

EUROMET SUPPLEMENTARY COMPARISON

SURFACE TEXTURE

Project No. 600

Technical Report

Final Version

May 2004

Pilots:

- L. Koenders ¹⁾, J. L. Andreasen ²⁾, and L. De Chiffre ²⁾
- ¹⁾ Physikalisch-Technische Bundesanstalt, Braunschweig, Germany
- ²⁾ Centre for Geometrical Metrology, Technical University of Denmark, Lyngby, Denmark

Contents

1	I	Introduction	4						
2	<u>Standards</u>								
3	P	Participants and Time Schedule							
	3.1	Organisation	. 6						
	3.2	Requirements for Participation	. 6						
	3.3	Participants	. 6						
	3.4	Time Schedule	. 8						
4	K	<u>Reports</u>	9						
	4.1	General	.9						
	4.2	Description of Measuring Instrument	. 9						
	4.3	Uncertainty Budgets	10						
5	<u>s</u>	Stability of Standards	12						
	5.1	Surface Damages or Scratches	12						
	5.2	Stability of Parameter Values	12						
6	Λ	Measurement Results as Reported by Participants	14						
7	K	Reference Value, Uncertainty and Birge Ratio	16						
8	E	Evaluation and Discussion	18						
	8.1	Evaluation for Parameters Pt and D of Type A Standards	18						
	8	1.1 Comment on the Influence of Correlation Effects	19 19						
	8.2	Evaluation for the R-Parameters of Type C Standards	21						
	8	2.1 Problems with Parameter <i>RSm</i>	21						
	8.3	Evaluation for the R-Parameters of Type D Standards	22						
	8	.3.1 Problems with Rmax .3.2 Problems with Rpk	22 23						
	8.4	Summary of Measurement Results	25						
	8.5	Evaluation of Results for the Software Gauges	26						
	8	.5.1 Problems with Amplitude Parameters	27						
9	<u>_</u>	Degree of Equivalence of Institutes	29						
10) <u>(</u>	Conclusions and Remarks	30						
11		<u>Remarks from the pilots</u>	31						
12	2 4	<u>Acknowledgements</u>	32						
13	8 <u>A</u>	<u>Appendix</u>	33						

APPENDIX

Appendix A: Datasheets	33
Appendix B: Reports of the institutes	33
Appendix C: Measurement results at begin and at end	33
Appendix D: Diagrams and tables for the various roughness parameters	33
Appendix E: Diagrams with the Degree of Equivalence (DoE)	33

LIST OF TABLES

Table 1:	Participating Laboratories	6
Table 2:	Time schedule	8
Table 3:	Instruments and software	9
Table 4:	<i>Example - Depth setting standard EN0806 Pt ~ 0,2 μm</i>	14
Table 5a:	Parameters and institutes $(En > 1)$ - Type A2 - EN 0806 Pt ~ 0,2 μ m	18
Table 5b:	Parameters and institutes $(En > 1)$ - Type A2 - EN 0806 Pt ~ 1,5 μ m	18
Table 5c:	Parameters and institutes $(En \ge 1)$ - Type A2 - EN 0806 Pt ~ 8µm	18
Table 6:	Comparison of Rz and Rmax of some selected institutes	23
Table 7:	<i>Rk parameter for various standards</i>	25
Table 8:	<u>Results obtained from software gauges</u> 505.smd using the RPTB software ($\lambda c=0.8$ mm,	
	$\lambda s=2,5\mu m, FFT$)	27
Table 9:	Data values for Rp , Rv and Rt and the difference $Rt - (Rp + Rv)$	27
Table 10:	Influence of software on the uncertainty of results	28

LIST OF FIGURES

Fig. 1:	<u>Typical set of roughness standards</u> : a) Depth setting standard type A2, b) roughness	
	standard type C, c) roughness standard type D1, and d) roughness standard type D2	4
Fig. 2:	Depth setting standard	12
Fig. 3:	Plot of the reported Pt_i values for the groove of nominal 0,2 μ m on standard EN 806 together with the expanded uncertainty. The thick line represents the reference value and	
—	its uncertainty (dashed).	14
Fig. 4:	<u>Difference of Pt – D measured on EN 0806</u> .	20
Fig. 5:	Differences of RSm values of institutes to the reference value obtained on the geometrical standards.	21
Fig. 6:	Plot of the Rmax values for the institutes. The blue line give the simple mean, the red line the reference value together with the expanded uncertainty (dashed).	22
Fig 7a:	Rpk parameter for the roughness standard 686sg	23
Fig 7b:	Rpk parameter for the roughness standard 633g	24
Fig 7c:	Rpk parameter for the roughness standard 629f	24
Fig. 8:	<u>Histogram of failed measurements</u> based on results and expanded uncertainties. In the case of R parameters the histogram is based on measurements without SMU.	25
Fig. 9a:	Original. P-profile. R-profile. and W-profile	26
Fig. 9b:	Abbott curve calculated from P-profile, the R-profile and R-profile using the specific filter described in ISO 13565-1	26
Fig. 9c:	Density curves calculated from the P-profile, the R-profile and R-profile using the specific filter described in ISO 13565-1	27
Fig. 10:	Plot of Rt values for data file 505.smd for the different institutes. The red line indicates the	
	reference value (PTB).	28
Fig. 11:	Degree of equivalence for measurements	29
Fig. 12:	Degree of equivalence for measurements of the Pt parameter on En0806 ~ 0,2 µm.	29

1 INTRODUCTION

At the length meeting in Prague in Oct. 1999 a new comparison was suggested on surface texture. The last comparison on this field was finished in 1989¹. In the meantime the instrumentation, the standards and the written standards have been improved including some software filters. The pilot laboratories for this *supplementary comparison* on surface texture are the Centre for Geometrical Metrology at the Technical University of Denmark and the Micro- and Nanotopography Laboratory at the Physikalisch-Technische Bundesanstalt, Germany.

2 STANDARDS

The ISO 5436-1 describes several types of different standards for the calibration of instruments for roughness measurements. There are type A standards for the calibration of the vertical axis, type C for the calibration of the lateral axis, and Type D for the verification of the dynamical properties. There are a lot of parameters to describe the roughness of surfaces (see ISO 4287, ISO 12085, ISO 13565). An industrial survey of 1999 was a first initiative to analyse to what extend these parameters are actually used². In attempt to cover most of the parameters, we used the following standards:

- 1 Depth setting standard of type A2
- 3 Roughness standards of type C3
- 3 Roughness standards of type D1
- 1 Roughness standard of type D2
- see <u>Datasheet 2</u>, - see Datasheet 3,

- see Datasheet 1,

- see Datasheet 4,

(see the datasheets in Appendix A for more details)

Fig. 1: Typical set of roughness standards: a) Depth setting standard type A2, b) roughness standard type C, c) roughness standard type D1, and d) roughness standard type D2

Due to the involved filtering routines more and more importance is attached to the software used for data analysis. Therefore we included some data sets which should be analysed by the participants:

3 files for software check

- see Datasheet 5.

¹ Hillmann, W., Comparison of roughness measurements in the European Community, Community Bureau of Reference, BCR, Report EUR 12 180 EN, 1989

² De Chiffre, L., Industrial survey on ISO surface texture parameters, CIRP, Vol 48(3) (1999) p. 74

- 1) instructions (short version),
- 2) a copy of the technical protocol,
- 3) a data sheet with addresses of the participants, and
- 4) photographs of the standards in their initial state.

The package was accompanied by an ATA carnet.

3.1 ORGANISATION

3

Following the rules set up by the BIPM³ a small group of participating laboratories has drafted this technical protocol. The two labs are the Centre for Geometrical Metrology at the Technical University of Denmark and the laboratory Micro- und Nanotopography at the Physikalisch-Technische Bundesanstalt, Germany. By their declared intention to participate in this supplementary comparison, the participants accept the general instructions and the technical protocols written down in this document and commit themselves to follow the procedures strictly.

3.2 **REQUIREMENTS FOR PARTICIPATION**

According to the WGDM recommendation No 2 (document CCDM/WGDM/97-50b), the participating laboratories should offer this measurement as a calibration service (now or in future), and be willing to participate in a regional comparison in order to provide a link between the interregional and the national comparisons.

3.3 PARTICIPANTS

The participants of this comparison are listed in table 1.

Laboratory Responsible		Address	Phone, Fax, e-mail		
BEV	M. Matus	Bundesamt f. Eich- u Vermessung- swesen (BEV) Arltgasse 35 A-1160 Wien Austria	Phone: +43 1 49 110 540 Fax :+43 1 49 20 875 e-mail: <u>m.matus@metrologie.at</u>		
CEM	E. Prieto	Centro Español de Metrología Del Afar, 2 28760 Tres Cantos (Madrid) Spain	Phone: +34 91 8074 716 Fax: +34 91 8074 807 e-mail: <u>eprieto@cem.es</u>		
СМІ	J. Borovsky	Czech Metrological Institute V. Botanice 4 150 72 Prague Czech Republic	Phone: +420 2 573 21 312 Fax: +420 2 573 28 077 e-mail: jborovsky@cmi.cz		
GUM	B. Smereczynska	Glówny Urzad Miar / Central Of- fice of Measures Surface Texture Measurements P.O. Box P-10 00 950 Warsaw Poland	Phone: +48 22 620 54 38 Fax: +48 22 620 83 78 e-mail: <u>length@gum.gov.pl</u>		
ILM/ Since 4.01 → ISTEC	D. Cuppini	Istituto di Scienza e Tecnologia dei Materiali Ceramici Strada delle Cacce 73 10135 Torino Italy	Phone: +39 011 397 7502 Fax: +39 011 346 288 e-mail: <u>d.cuppini@to.istec.cnr.it</u>		

Table 1: Participating Laboratories

³ see http://www.bipm.fr/enus/8_Key_Comparisons/key_comparisons.html

IMGC	G. B. Picotto	CNR Istituto di Metrologia "G. Colonnetti" Strada delle Cacce, 73 I-10135 Torino Italy	Phone: +39 011 39 469/473 Fax: +39 011 39 77 459 e-mail: <u>g.picotto@imgc.cnr.it</u>
IPQ	Fernanda Saraiva Silvia Gentil	Institute Português da Qualidade Rua António Gião, 2 2829-513 Caparica Portugal	Fax: ++351 21 2948188 Tel: ++351 21 2948160 e-mail: <u>FSaraiva@mail.ipq.pt</u> <u>Sgentil@mail.ipq.pt</u>
METAS	F. Meli A. Küng	Swiss Federal Office of Metrology and Accreditation Lindenweg 50 CH-3003 Bern – Wabern Switzerland	Phone: +41 31 323 3346 Fax: +41 31 323 3210 e-mail: <u>felix.meli@metas.admin.ch</u>
MIKES	H. Lehto B. Hemmning	MIKES Konepajametrologia Metallimiehenkuja 6 FIN-02150 Espoo, Finland	Phone: +358 9 4565 350 Fax: +358 9 460 627 e-mail: <u>Heikki.Lehto@mikes.fi</u>
NMI-VSL	R. Koops	NMi-Van Swinden Lab. Length section Schoemakerstraat 97 2600 Ar Delft The Netherlands	Phone: +31 15 269 1500 Fax: +31 15 261 2971 e-mail: <u>rkoops@nmi.nl</u>
NPL	R. Leach	National Physical Laboratory Teddington, Middlesex TW11 OLW United Kingdom	Phone:+44 20 8943 6303 Fax: +44 20 8614 0420 e-mail: <u>Richard.Leach@NPL.co.uk</u>
SMU	M. Szmicsková	Slovenský Metrologický Ústav Karloveska 63 CS - 842 55 Bratislava Slovakia	Phone:+421 2 60 294 244 Fax: +421 2 65 429 592 e-Mail: szmicskova@smu.gov.sk
SP	M. Frennberg	Swedish National Testing and Research Institute Box 857 S-501 Borås Sweden	Phone: + 46 33 16 5474 Fax: +46 33 16 5620 e-Mail: <u>Mikael.Frennberg@sp.se</u>
VMC ⁴	Vaidotas Ge- gevicius	Vilnius Metrology Center S. Darius IR S. Gireno 23 2038 Vilnius Lithuania	Phone: +370 2 235 882 Fax: +370 2 233727 e-mail: <u>vmc@taide.lt</u>
UME	T. Yandayan	TÜBÝTAK – Ulusal Metroloji Enstitüsü P.K. 54 Gebze Kocaeli 41470 / TÜRKÝYE	Phone: +90 (262) 679 50 00 Ext. 5300 Fax: +90 (262) 679 50 01 e-mail: Tanfer@ume.tubitak.gov.tr

⁴ *The VMC got the samples during the circulation, but they withdrew their participation later.*

Pilot labs			
PTB	L. Koenders	Physikalisch-Technische Bunde-	Phone: +49 531 592 5120
(Contact)		sanstalt (PTB)	Fax: +49 531 592 5105
		AG5.14 - Thin Films and Nanos-	e-mail:
		tructures	Ludger.Koenders@ptb.de
		Postfach 33 45	
		D-38023 Braunschweig	
		Germany	
CGM	L. De Chiffre	Centre for Geometrical Metrology	Phone: +45 4525 4760
	J. L. Andreasen	(CGM)	Fax: +45 4593 0190
		TU of Denmark	e-mail: <u>lcd@ipl.dtu.dk</u>
		Building 425	jla@ipl.dtu.dk
		DK-2800 Lyngby	
		Denmark	

*) The VMC got the samples during the circulation, but they withdrew their participation later.

