, the repeatability of the calibration of the turbine was poor. As a consequence, a deviation is observed on the K-factor value of the turbine for these flow rates. No significant drift is observed within the reported uncertainties at 95% confidence level (k=2) for the flow rates below 170 l.min⁻¹.

4. MEASUREMENT INSTRUCTIONS

The K-factor of the turbines had to be determined under the following conditions:

- Pressure: 1 bar abs
- Water temperature: 23°C ± 2°C
- Ambient temperature: 23°C ± 2°C

at the following flow rates:

• Turbine FT-12

 \circ 0.5, 1, 2, 3.5 and 4.5 m³.h⁻¹(8.3, 16.7, 33.3, 58.3, 75 dm³.min⁻¹)

• Turbine FT-24

 \circ 3.5, 4.5, 10, 20 and 30 m³.h⁻¹(58.3, 75, 166.7, 333.3, 500 dm³.min⁻¹)

The measurements were repeated at least five times.

5. RESULTS AND ANALYSIS

5.1. Results

5.1.1. Artifact FT-12

As already mentioned, this turbine broke during the tests at LNE-CETIAT. The comparison stopped at this stage for this turbine since no data are available.

5.1.2. Artifact FT-24

During the 1st step, Metrologi- LIPI used a RF pickoff to measure the output of the turbine. This RF pickoff wasn't sent with the turbines at LNE-CETIAT.

During the tests at LNE-CETIAT, an amplified pickoff, with a supply voltage of 9V was used instead of the RF one.

During the last step of the comparison, Metrologi-LIPI performed the tests twice. The first time, the RF pickoff was used to estimate the stability of the artefact during the comparison process; the second time, the same amplified pickoff as the one used during the tests at LNE-CETIAT (with the same supply voltage of 9V) was used.

	LNE-CETI	АТ		Metrologi-	LIPI	
Flowrate	K-factor	σ	U	K-factor	σ	U
l.min ⁻¹	pulse.l ⁻¹					
58	146.59 0.05		0.16	147.26	0.08	0.21
75	146.47 0.08		0.18	147.14	0.04	0.11
167	146.07	0.03	0.15	145.24	0.79	2.04
333	145.54	0.01	0.15	145.57	0.29	0.75
500	145.91	0.01	0.15	146.16	0.04	0.11

The comparison between the two laboratories is done with the results obtained with the amplified pickoff.

Figure 3 - Comparison of the results for the FT-24 turbine

5.2. Analysis

To evaluate the comparison, the calculation of the normalized error, En, is used with the following equation:

$$En = \frac{X_{lab} - X_{ref}}{\sqrt{U_{lab}^2 + U_{ref}^2}}$$

with:

- X_i , the K-factor obtained by the lab I (in pulse.l⁻¹)
- U_i , the expanded uncertainty associated to the X_i value (in pulse.l⁻¹)

The following judgement criterion is used:

- $|En| \leq 1$, pass
- |En| > 1, fail

	LNE-CET	IAT	RCM	- LIPI		
Flowrate	K-factor U K-factor		U	En	Result	
l.min ⁻¹	pulse.l ⁻¹ pulse.l ⁻¹		pulse.l ⁻¹	pulse.l ⁻¹	-	
58	146.59	0.16	147.26	0.21	2.5	Fail
75	146.47	0.18	147.14	0.11	3.2	Fail
167	146.07	0.15	145.24	2.04	-0.4	Pass
333	145.54	0.15	145.57	0.75	-	-
500	145.91	0.15	146.16	0.11	-	-

Table 1 - Comparison results for te FT-24 turbine

The En criterion fails for two of the three points. The third one passes because the expanded uncertainty of Metrologi-LIPI is higher.

5.3. Discussion of results and conclusion of EURAMET 1361 bilateral comparison

From the results, this bilateral comparison is not successful.

The comparison with the FT-12 turbine was not completed because of the breakage of the turbine during the comparison.

Because of some drift in the K-factor value for the FT-24 turbine, the measurements at flow rates larger than 170 l.min⁻¹ cannot be used. At lower flow rates, the En criterion failed. The results are not consistent within the associated uncertainties. Metrologi- LIPI has to identify the causes of this discrepancy.