3.4 TIME SCHEDULE

The comparison was carried out in a mixed form, i. e. circulation and star type. The period of time available to each laboratory was 4 weeks for calibration and transportation to the next participant.

Circle	No	Institute	Country	Time schedule planned	Time schedule actual		
	1	РТВ	DE	May 01		May 01	
	2	CEM	ES	June 01	1^{st}	July 01	
					2^{nd}	Dec 02–Feb 03	
cle	3	CMI	CZ	July 01		June 01	
cir	4	ILM	IT	Aug 01		Aug 01	
1 st	5	IMGC	IT	Aug 01		Aug 01	
	6	UME	TR	Sept 01		Sept 01	
	7	METAS	СН	Oct 01		Oct 01	
	8	BEV	AT	Nov 01		Nov 01	
	-	РТВ	DE	Dec 01		Visual inspection	
	9	CGM	DK	Jan 02		Jan 02	
	10	MIKES	FI	Feb 02		Feb 02	
	11	VMC ^{*)}	LT	March 02		March 02	
cle	12	GUM	PL	Apr 02		Apr 02	
cir	13	SMU	SK	May 02		Oct - Nov 02	
2 nd	14	NMi-VSL	NL	June 02	1^{st}	June 02	
					2^{nd}	Feb –March 03	
	15	NPL	UK	July 02		July – Aug 02	
	16	IPQ	PT	Aug 02		Sept – Oct 02	
	17	SP	SE	Sept 02		May 02	
End	-	PTB	DE	Apr 03		Apr - May 03	

Table 2:Time schedule

*) The VMC got the samples during the circulation, but they withdrew their participation later.

4 **REPORTS**

4.1 GENERAL

The participating laboratories report the results of the measurements to the pilot laboratory. Their report should contain:

- the measurement set-up and the conditions
- the result(s) of the measurements,
- the combined standard uncertainty,
- the complete uncertainty budget,
- the degrees of freedom.

The measurands have to be stated for the reference temperature of 20°C.

4.2 Description of Measuring Instrument

The institutes should give a short description of the instrument(s) used under the aspects listed below:

- **Type of instrument**, like interference microscope, confocal microscope, scanning probe microscope, stylus instrument; name(s) (of components) if commercial
- **kind of operation**, like scanning white light, phase shift with wavelength and line width, inverse working, moving stylus, moving specimen, scan axis used, mount of feed unit at column or on table
- **conditions of data collection**, like vertical measurement range, magnification of optical system, numerical aperture, field of view, scan length, integration time, number of averages, stylus tip radius,
- **conditions of evaluation**, like compensation of reference plane, interpolation to equal data point density, missing point interpolation, linearity correction,
- characterisation of instrument noise and deviation from ideal behaviour, e.g. by a value of roughness parameter on flat glass with and without lateral movement, deviation from straightness or flatness of reference plane by value of waviness parameter or area parameter,
- **environment characterisation**, like vibration isolation, dust and/or noise protection cover, estimate of thermal stability.

Institute	Instrument	Software	Standards	Traceability
PTB	Zeiss Interference mi-	RPTB, UBM	A1, A2	Calibrated at
	croscope (IM), Taylor	Soft		PTB
	Hobson Nanostep (NS),			
	Rauheitsmessanlage			
	(RMA)			
CEM	Dektak-3ST (DT)	Talymap Univer-	VLSI A1	NIST
	Perthometer (MPC)	sal 2.0		
		Perthometer		
		Concept		
CMI	Hommeltester T8000	Turbo Roughness	A2 0908	Calibrated at
	(HAT)	for Windows		PTB

Table 3: Instruments and software

9/33

ILM /ISTEC	Form Talysurf 120 with laser interferometer (FTS)	Version 4.0		ILM
IMGC	Talystep 1, Taylor- Hobson RTH (TS)	Talystep PC Software 0,01 SP RTH Groove 3.02P	Queensgate DPT-10	IMGC Laser- interferometer
UME	Perthometer Concept (MPC)	Perthometer Concept 6.3 GB	A2	Calibrated at PTB
METAS	Form Talysurf 120L with laser interferometer (FTS)	Ultra Version 6 METAS own	Sphere, gauge blocks	METAS Laserinter- ferometer
BEV	Interference microscope (IM)	IDEA		BEV
CGM	Taylor-Hobson Talysurf 5 – 120 with Heidenhain scale for x (FTS)	RCS4G (CGM)	A2	Calibrated at PTB
MIKES	Taylor Hobson Talysurf 2 inductive (FTS)	Ultra K510- 1038-02 Issue 10	Gauge blocks, radius std., flat	MIKES Inter- ferometer
GUM	Taylor Hobson Form Talysurf 120i (FTS)	RTH FTSS Ver- sion 6.10	A1	Calibrated at PTB
SMU	Talysurf 6 S112/1620 (FTS)	Talyprofil 3.0.8	A1	SMU Interfer- ence micro- scope
NMi-VSL	Taylor Hobson Form Talysurf 120L (FTS)	Ultra Version 4.3.14	z-scale with in- terferometer; x with line scale	NMi-VSL La- ser interfer- ometer
NPL	Nanosurf IV with laser interferometers in x- and z direction (NS4)	NPL software		NPL Frequency stabilized laser laser source
IPQ	Perthometer S8P (S8P)	Perthometer 1.1	A2	Calibrated at PTB
SP	Form Talysurf 120 in- ductive (FTS)	Form Talysurf (RTH), Version 4.0	Sphere, Type A2, D1	SP Laser inter- ferometer

4.3 UNCERTAINTY BUDGETS

The uncertainty of the measurement should be estimated according to the *Guide to the Expression of Uncertainty in Measurement*. The participating laboratories were encouraged to use all known influence parameters for the method applied by them. The parameter y of the standards should be expressed as a function of the input quantities X_i

$$y = f(x_i). \tag{1}$$

The combined standard uncertainty $u_c(y)$ is the square sum of the standard uncertainties of the input quantities $u(x_i)$, each weighted by a sensitivity coefficient c_i

$$u_c^2(y) = \sum_i c_i^2 u^2(x_i)$$
(2)

with $c_i = \frac{\partial y}{\partial x_i}$

The uncertainty components should be divided into components associated with the realisation of the object compared, and those associated with the comparison method.

Contributions to the uncertainty budgets depending on the method and the instrument used:

- 1. Calibration of the instrument z and x-axis
- vacuum wavelengths of lasers
- refraction index of the air
- interferometer alignment
- non-linearity of the instrument
- uncertainty of reference standard
- uncertainty of position on the reference standard
- levelling of the profile for the evaluation
- 2. Measurement
- influence of topography of standard
- straightness of reference datum
- noise of instrument
- repeatability
- transfer characteristic of stylus tip
- data distance in x-direction
- 3. Data evaluation
- correlation of profile points due to filtering λs , λc
- software
- temperature of standards and samples during measurement
- unknown systematic deviations

For more details see the reports in Appendix (Reports of Institutes).

5 STABILITY OF STANDARDS

5.1 SURFACE DAMAGES OR SCRATCHES

The status of the standards were monitored at different times during the comparison by the pilot laboratory. Additionally each participant was asked to check the standards after reception and to send a report to the pilot laboratory. Due to some problems it was sometimes necessary to send the standards back to the pilot laboratory for checking and cleaning. However the reference area remains almost so that measurements were possible. The standards were finally checked and measured again at the end of the comparison by the pilot laboratory. Near the 6th groove of the depth setting standard we found some defects which could influence the measurements (see fig. 2).

Defects near the 6th groove.

Fig. 2: Depth setting standard

5.2 STABILITY OF PARAMETER VALUES

The standards were re-calibrated in May 2003 at the end of the comparison. Appendix C contains the tables with the measurement data at the beginning and at the end of the comparison. The <u>table final_first</u> containing the difference of the values between last and first measurements shows differences for four parameters which should be discussed here.

1. The *Pt* value of the 6th groove shows a difference which is much larger than the uncertainty of the final measurement. At the beginning the groove was measured with the Nanostep, as it was not possible to measure this groove with the interference microscope. The uncertainty for the first measurement is U(k=2)=30 nm due to the large noise of the Nanostep for this range. The final calibration was made with the interference microscope which has a smaller uncertainty of U(k=2)=13nm. The difference between the final and the first measurement is smaller than the sum of both uncertainties.

- 2. In the case of the standard 633g the difference of the *Rvk* parameters is within the range of the uncertainties before and after.
- 3. The difference of the *Rpk* parameters for standard 686sg and 633g is larger than the sum of the uncertainties of both measurements. But all the other parameters of this standard agree within their uncertainties. Therefore we checked the old data again and found that these differences were caused by the use of our former software. Using the reference software *RPTB* instead we calculate a value of *Rpk*=1,270 μ m for the old data of standard 686sg. This is in good agreement with the value of the final measurement. The latter is in agreement with the reference value of the comparison, too, whereas the first value did not agree with the reference value of the comparison (see table 7a Type D1 686 sg).

Therefore we conclude that all the standards are stable over the time of the comparison.

6 MEASUREMENT RESULTS AS REPORTED BY PARTICIPANTS

The data for all parameters of all the participants are collected in <u>Appendix D</u>. Here we give an example for one parameter. The table below contains the data with the results for the smallest groove of the depth setting standard. Besides the institute some information about time of measurement, filter and measurement parameters are given.

			ent	Measured		Depth standard EN 806 R1 0,2 µm										
Institute	Pt	untry	trum	Date	λc	λs	Speed	Force	Sampl-dist	Pt	S	U(k=2)	uc=U/2	En	DoE/ Xir	DoE/Uir
		G	Ins		mm	μm	mm/s	mN	μm	nm	nm	nm	nm		nm	nm
PTB		DE	IM	May 01						291	1	8	4	0,80	6,90	7,33
CMI	n	CZ	ΗT	Jun 01	0,06		0,1	0,75	0,03	195	7	72			102,90	71,93
CEM	n	ES	DT	Jan 03			0,1	0,9	0,5	284	2	10			13,90	9,47
ILM		IT	FTS	Aug 01			0,5	0,75	0,5	314	5	17	8,5	0,93	16,10	16,70
IMGC		IT	TS	Aug 01			0,025 / 0,0025	0,03	0,1	301	9	16	8	0,19	3,10	15,68
UME		TR	MPC	Sep 01	-	2,67	0,1	0,9	0,1	316	3,6	40,9	20,45	0,44	18,10	40,77
METAS	n	СН	FTS	Oct 01		2,5	0,5	<1		321	17	20			23,10	19,74
BEV	0	A	IM	Nov 01												
CGM		DK	FTS	Jan 02	none	none	0,05	1	0,1	307	5	34	17	0,27	9,10	33,85
MIKES		FI	FTS	Feb 02			0,500	1,000	0,250	299	2,123	50	25	0,02	1,10	49,90
GUM		PL	FTS	Apr 02			0,5	<1	0,25	287	2,4	34	17	0,32	10,90	33,85
SP		SE	FTS	May 02	-	-	0,5	0,7	0,25	302	1,4	14,522	7,2608981	0,28	4,10	14,16
NPL		UK	NS4	Jul 02			0,0	<0.1	0,1	298	3,5	3,7	1,85	0,02	0,10	1,86
IPQ		PT	S8P	Sep 02	0,08		0,1			340	10	119,18	59,59	0,35	42,10	119,14
SMU	n	CS	FTS	Nov 02			1	1		326	0,8	7,8			28,10	7,11
NMi-VSL	n	NL	FTS	Mrz 03			0,5	0,55	0,25	332	7	26			34,10	25,80
0=not mea	0=not measured						Mean	300,87	nm	X _{ref} /nm	u(X _{ref}) /nm	U(X _{ref}) /nm	R _B	n		
i=incompl	=incomplete								Stdev	33,56	nm	297,9	1,6	3,2	1,00	10
n=exclude																

Table 4:Example - Depth setting standard EN0806 $Pt \sim 0,2 \ \mu m$

The table above displays the information for the Pt value as obtained from the institutes and necessary for the evaluation. The characters in the column Pt and D have the following meaning: "0" – parameters was not measured, "n" – excluded for the calculation of the reference value, because of En >1. The values "En" and "DoE" will be explained in the next chapters. The respective diagram for this parameter is shown below.