5.4. Metrologi-LIPI comments

The result from bilateral comparison between LNE-CETIAT and Metrologi-LIPI shows bad result, with only one point passes with very high uncertainty. This result gives Metrologi-LIPI a reason to examine the performance of Piston-Prover.

The stability test of FT-24 turbine shows there is a significant drift for flow rate higher than 332 l.min⁻¹. After having carefully examined the test data, it was found that for this flow rate, the time to take data is lower than16 seconds, since the elementary volume of the Piston-Prover is only 92.15 liters. Metrologi-LIPI suspected that this duration is not enough to reach a stabilized flow. This instability was detected by the turbine and produced a K-factor drift. For this reason, it is suspected that the Piston-Prover performance is instable for flow rates higher than 332 l.min⁻¹.

The flow rates below 332 l.min⁻¹ show consistent result of K-factor, but fail to match with LNE-CETIAT results. Metrologi-LIPI examined the method to determine the elementary volume of the Piston-Prover. It was found that there was a mistake in the calculation formula of the density of the flowing water. With this mistake the elementary volume of the Piston Prover was 92.15 liters. This value was used to determine the turbine K-factor.

After having corrected the density formula using the appropriate Tanaka formula, it was found that the elementary volume of the Piston Prover became 92.61 liters. This new value was used to recalculate the K-factor of the turbine. The results are presented below and show that the En value is lower than 1.

	LNE-CETIAT METROLOGI-LIPI				
Flowrate	K-factor	U	K-factor	U	En
l.min ⁻¹	pulse.l ⁻¹ pulse.l ⁻¹		pulse.l ⁻¹	pulse.l ⁻¹	-
58	146.59	0.16	146.5	0.21	0.26
75	146.47	0.18	146.4	0.11	0.29
167	146.07	0.15	144.5	2.03	0.77

Table 2 - Comparison results for the FT-24 turbine after METROLOGI-LIPI included the underestimateduncertainty contribution

With the comparison results, new CMC will be issued

<u>Calibrat</u>	ion or Measurem	<u>ent Service</u>	<u>Meası</u>	urand Level or	<u>Range</u>	<u>Measurement</u> <u>Conditions/Independent</u> <u>Variable</u>		Measurement Expanded Uncertainty Conditions/Independent Variable		Reference Standard used in calibration		List of Comparisons supporting this measurement/ calibration service	
<u>Quant</u> <u>ity/</u> <u>Class</u>	Instrument or Artifact	Instrume nt Type or Method	<u>Minim</u> <u>um</u> <u>value</u>	<u>Maximum</u> <u>value</u>	<u>Units</u>	Parameter	<u>Specificati</u> <u>ons</u>	<u>Value</u>	Unit s	<u>Coverag</u> <u>e</u> <u>Factor</u>	<u>Standard</u>	<u>Source of</u> <u>traceability</u>	
Water Flow	Turbine	Volumetri c	4	167	dm³ /min	Ambient Temperature	(21.0-26.0) °C	1.4	%	2	Piston Prover	METROLOGI- LIPI	EURAMET-1361_FLOW
Water Flow	Positive Displacemen t	Volumetri c	4	167	dm³ /min	Ambient Temperature	(21.0-26.0) °C	0.8	%	2	Piston Prover	METROLOGI- LIPI	EURAMET-1361_FLOW
Water Flow	Ultrasonic	Volumetri c	4	167	dm³ /min	Ambient Temperature	(21.0-26.0) °C	5.0	%	2	Piston Prover	METROLOGI- LIPI	EURAMET-1361_FLOW
Water Flow	Rotameter	Volumetri c	4	167	dm³ /min	Ambient Temperature	(21.0-26.0) °C	1.2	%	2	Piston Prover	METROLOGI- LIPI	EURAMET-1361_FLOW
Water Flow	Electromagn etic	Comparis on	4	167	dm³ /min			1.6	%	2	Turbine Flowmeter	METROLOGI- LIPI	EURAMET-1361_FLOW

Table 2 - New CMC for METROLOGI-LIPI Liquid Flow Measurement

Annexe A DESCRITION OF THE TEST RIGS OF THE LABORATORIES

A.1. METROLOGI- LIPI

The calibration method pertains to any type flow meter in any liquid medium, which indicates unit of volume and/or volumetric flow rate. In measuring range (3.7 - 1365.9)lpm, with best measurement capability 0.12% at actual conditions of calibration.

For laboratory calibration, the temperature of the instruments, master meter and test meter, or the ambient temperature, should be in between (21,0 - 26,0)"C during calibration.

Figure 4 - Schematic diagram of the facility

A.2. LNE-CETIAT

CETIAT facility was created in 1980 for industrial purpose and became the French designated institute for water flow measurements in 2002 (LNE - CETIAT). This gravimetric test rig uses a start/stop method to measure the water flow reference. Calibration can be done on delivered mass or mass flow measurements using three Sartorius balances. Delivered volume and volume flow rates can also be obtained using the same protocol and water density. One of the main advantages of this calibration rig is the possibility to change the temperature of water easily.

The temperature regulated water in the storage tank is sent to the constant head tank which discharges at constant pressure (1 bar) through the flow meter under calibration. The liquid flows permanently through the flowmeter and is switched either to the weighing tank or to the storage tank. This switching is controlled by an electronic circuit which detects electrical pulses sent by the flowmeter.

A first pulse generated by the flowmeter control the diverter switching to the weighing tank. At the moment of switch, a stopwatch and an external electronic counter used to obtain the number of pulses totalized are started simultaneously. After a certain amount of pulses set on the external counter and which corresponds to the filling of the weighing tank, the diverter switches back to the storage tank and both the stopwatch and the counter stop.

Flow rate	0.008 m ³ .h ⁻¹ to 36 m ³ .h ⁻¹
Fluid	Water
Pipe diameter	DN 1 to DN 100
Pressure range	1 bar to 4 bar
Water temperature	15°C to 90°C
Method of measurement	Gravimetric
Expanded uncertainty	0.05 % to 0.16 %

Annexe B UNCERTAINTY BUDGET FOR EACH LABORATORY

B.1. METROLOGI-LIPI

Lembaga Ilmu Pengetahuan Indonesia Indonesian Institute of Sciences Pusat Penelitian Metrologi Research Center for Metrology Bidang Metrologi Mekanik Mechanical Metrology Division

Auxiliary Technical Quality Document

Cabang pengukuran: Measurement branch:	Fluid Flow	
Nomor dokumen: Document number:	I.MM.9.02.B	
Judul: Title:	Uncertainty Budget as Supporting Evidence for CMC Claim	

Nomor Edisi: Edition number:	01	Nomor Revisi: Revision number:	01	Tanggal terbit: Publication date:	14/08/2015	Halaman 1 dari: Page 1 of:	9	
---------------------------------	----	-----------------------------------	----	--------------------------------------	------------	-------------------------------	---	--

Disusun oleh: Prepared by:	Nama: Bernadus Herdi Sirenden Posisi: Peneliti Metrologi Massa	Tanda tangan: R r
Diperiksa oleh: Verified by:	Nama: Nur Tjahyo Eka Darmayanti Posisi: Kasubbid Metrologi Massa	Tanda tangan: Signature:
Disahkan: Authorization:	Nama: Ghufron Zaid Posisi: Kepala Bidang Metrologi Mekanik	Tanda tangan: Signature:

Page 2 of 9 Authorization: 1 Verified by : Date: 14/08/2015 Revision: 01 Edition: 01 Doc. Number : I.MM.9.02.B

Budget ketidakpastian pengukuran volume dasar actual Uncertainty budget of actual basic volume

Quantity	•••	liquid flow rate
Type of Artfact	••	flow rate measuring system
Refference Standard	••	volumetric prover system
		ΔV ₂₂₀

 $\Delta V_{T} = \Delta V_{p} = \left[\overline{I - \alpha_{c} (T_{p} - 20 \ ^{\circ}C)} \right]$ Mathematical Model :

$$\text{Uncertainty equation} \qquad : \quad u(\Delta V_{P}) = \sqrt{\left(\frac{\partial \Delta V_{P}(\Delta V_{20})}{\partial \Delta V_{20}}.u(\Delta V_{20})\right)^{2} + \left(\frac{\partial \Delta V_{P}(T_{P})}{\partial T_{P}}.u(T_{P})\right)^{2}}$$