Fig. 3: Plot of the reported Pt_i values for the groove of nominal 0,2 μ m on standard EN 806 together with the expanded uncertainty. The thick line represents the reference value and its uncertainty (dashed).

The values of the institutes are plotted together with their expanded uncertainty. The red line represents the reference value calculated for this parameter together with the expanded uncertainty. The calculation of the reference value and the procedure to evaluate this value for each parameter is described in the following.

7 REFERENCE VALUE, UNCERTAINTY AND BIRGE RATIO

n

The reference value y_{ref} for each parameter is calculated as the weighted mean of all measurements y_i . The weights are $u^{-2}(y_i)$. For each parameter a reference value was calculated. To set up the $|\text{En}| \le 1$ criterion⁵, the expanded uncertainty U with a coverage factor of k = 2 was used ⁶.

Reference value

$$y_{ref} = \frac{\sum_{i=1}^{n} u^{-2}(y_i) \cdot y_i}{\sum_{i=1}^{n} u^{-2}(y_i)}$$
(3)

Combined standard uncertainty $u_c(y_{ref}) = \left(\sum_{i=1}^n u^{-2}(y_i)\right)^{-\frac{1}{2}}$ (4)

$$\mathbf{v}_{eff}(y_{ref}) = \frac{u_c^4(y_{ref})}{\sum_{i=1}^n \frac{u_i^4(y_{ref})}{\mathbf{v}_{eff}(y_i)}}$$
(5)

th
$$u_i(y_{ref}) = |c_i| \cdot u(y_i) = \frac{u^{-1}(y_i)}{\sum_{i=1}^n u^{-2}(y_i)}$$
 (6)

Expanded uncertainty using k=2

$$U(y_{ref}, k=2) = 2 \cdot u_c(y_{ref}) \tag{7}$$

$$En(y_i) = \frac{y_i - y_{ref}}{\sqrt{U^2(y_i) + U^2(y_{ref})}}$$
(8)

En-value

The plus sign in the denominator of (8) is used although there is some correlation between a single measurement result and the reference value. With the plus sign the En values could be too small⁷.

Measurements with En values larger than 1 have been omitted one by one for the calculation of the reference value. All other values contribute to the reference value.

⁵ <u>http://www.euromet.org/pages/guides/guide.htm</u> in Guidelines for the organisation of comparisons

 $^{^{6}}$ W. Wöger, Remarks on the E_n –Criterion Used in Measurem. Comp.: PTB-Mitteilungen 109 (1999) 24

⁷ see comment in chapter 8, too.

The reference values y_{ref} calculated of the remaining results are listed in tables in Appendix D together with their uncertainties $u(y_{ref})$ and $U(y_{ref})$ and the calculated Birge ratio R_B.

The Birge ratio is given by

$$R_{\rm B} = \frac{u_{ext}}{u_{in}} \tag{9}$$

with

$$u_{ext} = \sqrt{\frac{\sum_{i=1}^{n} \left[\left(y_i - y_{ref} \right) / u_i \right]^2}{(n-1) \sum_{i=1}^{n} u^{-2}(y_i)}}$$
(10)

and

provided that

 R_B is calculated to check the statistical consistency of a comparison. It compares the observed spread of results u_{in} with the spread of the estimated uncertainty u_{ext} . The Birge ratio has an expectation value of $R_B=1$, when considering standard uncertainties. For a coverage factor of k=2 the expectation value is increased and the data in a comparison are consistent

 $u_{in} = u_c(y_{ref})$

$$R_B < \sqrt{1 + \sqrt{8/(n-1)}}$$
 (12)

where n is the number of participants 8 . In the case of 12 participants contributing to the reference value, R_{B} should be smaller than 1,36.

(11)

⁸ R. Kacker, R. Datla, A. Parr, metrologia 39 (2002) p. 279 - 293

8 EVALUATION AND DISCUSSION

The evaluation starts with the whole data set and successive removal of those measurement data (En>1) with the largest En value. After each removal a new reference value and its uncertainty were recalculated. This iteration stops when there is no data with En>1.

Due to the dependence of roughness parameters on the height/depth measurement and due to some problems with the last we start with the evaluation of the depth measurements and the discussion, first. Afterwards we evaluate and discuss the results obtained for the roughness parameters. We end this chapter with the reported values obtained from the software calculation.

8.1 EVALUATION FOR PARAMETERS *PT* AND *D* OF TYPE A STANDARDS

The data for the smallest groove is shown in table 4 together with the diagram (fig. 3). All tables for the parameters are in the Appendix D.

The *Pt* and *D* parameter should be determined without filter λc . But from the table 4 and tables in Appendix D this was not the case for the CMI and IPQ. Both institutes should check their parameters again. Perhaps this is a mistake in the report, because using such values for the λc filter would strongly influence the profile of the depth setting standard.

The "n" in the column Pt indicates which measurement did not fulfil the En criteria. From the remaining values the reference value, the standard and expanded uncertainty were calculated. All values are listed in the tables. The Birge ratio R_B calculated from the remaining values is in the range of 0,8 to 1,0. That means that the results are consistent. But this is a statistical point of view. Below there are the tables for those measurement data obtained on the depth setting standard that do not fulfil the En criteria.

$Pt \sim 0,2 \ \mu m$								
Parameter	Pt							
Iteration	Institute	En(i)	Institute	En(i)				
1	SMU	3,02	SMU	2,25				
2	CMI	1,42	GUM	1,38				
3	NMi-VSL	1,31	CMI	1,22				
4	CEM	1,26	METAS	1,14				
5	METAS	1,12						

Table 5a:	Parameters and	institutes	(En>1) -	Type A2 -	- EN 0806 <i>Pt</i> ~ 0,2μm
-----------	----------------	------------	----------	-----------	-----------------------------

Table 5b:	Parameters and	institutes	(En>1) -	Type A2 -	- EN 0806 Pt	~ 1,5 µm
-----------	----------------	------------	----------	-----------	--------------	----------

Pt ~ 1,5 μm								
Parameter	Pt		D					
Iteration	Institute	En(i)	Institute	En(i)				
1	SMU	4,03	SMU	5,63				
2	CEM	1,79	METAS	1,25				
3	METAS	1,28						
4	NPL	1,02						

<i>Pt</i> ~ 8 μm								
Parameter	Pt		D					
Iteration	Institute	En(i)	Institute	En(i)				
1	SMU	19,24	SMU	15,62				
2	IPQ	3,84	CEM	1,87				
3	CEM	1,36	GUM	1,45				
4	NPL	1,10						

Table 5c: Parameters and institutes (En>1) - Type A2 - EN 0806 Pt ~ 8µm

The evaluation of the data for the depth setting standard reveals that the measured values of the institute SMU failed completely. Going on with the analysis we found further that the determined data of the same institute failed for a number of roughness parameters, too. The reason for this seems to be a large deviation of the scale of the vertical axis of the instrument used. In this case this results in a strong dependence on the roughness parameters.

Therefore we decided to exclude all values of SMU for the evaluation of the reference values for the roughness parameters to avoid a too strong effect.

This dependence was not observed for the other institutes listed in table 5a - 5c. Nevertheless it could influence the determination of the reference value of other roughness parameters, but in these cases it seems to be within the limit of uncertainties given.

8.1.1 COMMENT ON THE INFLUENCE OF CORRELATION EFFECTS

Since some institutes, namely CMI, CGM, GUM, IPQ, and UME, used a standard calibrated at PTB we performed an analysis which takes correlation effects into account. We followed the rules given in DIN 1319-3. By this the ratio of the uncertainty of reference standard of the institute $u_{ref}(i)$ to the uncertainty of the standard measured in the comparison $u_i(y)$ is taken into account. Consequently the uncertainty of the reference value can increase.

The evaluation as described above produced some trouble. Going into the details we found that this was caused by an error in the uncertainty budget of the institute UME for the D values. Here the uncertainty of the reference standard is greater than the uncertainty of the sample calibrated within this comparison although the values are similar. By omitting the values of this institute we got stable results.

Nevertheless, applying the En-criteria gave the same institutes as listed above which had to be excluded, but with slightly different En values. The institute UME has to re-calculate the uncertainty for the D parameter, especially for the larger grooves.

8.1.2 COMMENT ON PT AND D

The analysis of the difference between the Pt and the D value shows an interesting detail (see fig. 4). The difference Pt - D lies for the most part within the range from 0 to 50 nm going from the 0,2 µm to the 8,0 µm groove. Only two exceptions occur. The differences of one institute increase up to 200 nm for the 8 µm groove. This could be caused by a large noise of the instrument itself. In the other case (SMU) the difference becomes negative, which cannot be true since the peak value Pt should be larger than the averaged D value.

Fig. 4: Difference of Pt - D measured on EN 0806.

8.2 EVALUATION FOR THE *R*-PARAMETERS OF TYPE C STANDARDS

The tables of data, diagrams and tables with failed data are in Appendix D. We used in the report the En criteria to find outliers and to calculate the reference value. Nevertheless in some cases we observed problems which should be discussed in more detail.

8.2.1 PROBLEMS WITH PARAMETER RSM

The type C standards are used to determine the *RSm* value. In fig. 5 the difference *RSm* of institutes to *RSm* of reference are plotted as function of the reference value for the standards P114A/528-RS5 ($RSm_{Ref} = 50030$ nm), 8194/PGN3 ($RSm_{Ref} = 120000$ nm), and 7070/PGN10 ($RSm_{Ref} = 199900$ nm). Additionally, for some selected institutes a linear fit is shown.

RSm analysis

Fig. 5: Differences of RSm values of institutes to the reference value obtained on the geometrical standards.

The diagram shows that the difference increases with increasing RSm value in the case of CEM, UME, METAS, GUM, IPQ, and SMU. In the case of the CGM the differences have a large offset. Th above effects could be related to the calibration of the lateral axis of the stylus instrument or to the algorithm in the software ⁹.

⁹ R. K. Leach and P. M. Harris, Ambiguities in the definition of spacing parameters for surface-texture characterization, Meas. Sci. Technol. 13 (2002) 1924 - 1930

8.3 EVALUATION FOR THE *R*-PARAMETERS OF TYPE D STANDARDS

Again the tables of data, diagrams and tables with failed data are in Appendix D. We used in the report the En criteria to find outliers and to calculate the reference value. Nevertheless in some cases we observed problems which should be discussed in more detail. Some of them are already known from other comparisons.

8.3.1 PROBLEMS WITH *RMAX*

The results for the type D1 roughness standard 686sg are plotted in fig. 6 together with the expanded uncertainty. The red line indicates the reference value which is the weighted mean of all values that fulfil the En criteria. The blue line indicates the simple mean value.

In the case of the *Rmax* parameter, it seems that the reference value is fixed by two institutes with small uncertainty. Three other institutes have a different value in agreement with the simple mean value, but the uncertainty of their measurement values is not large enough to overlap with the reference value. To discuss this point in more detail we use the data in table 6 for *Rz* and *Rmax* for some selected institutes.

The values of the uncertainty for the Rz value of standard 686sg are 2 ... 4 times greater than for Rmax in the case of CGM, NMi-VSL, and NPL. On comparing this with the values for the different standards used, it is revealed that the uncertainty U increases in the case of Rzfrom the fine to the very coarse standard. But in the case of Rmax there is a decrease(!) from the coarse to the very coarse roughness standard. It seems that some contributions to the uncertainty of Rmax are estimated too small or that systematic effects exist which are not fully understood. This has to be clarified in future.

Roughness standard 686sg Rmax_i±U(Rmax_i), Rmax_{ref}±U(Rmax_{ref})(E_n<1)

Fig. 6: Plot of the Rmax values for the institutes. The blue line give the simple mean, the red line the reference value together with the expanded uncertainty (dashed).

Vgl U(Rz) u(Rmax)		CEM		CGM		Nmi-VSL		NPL	
Geom. Stand	ard		Rz	Rmax	Rz	Rmax	Rz	Rmax	Rz	Rmax
Rub	P114A/528-RS 5	value	1,575	1,588	1,60	1,61	1,592	1,604	1,636	1,703
		std. dev.	7	10	6	11	5	9	35,8	70,7
		Meas. Unc.	34,07	107,26	45	46	58	69	20,7	40,8
PTB	7070/PGN10	value	9,476	9,627	9,60	9,77	9,655	9,823	9,694	9,949
		std. dev.	39	60	34	84	44	56	43,9	95,2
		Meas. Unc.	181,9	735,21	70	84	127	151	25,4	55,0
PTB	8194/PGN3	value	3,091	3,113	3,07	3,09	3,097	3,118	3,192	3,391
		std. dev.	50,9	55,6	48	50	53	56	52,0	69,1
		Meas. Unc.	105,96	215,11	64	65	126	138	30,1	39,9
Roughn.stand	lard		Rz	Rmax	Rz	Rmax	Rz	Rmax	Rz	Rmax
very coarse	686sg	value	14,046	15,297	14,3	15,8	14,330	15,567	14,353	15,791
		std. dev.	195	47	326	91	272	36	305,1	120,7
		Meas. Unc.	189,75	1128,65	200	86	556	148	176,2	69,7
coarse	633g	value	7,397	8,743	7,45	8,88	7,464	8,905	7,485	9,027
		std. dev.	195	128	88	259	174	121	182,9	189,5
		Meas. Unc.	125,28	667,3	84	164	358	261	105,6	109,4
fine	629f	value	1,248	1,428	1,24	1,40	1,258	1,440	1,236	1,545
		std. dev.	45	99	41	91	26	33	57,1	83,9
		Meas. Unc.	102,85	224,6	51	69	85	103	33,0	48,5
SFRN 150	1.006	value	0,13329	0,1729	0,137	0,173	0,146	0,185	140,14	189,36
		std. dev.	4,5	16,6	6	8	9	23	4,57	12,79
		Meas. Unc.	31,45	36,99	29	29	59	81	3,06	7,5
				LI/Pmax)<			U(R	max(686sg))<	U(Rmax(633g)))

 Table 6:
 Comparison of Rz and Rmax of some selected institutes

8.3.2 PROBLEMS WITH RPK

A similar case is observed for the *Rpk* parameter.

Roughness standard 686sg Rpk_i±U(Rpk_i), Rpk_{ref}±U(Rpk_{ref})(E_n<1)

Fig 7a: Rpk parameter for the roughness standard 686sg

Roughness standard 633g Rpk_i±U(Rpk_i), Rpk_{ref}±U(Rpk_{ref})(E_n<1)

Fig 7b: Rpk parameter for the roughness standard 633g

Roughness standard 629f Rpk_i±U(Rpk_i), Rpk_{ref}±U(Rpk_{ref})(E_n<1)

Fig 7c: Rpk parameter for the roughness standard 629f

			CEM	CGM	METAS	Nmi-VSL	NPL	РТВ
Roughn.standa	ard		Rpk*	Rpk*	Rpk*	Rpk*	Rpk*	Rpk*
very coarse	686sg	value	1,275	1,21	1,26	1,276	1,251	1,20
		std. dev.	95	53	52	66	56,9	100
		Meas. Unc.	30 *)	64	83	132	32,9	24 **)
coarse	633g	value	0,733	0,70	0,88	0,732	0,869	0,70
		std. dev.	34	15	144	14	94,7	20
		Meas. Unc.	112 *)	56	99	33	54,7	14
fine	629f	value	0,133	0,137	0,137	0,134	0,136	0,132
		std. dev.	6	7	12	4	10,2	6
		Meas. Unc.	15	35	12	17	6,0	3
SFRN 150	1.006	value	0,0261	0,028	0,03	0,028	27,24	0,027
		std. dev.	1,17	3	3	2	4,77	1,3
		Meas. Unc.	27	14	3,5	15	3,05	1,4

Table 7: Rk parameter for various standards

*) In the case of the CEM the uncertainty of Rpk of standard 686sg becomes smaller than those of standard 633g although the standard deviation increases. This is the case for the NPL, too, but here the standard deviation decreases.

**) In the case of CEM and PTB the uncertainty U of the coarse roughness standard is much smaller than the standard deviation.

First the *Rk*-parameter can be measured on sample with *Rz* values of up to 1,5 μ m with good agreement. For example in the case of the CEM the uncertainty contribution amounts to approximately 5% of the *Rpk* value. Problems seem to occur for the coarse (*Rz* ~ 8 μ m) and the very coarse standard (*Rz* ~ 14 μ m). For example in the case of CEM the uncertainty amounts to 6,3% and 2,6% for the coarse and very coarse standard, respectively. As shown later the calculation of the *Rk* parameter gives some problems.

8.4 SUMMARY OF MEASUREMENT RESULTS

For the calculation of the reference value 12,8% of the 612 measurements have to be omitted. Fig. 8 shows the histogram of measurements failed for each group of parameters.

Failed (En>1) %

Fig. 8: Histogram of failed measurements based on results and expanded uncertainties. In the case of R parameters the histogram is based on measurements without SMU.

8.5 EVALUATION OF RESULTS FOR THE SOFTWARE GAUGES

Three data files were prepared by PTB for this test. The parameters are: *Ra*, *Rq*, *Rp*, *Rv*, *Rt*, *Rsk*, *Rz*, *RSm*, *Rmax*, and the *Rk* parameters *Rpk*, *Rk*, *Rvk*, *Mr1*, and *Mr2*. The values of λc and λs parameter should be set depending on the profile values (ISO 4288). The format of the software gauges is described in datasheet D5 and follows the rules given in ISO 5436-2¹⁰. Since this is a brand new standard not all instruments can read this format. Therefore some participants wrote conversion routines. Both facts could be reasons why only eight of the fourteen institutes provided results for the software gauges.

The data are given in tables in <u>Appendix D4</u>. The reference values were calculated using the certified software *RPTB* Version 1.02^{11} of PTB. This software is developed and proved at PTB¹². An example is given in fig. 9a - 9c.

Fig. 9a: Original, P-profile, R-profile, and W-profile

Fig. 9b: Abbott curve calculated from the *R*-profile and *R*-profile using the specific filter described in ISO 13565-1.

 ¹⁰ Comment of METAS "... the data in the soft gauge files is not exactly arranged according to the standard ISO 5436-2." See report of NMi-VSL "Notes on the analysis of software gauges", too. (Reports in Appendix B1).
 ¹¹ L. Jung et al., Proceedings of the EUSPEN 2001 May 2001, Turin, p.500 - 503

¹² TÜV Nord e.V *SEECERT* Certificate of Conformity DIN/ISO/IEC 12119, Registered No. H.SE.02.007.01.TLS

Fig. 9c: Density curves calculated from the P-profile, the R-profile and R-profile using the specific filter described in ISO 13565-1.

Table 8: Results obtained from software gauges 505.smd using the RPTB software ($\lambda c=0.8 \text{ mm}, \lambda s=2.5 \mu m, FFT$)

Values ISO 4287			
Thresholds:	<i>Lateral</i> = 1,00%	<i>Vertical</i> = 10,00 %	
$Rp = 498,266 \ nm$	Rz = 1245,91n m	$Rc = 467,65 \ nm$	Rsk = -0,222
$Rv = 747,64 \ nm$	$Ra = 187,02 \ nm$	$RSm = 30,30 \ \mu m$	Rku = 2,68
<i>Rmax</i> = 1421,99 nm	$Rq = 231,05 \ nm$	RDq = 0,0691	$Rt = 1424,69 \ nm$
Values ISO 13565-2			
With specific filter ISO	D 13565-1:		
$Rpk = 134,68 \ nm$	$Rk = 636,93 \ nm$	Rvk = 254, 13 nm	
<i>Mr1</i> = 7,72 %	Mr2 = 89,86%	$A1 = 5,20 \text{ mm}^2$	$A2 = 12,88 \text{ mm}^2$

For the further evaluation we calculated the differences between the results of the institutes and the reference values (see Appendix D4).

8.5.1 PROBLEMS WITH AMPLITUDE PARAMETERS

Some problems obviously occurred for the calculation of the *Rp*, *Rv* and *Rt* parameter. For example the data obtained from 505.smd for *Rp*, *Rv*, and *Rt* are listed in table 9. Fig. 10 shows the *Rt* values of the institutes.

Table 9: Data values for Rp, Rv and Rt and the difference Rt - (Rp+Rv)

Institute	Rp/nm	Rv/nm	Rt/nm	Rp+Rv /nm	Rt-(Rp+Rv) /nm
PTB	498,26	747,64	1424,69	1245,9	178,79
ILM	492	756	1248	1248	0
UME	520	780	1470	1300	170
METAS	510,7	725,7	1456,4	1236,4	220
CGM	520	782	1472	1302	170
SP	523,7	888,8	1412,5	1412,5	0
NPL	746	496	1422	1242	180
SMU	346	389	1430	735	695
NMi-VSL	509	724	1452	1233	219

¹³⁾ NPL: Rv= - 496 nm changed to Rv= 496 nm, because of sign error.

Independent of the sign error it seems that the values Rp and Rv are interchanged. The software of ILM and SP does not calculate Rt from the profile in the right manner. It seems to be calculated from mean Rp and Rv values of the evaluation length. But Rt is the maximum peak (Rp) to maximum valley height (Rv) of the profiles in the evaluation/assessment length.

Data files 505smd

Fig. 10: Plot of Rt values for data file 505.smd for the different institutes. The red line indicates the reference value (PTB).

To estimate the influence of the software analysis we used the mean standard deviation of the software results obtained for data file 505.smd. This was compared to the uncertainty of measurement obtained for standard 629f. This standard has a similar profile and Rz value. To reduce the effect of outliers the data set of one institute was not used to determine the mean standard deviation. The results are listed in table 10. The influence of using different software for the same data set results in differences of approximately 13,8 nm and 18,6 nm for Rz and Rmax, respectively. Also for other parameters like Rp, Rt or Rsk the deviations are too large (see <u>Appendix D4</u>).

Parameter	Ra /nm	Rz /nm	Rmax	Rk	Rpk	Rvk /nm	Mr1	Mr2
			/nm	/nm	/nm		/%	/%
mean value <i>Rx</i>	149	1252,14	1434,3	456,54	139,85	300,85	8,75	87,99
u _c (Rx)	12,74	39,61	61,03	19,03	14,38	18,27	0,68	1,2
Deviation by software w	ithout S	MU						
rel. mean standarddev.	0,6	1,1	1,3	2,7	1,3	1,3	7,4	0,4
∆ <i>Rx</i> /nm	0,9	13,8	18,6	12,3	1,8	3,9	0,6	0,4
∆ <i>Rx</i> /u _c (<i>Rx</i>) / %	7,0	34,8	30,6	64,8	12,6	21,4	95,2	29,3
excluding other (Rz,Rma	ax witho	out ILM)						
rel. mean stddev. / %	0,6	0,5	1,3	2,7	1,3	0,6	7,4	0,4
∆ <i>Rx</i> /nm	0,9	6,3	18,6	12,3	1,8	1,8	0,6	0,4
∆ Rx /u _c(Rx) / %	7,0	15,8	30,6	64,8	12,6	9,9	95,2	29,3

 Table 10:
 Influence of software on the uncertainty of results

This analysis shows that it is really important for accurate calibrations to have accurate instruments <u>and</u> accurate software. Therefore <u>both</u> have to be checked by appropriate means.