Uncertainty source	Unit	Distr.	Symbol	5	Divisor	vi	·5	ci	ci.ui	(ci.ui) ²	(ci.ui)/vi
unc.due to basic volume at standard condition	dm ³	Normal	ΔV_p	0,03	2,1	21	1,3 x 10 ⁻²	1,0	1,3 x 10 ⁻²	1,6 x 10-4	1,2 x 10 ⁻⁹
unc.due to piston temperature cert	ŝ	Normal	т _р	0,11	2,0	60	5,5 x 10 ⁻²	0,005	2,6 x 10 ⁻⁴	6,9 x 10 ⁻⁸	8,0 × 10 ⁻¹⁷
Sums										1.6 x 10-4	1.2 x 10 ⁻⁹
Combined uncertainty										0.01	
Effective degree of freedom, veff										22	
Coverage factor for CL = 95%										2,1	
Expanded uncertainty, U (in dm^3)										0,03	

Uncertainty budget of measurement of volume correction type B

Incertainty of flowmeter	Quantity : liquid flow rate	ype of Artfact : flow rate measuring system	tefference Standard : volumetric prover system	fathematical Model : $K_v = \Delta V_\tau - \Delta V_1$
Uncer	Quanti	Type c	Reffer	Mathe

			$\left(\partial K_{v}(\Delta V_{\tau}), \ldots, \right)^{2} \left(\partial K_{v}(\Delta V_{m})\right)$)2	
Uncertainty equation	12	$u(K_v) = 1$	$ \Delta N_{\rm T} = 0.000 {\rm m}^{-1}$	V _{IR})	
		-	$\left(\frac{\partial v_{\rm T}}{\partial t} \right) \left(\frac{\partial \Delta v_{\rm R}}{\partial t} \right)$	(

Uncertainty source	Unit	Distr.	Symbol	D	Divisor	vi	is	<u>c</u> .	ci.ui	(ci.ui) ²	(ci.ui)/vi	_
unc.due to actual basic volume	dm ³	normal	ΔV_T	0,03	2,1	22	1,3 x 10 ⁻²	-	1,3 x 10 ⁻²	1,6 x 10 ⁻⁴	1,2 x 10 ⁻⁹	_
unc.due to UUT indication of volume	dm ³	rectanggular	ΔV_{IR}	0,01	1,7	1 × 10 ¹⁰	2,9 x 10 ⁻³	-	2,9 x 10 ⁻³	8,3 x 10 ⁻⁶	6,9 x 10 ⁻²¹	_
Sums										1.7 x 10-4	1.2 × 10 ⁻⁹	_
Combined uncertainty										0.01		_
Effective degree of freedom, veff										23		
Coverage factor for CL = 95%										2.1		
Expanded uncertainty, U (in dm^3)										0,03		_

Page 4 of 9 0 Authorization: : Verified by : Date: 14/08/2015 Budget ketidakpastian terbentang pengukuran koreksi volume Extended Uncertainty budget of measurement of volume correction $: u(\overline{K_v}) = \sqrt{\left(u_A(\overline{K_v})\right)^2 + \left(u(K_v)\right)^2}$ flow rate measuring system Revision: 01 : volumetric prover system $: \overline{K_v} = \frac{\sum_{i=1}^n K_{v_i}}{\sum_{i=1}^n K_{v_i}}$ liquid flow rate Edition : 01 Uncertainty of Flowmeter Refference Standard Mathematical Model Uncertainty equation Doc. Number : I.MM.9.02.B Type of Artfact Quantity L

Uncertainty source	Unit	Distr.	Symbol	∍	Divisor	vi	.2	CI.	ci.ui	(ci.ui) ²	(ci.ui)/vi
unc.due to volume correction type A	dm ³	student T	Кv	0,06	2,0	1	3,04 x 10 ⁻²	-	3,04 x 10 ⁻²	9,3 x 10⁴	7,8 × 10 ⁻⁸
unc.due to volume correction type B	dm ³	Normal	Kv V	0,03	2,1	23	1,3 x 10 ⁻²	-	1,3 x 10 ⁻²	1.7 x 104	1.2 x 10 ⁻⁹
Sums										1.1 × 10-3	7.9 x 10 ⁻⁸
Combined uncertainty										0.03	
Effective degree of freedom, veff										15	
Coverage factor for CL = 95%										2,1	
Expanded uncertainty, U (in dm ³)										0.07	