9 DEGREE OF EQUIVALENCE OF INSTITUTES

The *Degree of Equivalence* (DoE) of each laboratory with respect to the reference value is given by $DoE(y_{ir}, U_{ir})$ defined as:

$$y_{ir} = y_i - y_{ref}$$
 and $U_{ir} = 2*\sqrt{(u_i^2 - u_{ref}^2)}$. (12)

These values are stated in the tables in Appendix E for each standard and for each institute. The reference values and their uncertainties allow to calculate the *Degree of Equivalence* of each institute or each instrument. This value (respectively pair of values) gives information about the quality of the measurement in this comparison. Furthermore it also indicates what should be improved - the instrument and/or the uncertainty budget.

Plotting the data gives a plot like fig. 11. Here the red lines indicate where the expanded uncertainty is equal to the difference of the measured value to the reference value.

Fig. 11: Degree of equivalence for measurements

Fig. 12 shows the Degree of Equivalence for the 0,2 μ m groove of the depth setting standard. For other parameters see Appendix (<u>Degree of Equivalence</u>).

DoE Depth standard EN806 0,2 μm (En<1)

Fig. 12: Degree of equivalence for measurements of the Pt parameter on $En0806 \sim 0.2 \mu m$.

10 CONCLUSIONS AND REMARKS

The following conclusions are drawn from this comparison:

- It took 1 1/2 years from the decision to carry out this comparison until the Technical Report for the comparison was completed. This time was used to collect the data of all institutes which wanted to participate in the comparison. Also the decisions of which standards should be used and which parameters should be included into the comparison had been considered during this period.
- It took 2 years for the travelling of standards and measurements to be carried out at the laboratories until the first draft of the report could be issued. 15 institutes participated in this comparison. From the start of the comparison until Aug. 2002, the time schedule for the measurements, including transportation, was kept as planned. In the following, some delay occurred as it was necessary the check the standards at PTB (dust, scratches, etc., but no cleaning was necessary), and due to problems with ATA carnet, no response of one participant, and using new devices. The travelling ended 22 months after beginning (17 planned). The time table was adjusted for four participants. CEM interchanged with CMI, and SMU with SP. Thanks are due to J. Borovsky, CMI, and Mikael Frennberg, SP, for helping us. Due to problems with the equipment during the first measurement time additional time was necessary for two institutes (CEM, NMi-VSL).
- This was an international comparison which checks the measurement of a large number of roughness parameters, which are used in the daily work. Therefore we extended the test to the *Rk*-parameters.
- Furthermore it is inevitable for national institutes to perform calibrations based on non ISO standards. For the industry it is important that such parameters can be calibrated with the same quality. For this reason we included the parameter *Rmax* which is based on the DIN 4787.
- Since most of the parameters are defined accordingly to more or less complex procedures the contribution of software is important. Therefore we included in the comparison a software test.
- For the calculation of the reference values 12,8% of the 612 measurements had to be omitted. The results of one institute were excluded completely. Big problems occur with the calibration of depth setting standard, the *RSm* parameter and with the more complex *Rk* parameters. While the last-mentioned demand a rather complex analysis, the former should be a standard technique in a surface texture laboratory. This is a result that was really not expected at the begin.
- The report shows further that it is really important for accurate calibrations to have accurate instrumentation <u>and</u> accurate software. Therefore <u>both</u> have to be checked by appropriate means.

11 REMARKS FROM THE PILOTS

A comparison should give a *snapshot* of the status of the measurement technique in the considered field. Therefore it is necessary to carry out a comparison and to report the results in short time to the participants. Afterwards all participants are invited to check their results and to discuss together in order to improve the knowledge about the measurement of surface texture.

This report is only at the beginning to find reasons for the failures. From the pilots point of view the time between the last measurements and this report was not sufficient to answer all questions. Therefore it would be helpful for each participant to examine their results and measurement processes in the light of this report, and seek explanations for any significant offsets of their results from those of other laboratories. Some questions to be answered are:

- What about the instrument (calibration, noise, ...)?
- What about the software used (effect of filters, enough data points measured,..)?
- What about the uncertainty budget?
- Are really all components of uncertainty included in the right manner?
- Are the estimated quantities sufficient?
- Although the instruments are slightly different: Is it possible to unify the calculation of the uncertainty budget?
- Are the descriptions in the written standards clear enough and do they allow to be transferred into a precise evaluation algorithm?

However we should try to maximise the scientific value of this comparison for the community, too. Therefore the pilots suggest to organise a small workshop with the participants of this comparison. This should improve the coincidence of results by improving instruments and software, having a better understanding of uncertainty and more precise definition of written standards.

12 ACKNOWLEDGEMENTS

The pilots would like to acknowledge the kind assistance and willingness to fund the necessary travel of all the colleagues involved for helping this comparison to run so smoothly. The four weeks time for measurement of all the standards and parameters were experienced by participants to be rather short. For future comparisons involving the same amounts of standards and parameters, two months are recommended. Thanks to those participants who were able to fulfil the measurements and the sending to the next participant within the expected time.

13 APPENDIX

Appendix A: Datasheets

Appendix A1: Datasheet 1 - Depth setting standard of type A2	
Appendix A2: Datasheet 2 - Roughness standards of type C3	
Appendix A3: Datasheet 3 - Roughness standards of type D1	
Appendix A4: Datasheet 4 - Roughness standard of type D2	
Appendix A5: Datasheet 5 – File format for software check	
	<u>back</u>
Appendix B: Reports of institutes	
Appendix B1: <u>Reports and comments</u>	
Appendix B2: Tables with measurement data	
Appendix B3: Tables with software data	
	<u>back</u>
Appendix C: <u>Stability of standards</u>	
	<u>back</u>
Appendix D: Diagrams and tables for the various roughness parameters	
Appendix D1: Depth setting standards A	<u>back</u>
Appendix D2: <u>Roughness standards type C</u>	<u>back</u>
Appendix D3: Roughness standards type D	<u>back</u>
Appendix D4: Software standards F1	<u>back</u>

Appendix E: Diagrams with the Degree of Equivalence (DoE)

- Appendix E1: Depth setting standards A
- Appendix E2: Roughness standards type C
- Appendix E3: <u>Roughness standards type D</u>

back

DATASHEET 1

1 DEPTH SETTING STANDARD OF TYPE A2

The calibration standard (Fig. 1) serves to refer the vertical roughness parameter to the SI unit of length.

Fig. 1. ISO 5426-1 type A2 depth setting standard with six grooves

The calibration standard is a polished plane glass plate of the dimensions 40 mm x 20 mm x 10 mm. The centre of the measurement surface is provided with 6 grooves. The grooves have the shape of circular arcs with a radius of 1,5 mm. The width of the measurement surface is 1,2 mm. The nominal depths of the grooves are the following:

The depths of the following grooves should be measured: 1, 3, 6.

2 MEASURANDS

Pt (ISO 4287:1997), *d* (ISO 5436-1:1998)

3 CONDITIONS OF MEASUREMENT

Tiedse, mit	icase, incon the stylus during trace back.									
Groove Number	Nominal value	Tracing length	Measuring force *)	Speed *) (mm/s)	Sampling spacing	Tip radius (μm)				
	(µm)	(mm)	(mN)		(µm)					
R1	0,2	0,3	< 1	≤ 0,1	≤ 0,5	2				
R3	1,5	0,5	< 1	≤ 0,1	≤ 0,5	2				
R6	8,0	1,0	< 1	≤ 0,1	≤ 0,5	2				

Please, lift off the stylus during trace back!

*) Please, try to use the conditions mentioned as close as possible, and check your stylus instrument according to the standards carefully!

4 AREA OF MEASUREMENT

Fig. 2. A2 depth setting standard and profile sections

DATASHEET 2

1 ROUGHNESS STANDARD OF TYPE C3

These specimens are primarily intended for checking vertical parameters. They have a grid of repetitive grooves of simple shape. In our case we will use standards with a sinusoidal profile. Amplitude and period depends on the standard (see below). They are used to calibrate the lateral properties of stylus instruments, too.

The roughness standards are made from glass or stainless steel. The dimensions of the specimens are given below.

2 MEASURANDS

Ra, Rz, RSm (ISO 4287:1997) and *Rmax* (DIN 4768:1990)

The parameter *Rmax* is described in DIN 4768:1990 as the largest maximum height of profile (Rz) within the evaluation length.

3 CONDITIONS OF MEASUREMENT

Phase correct profile filter according to ISO 11562:1996 must be used.

Specimen	Evaluation	λc	λs	Measuring	Speed *)	Sampling	Tip
	length			force *)	(mm/s)	spacing	radius
	(mm)	(µm)	(µm)	(mN)		(µm)	(µm)
7070	12,5	2500	8	< 1	≤ 0,5	≤1,5	2
8194	4,0	800	2,5	< 1	≤ 0,5	≤ 0,5	2
P114A	1,25	250	2,5	< 1	≤ 0,5	≤ 0,5	2

*) Please, try to use the conditions mentioned as close as possible, and check your stylus instrument according to the standards carefully!
4 AREAS OF MEASUREMENT

A) ROUGHNESS STANDARD 7070

B) ROUGHNESS STANDARD 8194

C) ROUGHNESS STANDARD P114A

4/4

DATASHEET 3

1 ROUGHNESS STANDARDS OF TYPE D1

The roughness standards (Fig. 5) serve to calibrate and verify the complete contact stylus instrument, from the stylus to the indicating device.

Fig. 5: Roughness standard with irregularly profile

The roughness standards are made from hardened, stainless steel of the dimensions 40 mm x 20 mm x 10 mm. They have an irregularly ground profile which is repeated every 4 mm in the longitudinal direction of the standard. Normal to the direction of measurement, the grooves produced on the measurement have a constant profile form within the area of the matt boundary surfaces.

The set used for the comparison consists of 3 roughness standards with the following nominal values (in μ m):

Ra :	0,2	/	1,5	/	2,5
R z:	1,5	/	8,5	/	14

The uniformity of the roughness standards is given by the standard deviation s < 3% found in 12 measurements of *Ra* and *Rz*.

2 MEASURANDS

Ra, Rz (ISO 4287:1997) *Rmax* (DIN 4768:1990), *Rpk, Rk, Rvk, Mr1, Mr2* (ISO 13565-2:1996) (mandatory with λ s and optional if possible without λ s)

The parameter *Rmax* is described in DIN 4768:1990 as the largest maximum height of profile within the evaluation length.

3 CONDITIONS OF MEASUREMENT

Phase correct profile filter according to ISO 11562:1996 must be used.

Specimen	Evaluation length (mm)	λc (μm)	λs (μm)	Measuring force *) (mN)	Speed *) (mm/s)	Sampling spacing (µm)	Tip radius (µm)
		-	-				
629f	4,0	800	2,5	< 1	≤ 0,5	≤ 0,5	2
633g	4,0	800	2,5	< 1	≤0,5	≤ 0,5	2
686sg	12,5	2500	8	<1	≤ 0,5	≤ 1,5	2

*) Please, try to use the conditions mentioned as close as possible, and check your stylus instrument according to the standards carefully!

4 AREAS OF MEASUREMENT

Meßstellenplan für PTB-Rauhnormale (g, m, f), 2

starting points of the evaluation lengths in mm from the starting line scale 5:1

Meßstellenplan für PTB-Rauhnormale (gg), 1

Startpunkte der Meßstrecken in mm von Startlinie

starting points of the evaluation lengths in mm from the starting line

Maßstab 5:1 scale 5:1 $\lambda_{c} = 2.5 \text{ mm}$

DATASHEET 4

1 ROUGHNESS STANDARD OF TYPE D2

The superfine roughness standard (Fig. 6) consists of a flat turned cylinder of copper coated with a layer of chemical deposited nickel of amorphous structure. The hardness was determined to 550 HV which is comparable with that of the steel roughness standards. By turning in an ultra precision turning machine, the profile in the flat circle is produced by a controlled movement of a single diamond tip with a radius of 5 μ m and tip angle of 60°. This gives a profile that avoids the short and little reproducible wavelengths of the usual ground specimens. The repetition length is 1,25 mm in accordance with the specification for standards of type D2 with a roughness given below.

Fig. 6: Superfine roughness standard

A set consists of 3 superfine roughness standards with the following nominal values (in nm): R_z : 150 / 300 / 450 For the comparison we will use the standard with a nominal value of $R_z = 150$ nm.

2 MEASURANDS

Ra, Rz (ISO 4287:1997) *Rmax* (DIN 4768:1990), *Rpk, Rk, Rvk, Mr1, Mr2* (ISO 13565-2:1996) (using λs)

The parameter Rmax is described in DIN 4768:1990 as the largest maximum height of profile (Rz) within the evaluation length.

3 CONDITIONS OF MEASUREMENT

Phase correct profile filter according to ISO 11562:1996 must be used.

Specimen SF150	Evaluation length (mm)	λc (μm)	λs (μm)	Measuring force *) (mN)	Speed *) (mm/s)	Sampling spacing (µm)	Tip radius (µm)
1.006	1,25	250	2,5	< 0,6	≤ 0,1	≤ 0,5	2

*) Please, try to use the conditions mentioned as close as possible, and check your stylus instrument according to the standards carefully!

4 AREA OF MEASUREMENT

 $n = 4 \times 3 = 12$ intersection planes

1. Datasheet D5

1.1. Reference Data of Type F1

Reference data are computer data files which represent the total profile in suitable recording medium, a 1,44 MB FD or CD in this case. These data are used to test software by using them as input data into the software.

1.2. Softgauge file format

1.2.1. General

The softgauge file format used in this case is a subset of the softgauge file format specified in ISO 5436-2:2000.

The file extension of this file protocol is . smd. The file protocol for the softgauge is divided into four separate sections or records. Each record is composed of lines of information and within each line there are various "fields" in which the information is coded. The file format is in **seven bit ASCII character code**.

Each line is terminated by a carriage return, (<cr>), and line feed, (<lf>). This is MSDOS typically.

Each record is terminated by an end of record, (<ASCII 3>), with a carriage return, (<cr>), and line feed,(<lf>). The last record is also further terminated by an end of file, (<ASCII 26>). For each field the separator is at least one white space.

1.2.2. Record 1 - header

The first record contains a fixed header including the following information: The revision of the softgauge file format. The file identifier. The GPS feature type, number and name of the stored feature - axis information. The number of data points in the profile. The scaling of the data points. The resolution of the data points.

The first line of record 1 contains 2 fields: The_revision_number, and; File_identifier.

Table 1 contains valid options for these fields.

field name	valid options	type	comments
revision	'ISO 5436 – 2000'	string ASCII	
file identifier	<filename and<br="" extender="" without="">path></filename>	string ASCII	must be unique

The second line of record 1 contains 3 fields: Feature_type, and; Feature_number, and; Feature_name.

Table 2 contains valid options for these fields.

Table 2

field name	valid options	type	comments
feature type	'PRF'	string ASCII	only profile data are
			allowed
feature number	0	unsigned integer	reserved for future use
feature name	'PTB_2d_k' or	string ASCII	'PTB_2d_k' is used for
			cartesian data,
	'PTB_2d_p'		'PTB_2d_p' is used for
			polar data

Each of the remaining lines of record 1 contains at least 6 fields: Axis_name, and; Axis_type, and; Number_of_points, and; Units, and; Scale_factor, and; Axis_data_type.

A seventh field, containing the incremental value is added if the axis type is incremental. Each axis in the softgauge has a line allocated to it. Thus for a profile there will be 2 remaining lines one for the X-axis and one for the Z-axis. Table 3 contains valid options for these fields.

Table 3

field name	valid options	type	comments
axis name	'CX' 'CZ' 'PR' 'PA'	string ASCII	Cartesian X axis Cartesian Z axis polar Radius polar Angle
axis type	'A' 'I' 'R'	unsigned char	absolute data incremental data relative data
number of points	n	unsigned long integer	number of data points
units	ʻm' ʻmm' ʻum' ʻnm'	string ASCII	metres millimetres micrometres nanometres
scale factor	normally 1.0e0	double	scale to indicated units (scientific notation)
axis data type	"I' "L' "F" 'D'	unsigned char	integer long integer float double
incremental value (axis type I only)		double	value of the increment

Example of record 1: ISO 5436 - 2000<0>RN505<0><cr><lf> PRF<0> 0 PTB_2d_k<0><cr><lf> CX<0> A 11200 um<0> 1.0e0 D<cr><lf> CZ<0> A 11200 nm<0> 1.0e0 D<cr><lf> <3><cr><lf>

1.2.3. Record 2 - other Information

The second record must contain some information, some other are mandatory. This information shall start with a key word. The following list of examples is non-exhaustive and new keywords may be specified and used.

NOTE: Information contained in record 2 is intended for information only. However the information may be read and used by computers but it shall be possible to use the data without information from record 2.

Table 4: Examples of keywords in record 2

keyword	type	comments	mandatory
DATE	string ASCII	date of measurement	NO
TIME	string ASCII	time of measurement	yes
INSTRUMENT_ID	string ASCII	identification of measuring instrument (manufacturer and model)	yes
LAST_CALIBRATION	sting ASCII	date and time of last calibration	NO
PROBING_SYSTEM	see table 5	details of the probe used for the measurement	NO
COMMENT	string ASCII (must be delimited by '/*' and '*/'; C-comment style)		yes
OFFSET_mm	double	offset of the start of the measurement in mm from the origin	yes
SPEED	double	traverse speed in mm/s	NO
PROFILE_FILTER	see table 6		NO
PARAMETER_VALUE	see table 7		yes

Table 5: Fields of PROBING_SYSTEM option of record 2

	PROBING_SYSTEM	
probe identification	string ASCII	identification of probe type
probing_system_type	'contacting'	probing system which needs material contact
	'non_contacting'	probing system which does not need material contact
tip radius value	double	radius value
units	ʻm' ʻmm' ʻum' ʻnm'	metres millimetres micrometres nanometres
tip angle	double	angle of the spherical portion of the probe in degrees

Table 6: Fields of FILTER option of record 2

	FILTER	
filter type	'gauss' 'dft' 'fft'	Type of implementation of ISO 11562:1996
	'2rc' 'spline' 'motiv'	2RC-filter spline-filter motif filter according to ISO 12085:
λ s cutoff value	`Ls'<32>double	Value of λs in μm in scientific notation

λc cutoff value	`Lc'<32> double	Value of λc in mm in scientific notation
motif_A	`MA'<32>float	value of A according to ISO 12085
motif_B	`MB'<32>float	value of B according to ISO 12085

Table 7: Fields of PARAMETER_VALUE option of record 2

	PARAMETER_VALUE	
parameter name	string ASCII	Example 'Wq'
parameter value	double	value of the parameter
units	'm'	metres
	'mm'	millimetres
	'um'	micrometres
	'nm'	nanometres
uncertainty	double	uncertaity calculated
		according to GUM

```
Example of record 2:
```

```
DATE 21 November 2000<0><cr><lf>
TIME 11:57 AM <0><cr><lf>
CREATED_BY PTB<0><cr><lf>
INSTRUMENT_ID TEST Type A<0><cr><lf>
INSTRUMENT_SERIAL AAA0001 <0><cr><lf>
LAST_CALIBRATION 1 April 2000 <0><cr><lf>
PROBING_SYSTEM FTK50<0>contacting 2.0 um<0> 90.0<cr><lf>
COMMENT /* This is a comment */<0><cr><lf>
OFFSET<0>1.0 <cr><lf>
SPEED<0>0.5 <cr><lf>
PROFILE_FILTER FFT Ls<32>0.25e+1 Lc<32>0.8e+0<cr><lf>
<3><cr><lf>
```

1.2.4. Record 3 - data

The third record contains the data. Each axis, defined in record 1, that is not an incremental axis will require data.

The data in record 3 is written in blocks in the order that the axes are defined in record 1. Each line of record 3 relates to a single data value. It contains 1 field: Data_value.

Multiplication of the data value by the scale factor contained in record 1 gives the value in the units specified in record 1.

NOTE The data in record 3 are raw data and have not been adjusted after a calibration. Example of record 3:

1.2.5. Record 4 - checksum

This record contains a checksum for the data contained in records 1, 2 and 3. Checksums are used to maintain data integrity.

The checksum is obtained by summing all the individual bytes (including <cr>, <lf> end of records etc.) values over records 1, 2 and 3 to an unsigned long integer, Modulo 65535.

```
Example of record 4:
23243<cr><lf>
<3><cr><lf>
<26>
```

Nearacts

We will provide for the software comparison three data sets. Depending on the data set some of the following parameters should be determined: *Ra, Rq, Rz, Rt, Rp, Rv, Rsk, Rku, RSm, Wt, Pt* (ISO 4287:1997) *Rmax* (DIN 4768:1990), *Rpk, Rk, Rvk, Mr1, Mr2* (ISO 13565-2:1996)

THE PARAMETER *RMAX* IS DESCRIBED IN DIN 4768:1990 AS THE LARGEST MAXIMUM HEIGHT OF PROFILE (*RZ*) WITHIN THE EVALUATION LENGTH.

Appendix B1 - REPORTS OF INSTITUTES

- 1. <u>BEV</u>
- 2. <u>CEM</u>
- 3. <u>CGM</u>
- 4. <u>CMI</u>
- 5. <u>GUM</u>
- 6. <u>ILM</u>
- 7. <u>IMGC</u>
- 8. <u>IPQ</u>
- 9. <u>METAS</u>
- 10. <u>MIKES</u>
- 11. <u>NMi-VSL</u>
- 12. <u>NPL</u> and <u>Appendix</u>
- 13. <u>PTB</u>
- 14. <u>SMU</u>
- 15. <u>SP</u>
- 16. <u>UME</u>

Comments of participants regarding their measured values

COMMENTS OF PARTICIPANTS REGARDING THEIR MEASURED VALUES

CEM

At page 25/33, in Table 7, the comments on our results are true, but it is a little bit difficult to investigate on why such values. Because the existence of other uncertainty components, even when increasing the standard deviation, it is possible to get lower final uncertainty.

The contribution of the standard deviation is very small because it is divided by the number of measurements and this number may be different on different standards. Moreover, the A1 type standard used for adjusting the measurement equipment has different uncertainty depending on the value to be measured and this is another important contribution to the final uncertainty.

With respect to the comment at the end of the paragraph 8.3.2 it would be necessary to investigate much more on this item but unfortunately we did not have to much time to do it.

CGM

We have some comments to our results which we would like to be added to our report.

Our result for the RSm parameter did all come out too small in the report. They were computed by our own developed software RCS4G version 2.0. An investigation of the applied algorithm showed us that there was a systematic error in the calculation of the length of the first profile element. By removing the first profile element from the calculation we obtain the following values for RSm.

RSm values computed with the software after correction:

7070 /PGN 10:	RSm = (199960 +/- 1376) nm
8194 PGN 3:	RSm = (119990 + - 1125) nm
P114A:	RSm = (50036 + -648)nm

Fortunately this has not given us any problems as replacing of customer certificates since we have not been making any with RSm using version 2.0.

Concerning the results we are surprisingly having problem with the coarse type C standard 7070/PGN10 when measuring Rz but not Rzmax. We have no explanation for this at the moment.

CMI

We have found two errors in our measurement report.

1) Depth standard EN 806 R1 0,2 µm.

By mistake we reported the value of our reference standard: 195 nm. The value we measured on Depth standard EN 806 R1 0,2 μ m was: 325 nm. The corrected measurement report is attached.