Doc. Number : I.MM.9.02.B	Edition : 01	Re	evision : 01	Date : 14	1/08/2015	Ve	rified by :	- ju	Autho	orization:		Page 5 of 9	
Budget ketidakpast Uncertainty budget c	ian laju alir act of actual flow ri	tual <i>ate</i>						-					
Uncertainty of Flown Quantity Type of Artfact Refference Standard	meter : liquid flov : flow rate : volumetri	w rate measurinį ic prover s	g system system										
Mathematical Model	$Q_{\mathbf{r}} = \Delta$												
Uncertainty equation	. u(Q ₁) =	$\sqrt{\frac{\partial Q_T(l)}{\partial \Delta N}}$	$\frac{\Delta V_T}{V_T}$.u(ΔV_{γ}	$\left(\frac{\partial Q}{\partial t}\right)^{2} + \left(\frac{\partial Q}{\partial t}\right)^{2}$	$\frac{r(\Delta t)}{\Delta t}$.u(2	$\left(1\right)^{2}$		10					
Uncertainty	source	Unit	Distr.	Symbol	>	Divisor	ĸ		. ⁰	ci.ui	(ci.ui) ²	(ci.ui)/vi	
unc.due to timer		s	Normal	Δt	0,06	2,5	63	2,5 x 10 ⁻²	0,01	3,3 x 10 ⁻⁴	1,1 × 10-7	1,9 x 10 ⁻¹⁶	
unc.due to Actual Volum	e	dm ³	Normal	AVact	0,03	2,1	21	1,3 x 10 ⁻²	3,0	3,8 x 10 ⁻²	1,5 x 10 ⁻³	1,03 x 10 ⁻⁷	
Sums											1,5 x 10 ⁻³	1.03 x 10 ⁻⁷	
Combined uncertainty											0.04		
Effective degree of freed	om, veff										21		
Coverage factor for CL =	95%										2.1		

0,08 21

Expanded uncertainty, U (in dm3/min)

Page 6 of 9	
Authorization:	8
Verified by : LO _	4
Date: 14/08/2015	
Revision: 01	
Edition : 01	
. Number : I.MM.9.02.B	

Budget ketidakpastian pengukuran koreksi laju alir tipe B Uncertainty budget of measurement of flow rate correction type B

Uncertainty of flowmeter

: liquid flow rate Quantity

: flow rate measuring system : volumetric prover system Refference Standard Type of Artfact

 $\text{Mathematical Model} \quad : \quad K_Q = Q_T - Q_I$

$$\text{Uncertainty equation} \qquad : \quad u(K_{Q}) = \sqrt{\left(\frac{\partial K_{Q}(Q_{T})}{\partial Q_{T}}.u(Q_{T})\right)^{2} + \left(\frac{\partial K_{Q}(Q_{IR})}{\partial Q_{IR}}.u(Q_{IR})\right)^{2}}$$

Uncertainty source	Unit	Distr.	Symbol	>	Divisor	vi	.i	<u>.</u>	ci.ui	(ci.ui) ²	(ci.ui)/vi
unc.due to actual flow rate	dm ³ /min	normal	Å	0,08	2,1	21	3,8 x 10 ⁻²	-	3,8 x 10 ⁻²	1,5 x 10 ⁻³	1,03 x 10 ⁻⁷
unc.due to UUT indication of flow	dm ³ /min	rectanggular	QIR	0,01	1,7	1 × 1010	2,9 x 10 ⁻³	-	2.9 x 10 ⁻³	8.3 x 10 ⁻⁶	6.9 x 10 ⁻²¹
Sums										1.5 x 10-3	1 01 × 10-7
Combined uncertainty										0.04	A. W. A.
Effective degree of freedom, veff										24	
Coverage factor for CL = 95%										2.1	
Expanded uncertainty, U (in dm ³)										0,08	