2) the similar mistake we did in the case of Roughness standard 686sg.

By mistake we reported the value of our reference standard

Rz: 13597 nm and Rmax: 15328 nm . The value we measured on Roughness standard 686sg was Rz: 14115 nm and Rmax: 15649 nm. The corrected measurement report is attached.

ILM/ISTEC

Comment to our report added after Draft A was published:

Comparing our results with the reference values of Draft A we found that the parameter Ry provided by our instrument using a software based on ISO 4287:1984 is a better approach to Rmax then Rt.

Therefore our new values for type C,D standard are:

Geom. Stan- dard			(Rmax) Rt	(Rmax) Ry
Rub	P114A/528-RS 5	value	1,609	1,605
		std. dev.	12	13
		Meas. Unc.	65	65
РТВ	7070/PGN10	value	9,767	9,766
		std. dev.	66	70
		Meas. Unc.	391	391
PTB	8194/PGN3	value	3,112	3,105
		std. dev.	51	53
		Meas. Unc.	125	124

Roughn.s	tandard		(Rmax) Rt	(Rmax) Ry
very coarse	686sg	value	15,568	15,531
		std. dev.	40	43
		Meas. Unc.	778	777
coarse	633g	value	8,842	8,821
		std. dev.	91	97
		Meas. Unc.	442	441
fine	629f	value	1,512	1,359
		std. dev.	49	29
		Meas. Unc.	76	68
SFRN 150	1.006	value	0,2030	0,1960
		std. dev.	15	24
		Meas. Unc.	12	12

Uncertainty budget doesn't need a new calculation.

IPQ

At page 18/33 we try to answer at your comments about our reported values concerning the Pt and D parameters. With our measuring system we can not measure without the use of one lc filter. Like you say in the report, the use of this filter would strongly influence the profile of the depth setting standard and looking for the position of ours results on the tables of the appendix D1 (results of Pt parameter) we can see that IPQ values are always bigger than the mean. So, perhaps, with the impossibility to remove the lc filter, we are introducing a systematic error. Is not possible, for us, at this moment made a new revaluation of the values, because we do not know what will be the better solution (software or mathematical analyse) to treat the values.

This was the first time that we measure and evaluate this type of standards (Depth setting standards) so this comparison was very important for studying the proceeding of measurement and evaluation of the values.

METAS

To our surprise in a few cases there occurred larger deviations (which even resulted in the failure of the En-criteria) of the following parameters: Pt and D for the R1 and R3 groove of the depth setting standard EN 806 and the RSm values for the roughness standards, type C. As indicated in the measurement report A3, METAS used styli with 60 mm and 20 mm arm length for the measurements. Since the difference of the two styli was well within the given uncertainty range and the fact that the stylus with 60 mm arm length is used for most calibration services, the results given in the report were all from the 60 mm stylus. Unfortunately we found out, that measurements with this stylus contained more noise than the ones obtained with the 20 mm stylus. We underestimated the contribution of noise (which is more significant for small groove depths and maybe not the same everyday) in the uncertainty assessment. On the other hand we would like to indicate the results obtained with the 20 mm stylus would have agreed well with the reference value:

EN 806:

R1: Pt = (292 ± 19) nm; D = (288 ± 19) nm R2: Pt = (1375 ± 40) nm; D = (1370 ± 40) nm

Our values of the RSm parameters in the report were all computed by the software package Ultra Version 6 except for the RSm value of the data file 7080.SMD where the evaluation was done using our own METAS software (LabView program).

The RSm value for the data file 7080 shows no significant deviation from the reference value (PTB). Evaluating the measured RSm parameters for the roughness standard 7070 / PGN 10 with the METAS software (instead of using UltraVersion 6) leeds to values with much smaller deviations from the reference value. It seems therefore, that Ultra Version 6 does not calculate RSm parameters correctly in some cases while it does sometimes in other cases (see also the strange grouping of values in fig. 5).

 RSm values computed with METAS software:

 7070 / PGN 10:
 RSm = $(199'987 \pm 70)$ nm

 8194 PGN 3:
 RSm = $(119'955 \pm 52)$ nm

 P114A:
 RSm = $(50'044 \pm 28)$ nm

Shortly after METAS had made the measurements for the comparison we began to use only values calculated with our own software for certificates.

The implementation of the RSm value seems to be a general problem, as e. g. discussed in: "Ambiguities in the definition of spacing parameters for surface-texture characterization", Richard K Leach and Peter M Harris, Meas. Sci. Technol. 13 (2002) 1924–1930.

NMi-VSL

What we have done so far is to check all relevant measurement data and the uncertainty contributions derived for this comparison. In our case two values were, based on the En critirion, excluded for the calculation of the reference values: Pt for the EN806 depth standard and Rmax for the 686sg roughness standard. After examining the measurement data and the uncertainty calculation for these parameters and we were not able to find any irregularities. However, since Pt is strongly influenced by noise one might argue that we have estimated the uncertainty contribution due to noise a bit on the low side. For Rmax we have measured an exceptionally low standard deviation on the 686sg standard and therefore a low overall measurement uncertainty. This seems to have been measured also by other contributers. So far we can not explain this effect other than that it might be the standard itself.

When looking at the results of the software standards it is surprising to see the variance in the results and in other cases the good agreement without matching the PTB reference value. This might be a starting point for a discussion with the software suppliers in order to reach agreement on the correct implementation on the calculation of the various parameters.

NPL

Please find attached the amended Euromet 600 results.

The following changes were required:

Type A - we found that to calculate Pt we need to level the profiles in a different manner to when we calculate d. We had not come across this, as we never have been asked to quote Pt. Type C and D - our filter was not operating correctly as NanoSurf IV does not have a uniform sampling rate. This problem is now fixed but it meant that we had to re-analyse the data. Type F1 - NanoSurf IV requires a *(-1) multiplier. The softgauges do not, so we have had to re-analyse the data.

(Table see below)

Depth standa	rd		Pt	D					lambda-c	lambda-s	Speed
	EN 806								mm	μm	mm/s
R1	0,2 µm	value/µm	0,295	0,283							0,009
		std. dev./nm	3,0	2,8							
		U/nm (k=2)	3,3	7,0							
		D of F	8,9	47,8							
R3	1,5 µm	value/µm	1,375	1,365							0,009
		std. dev./nm	5,4	3,3							
		U/nm (k=2)	5,2	6,2							
		D of F	5,3	38,2							
R6	8 µm	value/µm	8,365	8,351							0,02
		std. dev./nm	15,9	6,3							
		U/nm (k=2)	14,4	11,6							
		D of F	4,1	37,5							
Geom. Standard			Ra	Rz	Rmax	RSm					
Rub	P114A/528-RS 5	value/µm	0,504	1,583	1,591	50,067			0,25	2,5	0,04
		std. dev./nm	1,6	4,5	13,0	19,9					
		U/nm (k=2)	1,7	3,0	7,6	11,6					
		D of F	49,8	17,0	11,7	11,3					
РТВ	7070/PGN10	value/µm	2,951	9,625	9,780	200,049			2,5	8	0,09
		std. dev./nm	12,3	38,3	67,5	52,2					
		U/nm (k=2)	7,3	22,2	40,0	30,2					
		D of F	11,8	11,1	11,0	11,0					
РТВ	8194/PGN3	value/µm	0,900	3,080	3,097	120,030			0,8	2,5	0,09
		std. dev./nm	8,4	51,3	55,8	43,4					
		U/nm (k=2)	5,1	29,7	32,3	25,1					
		D of F	12,7	11,0	11,0	11,1					

Roughn.stand	lard		Ra	Rz	Rmax	Rk*	Rpk*	Rvk*	Mr1/%*	Mr2/%*	lambda-c	lambda-s	Speed
											mm	μm	mm/s
very coarse	686sg	value/µm	2,345	14,293	15,525	8,078	1,25	3,22	7,55	92,62	2,5	8	0,09
		std. dev./nm	20,7	301,4	46,8	202,3	52,4	303,8	0,81	0,75			
		U/nm (k=2)	12,1	174,1	27,1	116,9	30,3	202,6	1,40	1,39			
		D of F	11,3	11,0	11,1	11,0	11,0	8,0	53,6	52,7			
coarse	633g	value/µm	1,515	7,418	8,868	4,579	0,680	2,263	5,17	82,85	0,8	2,5	0,09
		std. dev./nm	2,1	153,3	126,4	72,4	34,6	54,2	0,29	0,89			
		U/nm (k=2)	1,8	88,6	73,0	41,9	20,1	31,3	1,33	1,42			
		D of F	38,8	11,0	11,0	11,0	11,1	11,0	46,4	54,5			
fine	629f	value/µm	0,148	1,234	1,410	0,451	0,136	0,297	9,87	87,66	0,8	2,5	0,09
		std. dev./nm	3,6	50,8	60,3	14,2	6,4	16,4	0,69	0,52			
		U/nm (k=2)	2,5	29,4	34,9	8,3	4,0	9,6	1,38	1,35			
		D of F	20,8	11,0	11,0	11,6	13,9	11,4	51,9	49,2			
SFRN 150	1.006	value/nm **	25,06	140,91	185,70	79,48	26,21	30,50	11,20	86,22	0,25	2,5	0,04
		std. dev./nm	0,63	4,52	14,97	6,14	3,36	4,13	1,78	1,44			
		U/nm (k=2)	1,37	3,02	8,74	3,79	2,35	2,72	1,67	1,56			
		D of F	51,3	16,6	11,5	14,2	22,3	18,4	46,5	53,4			
Data files		Ra	Rq	Rp	Rv	Rt	Rsk [#]	Rz	Rku [#]	Rsm	Rmax	Rpk	
			ISO 4287									DIN 4768	ISO 13565-2
file 1	xz7080	value/µm	0,424	0,484	0,754	0,721	1,484	0,010	1,475	1,680	99,825		
file 2	xz1001	value/µm	0,087	0,107	0,232	0,238	0,628	-0,160	0,470	2,710	66,135		
file 3	xz505	value/µm	0,187	0,230	0,498	0,748	1,425	-0,220	1,246	2,680	98,808		

*) ISO 13565-1

[#]) These parameters do not have units

**) Values for this artefact quoted in nm

SMU

Comments to the Draft 1 – Euromet #600

- Contact profilometer Talysurf 6 works with the programme TalyProfile 3.0.8, which was purchased in 2002 from the company Taylor-Hobson. Programme has it own parameters fixed, which can not be changed, since such a change might effect some other parameters (filtration). Our facility operates at the fixed value of speed 1 mm/s and this fact causes very quick sampling of surface points. In the case of parameters d – groove depth and standards of type D – random profile these have different parameters from the reference value.
- 2. Values of parameters Pt; RSm; Mr1 and Mr2 were measured by the instrument and their value has been influenced by the large speed of stylus
- 3. Error sources resulting from the fixed parameters of the measuring programme were not taken into account and our claimed uncertainties were underestimated.

In the following example are given parameters and results of calibration of the D type standard.

Owner of the standard:	PTB Braunsweig				
type :	D				
manufacturer:	PTB 99/49				
serial number:	686 sg				
nominal values :	Ra = 2.5 μ m; Rz = 14 μ m				
Conditions of measurement:					
temperature:	20.3 °C				
speed:	1 mm/s				
magnification:	5000 x				
points:	12500				
stylus tip radius	2 μm				
longth	$\lambda c = 2500 \ \mu m; \ \lambda s = 8 \ \mu m$				
length.	12,3 mm				

Parameters calculated on the profile Profile * Parameters calculated by mean of all the sampling lengthes. * A microroughness filtering is used, with a ratio of 2.5 µm. Roughness Parameters, Gaussian filter, 2.5 mm = 2.1 µm Ra Ra: Arithmetic Mean Deviation of the roughness profile. Rmax = 14.4 μm Rmax: Maximum Peak-to-Valley height of the sampling lengthes on the roughness profile. Rz = 12.8 µm Rz: Maximum Height of roughness profile. Rk Parameters (ISO 13565-2), 2.5 mm = 7.64 μm Rk: Kernel Roughness Depth. Rk 1.04 µm Rpk Rpk: Reduced Peak Height. = 2.97 µm Rvk Rvk: Reduced Valley Depth. MR1 = 6.99 % MR1: Upper Material Ratio. MR2 **=** 92.6 % MR2: Lower Material Ratio.