Page 7 of 9 Authorization: Verified by : Date: 14/08/2015 Revision: 01 Edition:01 Doc. Number : I.MM.9.02.B

Budget ketidakpastian terbentang pengukuran koreksi laju alir Extended Uncertainty budget of measurement of flow rate correction

Uncertainty of Flowmeter

Quantity	••	liquid flow rate
Type of Artfact	••	flow rate measuring system
Refference Standard	••	volumetric prover system
Mathematical Model	••	$\overline{\mathbf{K}}_{-} = \sum_{i=1}^{n} \mathbf{K}_{\mathbf{Q}_{i}}$

	$\frac{1}{2} + \left(u(K_Q)\right)^2$
$\overline{K_{Q}} = \frac{\sum N_{QI}}{\frac{1}{n}}$	$: u(\overline{K_{Q}}) = \sqrt{\left(u_{A}(\overline{K_{Q}})\right)}$
	Uncertainty equation

Uncertainty source	Unit	Distr.	Symbol	n	Divisor	.iz	, i	. <u>o</u>	ci.ui	(ci.ui) ²	(ci.ui)/vi
unc.due to flow rate correction type A	dm ³	student T	ĸ	0,002	2,0	12	9,2 x 10 ⁻⁴	-	9,2 x 10 ⁻⁴	8,5 x 10 ⁻⁷	6,01 x 10 ⁻¹⁴
unc.due to flow rate correction type B	dm ³	Normal	Å	0,08	2,1	21	3,8 x 10 ⁻²	-	3,9 x 10 ⁻²	1,5 x 10 ⁻³	1.03 x 10-7
Sums										1.5 x 10-3	1.03 x 10 ⁻⁷
Combined uncertainty										0.04	2. 4. 2.2.
Effective degree of freedom, veff										21	
Coverage factor for CL = 95%										2.1.	
Expanded uncertainty, U (in dm^3)										0,08	

Page 8 of 9 Authorization: Verified by : Date: 14/08/2015 Revision: 01 Edition: 01 Doc. Number : I.MM.9.02.B

Budget ketidakpastian pengukuran K-faktor tipe B Uncertainty budget of measurement of K-factor type B

Uncertainty of Flowmeter

Quantity	••	liquid flow rate
Type of Artfact	••	flow rate measuring system
Refference Standard	••	volumetric prover system
		N

Mathematical Model : $K_{f}=\frac{N_{T}}{\Delta V_{T}}$

$$\text{Uncertainty equation} \qquad : \qquad u(K_{\rm f}) = \sqrt{\left(\frac{\partial K_{\rm f}\left(\Delta V_{\rm T}\right)}{\partial \Delta V_{\rm T}}.u(\Delta V_{\rm T})\right)^2 + \left(\frac{\partial K_{\rm f}\left(N_{\rm TR}\right)}{\partial N_{\rm TR}}.u(N_{\rm TR})\right)^2}$$

Uncertainty source	Unit	Distr.	Symbol	n	Divisor	v	·5	. <u>.</u>	ci.ui	(ci.ui) ²	(ci.ui)/vi	
unc.due to actual volume	dm ³	normal	ΔV_T	0,03	2,1	22	1,3 x 10-2	-	1.3 x 10 ⁻²	1.6 x 10 ⁻⁴	1.2 x 10 ⁻⁹	
unc.due to UUT indication of pulse	pulse	rectangular	NTR	0,5	1,7	1 x 10 ¹⁰	2,9 x 10-1	17	4,9	24	5.8 x 10 ⁻⁸	
Sums										24	5.8 x 10 ⁻⁸	
Combined uncertainty										49	2. 2.2.5	
Effective degree of freedom, veff										1 x 10 ¹⁰		
Coverage factor for CL = 95%										2.0		
Expanded uncertainty, U (in pulse/dm3	3)									96		1

Page 9 of 9 Authorization: Verified by : Date: 14/08/2015 $u\left(\overline{K_{f}}\right) = \sqrt{\left(u_{A}\left(\overline{K_{f}}\right)\right)^{2} + \left(u\left(K_{f}\right)\right)^{2}}$ Budget ketidakpastian terbentang pengukuran K-faktor Extended Uncertainty budget of measurement of K-factor : flow rate measuring system : volumetric prover system K n Revision: 01 ч : liquid flow rate П K f Edition: 01 .. ••• Uncertainty of Flowmter Refference Standard Mathematical Model Uncertainty equation Doc. Number : I.MM.9.02.B Type of Artfact Quantity L

Uncertainty source	Unit	Distr.	Symbol	D	Divisor	vi	: 5	Ci.	ci.ui	(ci.ui) ²	(ci.ui)/vi
unc.due to k-factor type A	pulse/dm ³	student T	Ę,	1,0	2,0	12,0	0,5	-	0,5	0,25	5,2 x 10 ⁻³
unc.due to k-factor type B	pulse/dm ³	Normal	K,	9,6	2,0	1 x 10 ¹⁰	4,9	t	4,9	24	5.8 x 10 ⁻⁸
Sums										24	5.2 x 10-2
Combined uncertainty										4.9	
Effective degree of freedom, veff										1 v 105	
Coverage factor for CL = 95%										00	
Expanded uncertainty, U (in pulse/dm ³)										9.7	

B.2. LNE-CETIAT

Hot water $(30^{\circ}C < t \le 90^{\circ}C)$

Quantity	Standard uncertainty (in quantity unit)
К	5,8.10 ⁻⁵
M [kg]	$(2,55.10^{-5}+6,3.10^{-6}.M^2/\tau^2+8,4.10^{-8}.M^2)^{1/2}$
ρ [kg.m -3]	0,35
τ [s]	8,5.10-4

Cold water ($15^{\circ}C \le t \le 30^{\circ}C$)

Quantity	Standard uncertainty (in quantity unit)
К	5,8.10 ⁻⁵
M [kg]	$(2,55.10^{-5}+6,3.10^{-6}.M^2/\tau^2)^{1/2}$
ρ [kg.m -3]	0,35
τ [s]	8,5.10-4

<u>8 kg.h-1 ≤ qm ≤ 30 kg.h-1</u>

Water temperature	Reference quantity	Accreditated uncertainty (k=2)
	Volume flow rate	1,7.10 ⁻³ .q _v
15°C ≤ t ≤ 30°C	Mass flow rate	1,5.10 ⁻³ .q _m
(cold water)	Dynamic volume	1,7.10 ⁻³ .V
	Dynamic Mass	1,5.10 ⁻³ .M'
	Volume flow rate	1,7.10 ⁻³ .q _v
30°C < t ≤ 90°C	Mass flow rate	1,5.10 ⁻³ .q _m
(hot water)	Dynamic volume	1,7.10 ⁻³ .V'
	Dynamic Mass	1,5.10 ⁻³ .M'

Water temperature	Reference quantity	Accreditated uncertainty (k=2)
	Volume flow rate	1,3.10 ⁻³ .q _v
15°C ≤ t ≤ 30°C	Mass flow rate	5.10⁻⁴.q _m
(cold water)	Dynamic volume	1,3.10 ⁻³ .V'
	Dynamic Mass	5.10 ⁻⁴ .M'
	Volume flow rate	1,3.10 ⁻³ .q _v
30°C < t ≤ 90°C	Mass flow rate	1.10 ⁻³ .q _m
(hot water)	Dynamic volume	1,3.10 ⁻³ .V'
	Dynamic Mass	1.10 ⁻³ .M'

<u>30 kg.h⁻¹ < q_m ≤ 75 kg.h⁻¹</u>

<u>75 kg.h⁻¹ < $q_m \le$ 36000 kg.h⁻¹</u>

Water temperature	Reference quantity	Accreditated uncertainty (k=2)
	Volume flow rate	1.10 ⁻³ .q _v
15°C ≤ t ≤ 30°C	Mass flow rate	5.10⁻⁴.q _m
(cold water)	Dynamic volume	1.10 ⁻³ .V'
	Dynamic Mass	5.10 ⁻⁴ .M'
	Volume flow rate	1.10 ⁻³ .q _v
30°C < t ≤ 90°C	Mass flow rate	8.10 ⁻⁴ .qm
(hot water)	Dynamic volume	1.10 ⁻³ .V'
	Dynamic Mass	8.10 ⁻⁴ .M'