SP

We have the following comments regarding the results from SP.

1. Our software uses the wrong definition of the Rt parameter. We think therefore that our results for this parameter should not be used in the calculation of the reference values.

2. The deviation from the reference values of the parameters Rvk and Rpk in our case seem to be slightly dependent on the roughness of the surface. We have not yet found the reason for this, but we suspect it might be a software problem.

3. We have re-evaluated the uncertainty calculations for the parameters RSm, Mr1 and Mr2. In the case of RSm, we had underestimated the effect of the resolution of the x-axis. In the case of Mr1 and Mr2, we did not take into account the effect of truncation in the software. Please find the new values in the attached excel-sheet. We think it would be appropriate to include these new uncertainty-values in draft B of the report.

Geom. Sta	ndard		RSm
Rub	P114A/528-RS 5	value/µm	50,03
		std. dev./nm	11
		U/nm (k=2)	50
PTB	7070/PGN10	value/µm	199,94
		std. dev./nm	20
		U/nm (k=2)	51
PTB	8194/PGN3	value/µm	119,98
		std. dev./nm	33
		U/nm (k=2)	54

Roughn.sta	andard		Mr1/%*	Mr2/%*
very coarse	686sg	value/µm	6,6	93,6
		std. dev./nm	1,3	0,5
		U/nm (k=2)	2,1	2,0
coarse	633g	value/µm	6	81,6
		std. dev./nm	0,9	0,9
		U/nm (k=2)	2,1	2,1
fine	629f	value/µm	8,4	88,1
		std. dev./nm	0,8	0,8
		U/nm (k=2)	2,1	2,1
SFRN 150	1.006	value/µm	10,8	87,4
		std. dev./nm	1,3	1,9
		U/nm (k=2)	2,1	2,3

UME

(Only part of the comment related to changes of the uncertainty)

1) We calibrated our roughness instrument by using PTB calibrated depth setting standard with six grooves. We used only the deepest groove (Pt = 9870 and D = 9820 nm). The relative uncertainty is % 0.305 . Our uncertainty for R6 groove (D = 8363 nm) of the depth standard EN 806 is 25.6 nm, our relative uncertainty is % 0.306 (Section 3.1–3.3, P:8–10 in UME Report Appendix B1 in Draft A) . As can be seen, our relative uncertainty in the comparison is equal to the uncertainty of our reference standard. This is caused by an error in the uncertainty model used for D parameter. In the model, z values of measured profile were being averaged according to the assumption of randomly distributed z-values. We applied this for the uncertainty of reference standards as well as for our measurements on the sample. But Dr. Koenders explained that the uncertainty of our reference standard was systematic not random. So we can not apply averaging for the uncertainty of reference standard. The corrected uncertainty equations and the budgets for D parameters can be seen in the attachment. According to the equations in the attachment, uncertainties for D parameters were recalculated. The results are as following:

Groove R1 (D = 282 nm), U(D) = 20.2 nm (k = 2) Groove R3 (D = 1364 nm), U(D) = 24.4 nm (k = 2) Groove R6 (D = 8363 nm), U(D) = 70.8 nm (k = 2)

2) We calculated the uncertainty only for Rz parameter (Section 3.7–3.13, P:14–20 in UME Report Appendix B1 in Draft A). And we used this calculated absolute uncertainty for Ra and Rz1max in order to be on a safe side, because background noise level is high in our laboratory (Rzo = 33nm). But our uncertainties for Ra parameters seem very large when compared to other countries in the comparison. So we think that two uncertainty contributions should be changed in the budget. One of them is the systematic deviation (the difference between UME and PTB) and the other is standard deviation of the parameter on the surface. The systematic deviation may be calculated for Ra instead of Rz. Standard deviation of Ra may be used instead of Rz on the surface. The corrected model equation, the uncertainty equation and the budget can be seen in the attachment. According to the equations in the attachment, uncertainties for Ra parameters were calculated. The results are as following:

Geometric Standard P114A	(Ra = 505 nm),	U(Ra) = 20.0 nm (k = 2)
Geometric Standard 7070	(Ra = 2978 nm),	U(Ra) = 46.0 nm (k = 2)
Geometric Standard 8194	(Ra = 901 nm),	U(Ra) = 25.2 nm (k = 2)
Roughness Standard 686sg	(Ra = 2346 nm),	U(Ra) = 73.4 nm (k = 2)
Roughness Standard 633g	(Ra = 1533 nm),	U(Ra) = 30.8 nm (k = 2)
Roughness Standard 629f	(Ra = 147 nm),	U(Ra) = 20.0 nm (k = 2)
Roughness Standard 1.006	(Ra = 24 nm),	U(Ra) = 19.4 nm (k = 2)

Appendix B1

Reports of BEV

A3 – MEASUREMENT REPORT

Description of the measurement methods and instruments

The groove depths were measured using an rather old inverse interference microscope of the Linnik type (see figure). A Tl-spectral lamp was used as the light source. Two objectives have been used ($10 \times$ and $25 \times$) under different numerical apertures (0.04 to 0.28); NA-corrections were applied to the data. The samples have been measured under different orientations, wedge angles, and positions. Only the "D" parameter was measured.

The interferogramms were processed as usual (zero-padded, fast-Fourier-transformed, filtered in the vicinity of the relevant spatial frequencies, back-transformed to phase image modulo 2π) using a general purpose computer program (IDEA, <u>http://optics.tu-graz.ac.at/optics/</u>). The so processed images have been measured manually to get the relevant fringe fractions. The fit applied to the groove is not exactly according to ISO 5436, this is accounted for in the uncertainty budget.

Although it is possible to get the integral part of the fringes using these images or the respective white light interferogramms, groove R6 was also checked with a stylus instrument (Taylor-Hobson Talysurf 3). Only a single profile was recorded to save the artefact from scratching.

Fig. 1: used microscope

Laboratory: BEV

Date: 14. 12. 2001

Signature:

Appendix B6 - Reports of BEV

.....

A4 - Uncertainty of measurement

Equation used:

$$d = k \cdot \frac{\lambda}{2} \cdot (F + f) + \delta_{\text{rand}} + \delta_{\text{fit}} + \delta_{\text{form}}$$
 with $f = \frac{b}{a}$

where:

k	aperture correction factor *)
λ	wavelength (535.046 nm)
F	integral part of fringes
a	distance of two fringes (treated as a length reading)
b	deviation of two fringes (treated as a length reading)
f	fringe fraction: f = b/a *)
$\delta_{ m rand}$	random error, for computational reasons separated from f^{*})
$\delta_{ m fit}$	contribution from the difference in the fit algorithm applied (BEV vs. ISO 5436)
$\delta_{ m form}$	form deviation of groove

*) the uncertainty contributions for these quantities have been evaluated as an appropriate mean of the uncertainties for the individual measurements. For this reason the probability distributions are not of the simple type as anticipated in the footnote of the table.

The aperture correction factor was calculated according to VDE/VDI 2604 from the opening angle. Its uncertainty is taken from the uncertainty of the determination of this angle and a contribution for a possible inhomogenous illumination field.

For $u(\delta_{\text{fit}})$ we use the following estimate for cylindrical grooves: 0.005·*d* (rectangular distribution).

 $u(\delta_{\text{form}})$ is set to the standard deviation of the individual measurements.

quantity X_{i}	estimate x_i	uncertainty $u(x_i)$	probability distribution	sensitivity coefficient	uncertainty contribution	degrees of freedom
1	1			c _i	$u_{\rm i}(d)$	v_{i}
k	1.0003 1.0200	0.00015 0.00165	~N	285.0 nm	0.3 nm *)	8
λ	535.046 nm	0.01 nm	R	0.52	0.0 nm	~
F	1	0	exact			
a	7 to 40	0.29	R	used in the calculation of $u(f)$		8
b	0 to 5	0.29	R			∞
f	0.04	0.013	~T	267.5 nm	3.5 nm *)	8
$\delta_{ m form}$	0 nm	3.5 nm	Ν	1	3.5 nm	9
$\delta_{ m rand}$	0 nm	2.6 nm	Ν	1	2.6 nm *)	60
$\delta_{ m fit}$	0 nm	0.8 nm	R	1	0.8 nm	~

Step height standard with a nominal height of 200 nm: identification R1

For the type of probability distribution please use: N = normal; R = rectangular; T = triangular; U = U-shaped. *) see explanation on the first page

Combined standard uncertainty:	$u_c(d) =$	5.7 nm	
Effective degree of freedom:	$v_{\rm eff}(d) =$	52	
Expanded uncertainty: k=2.04	U(d) =	12 nm	with a coverage factor

Laboratory: BEV

Date: 14. 12. 2001 Signature:

4/6

quantity X_{i}	estimate x_i	uncertainty $u(x_i)$	probability distribution	sensitivity coefficient	uncertainty contribution	degrees of freedom
1	1			c _i	$u_{\rm i}(d)$	v_{i}
k	1.0003 1.0200	0.00015 0.00165	~N	1366 nm	1.4 nm *)	8
λ	535.046 nm	0.01 nm	R	2.53	0.0 nm	~
F	5	0	exact			
а	8 to 42	0.29	R	used in the calculation of $u(f)$		8
b	0 to 4	0.29	R			∞
f	0.05	0.015	~T	267.5 nm	3.9 nm *)	8
$\delta_{ m form}$	0 nm	3.8 nm	Ν	1	3.8 nm	6
$\delta_{ m rand}$	0 nm	3.3 nm	Ν	1	3.3 nm *)	40
$\delta_{ m fit}$	0 nm	3.9 nm	R	1	3.9 nm	~

Step height standard with a nominal height of 1500 nm: identification R3

For the type of probability distribution please use: N = normal; R = rectangular; T = triangular; U = U-shaped. *) see explanation on the first page

Combined standard uncertainty:	$u_c(d) =$	7.6 nm	
Effective degree of freedom:	$v_{\rm eff}(d) =$	69	
Expanded uncertainty: k=2.0	U(d) =	15 nm	with a coverage factor

Laboratory: BEV

Date: 14. 12. 2001 Signature:

quantity X_i	estimate x_i	uncertainty $u(x_i)$	probability distribution	sensitivity coefficient	uncertainty contribution	degrees of freedom
				c _i	$u_{\rm i}(d)$	v_{i}
k	1.0003 1.0037	0.00015 0.00050	~N	8357 nm	2.2 nm *)	8
λ	535.046 nm	0.01 nm	R	15.7	0.2 nm	8
F	31	0	exact			
а	4 to 50	0.29	R	used in the calculation of $u(f)$		8
b	0 to 10	0.29	R			8
f	0.2	0.03	~T	267.5 nm	8.5 nm *)	8
$\delta_{ m form}$	0 nm	12.6 nm	Ν	1	12.6 nm	11
$\delta_{ m rand}$	0 nm	5.5 nm	N	1	5.5 nm *)	70
$\delta_{ m fit}$	0 nm	24.2 nm	R	1	24.2 nm	8

Step height standard with a nominal height of 8000 nm: identification R6

For the type of probability distribution please use: N = normal; R = rectangular; T = triangular; U = U-shaped. *) see explanation on the first page

Combined standard uncertainty:	$u_c(d) =$	29 nm	
Effective degree of freedom:	$v_{\rm eff}(d) =$	271	
Expanded uncertainty: k=2.0	U(d) =	58 nm	with a coverage factor

Laboratory: BEV

Date: 14. 12. 2001 Signature:

Appendix B1 Reports of CEM

Comparison of Surface Texture Measurements EUROMET Project: 600

Results obtained by

Stylus Profiler

Emilio Prieto 17th October 2002

THIS PAGE INTENTIONALLY

LEFT BLANK

Description of the measurement instrument:

For all measurements it was used a commercial moving stylus profiler **Perthometer Concept** from MahrTM. This instrument works according to the standardized profile method, following the corresponding ISO written standards. It was also used a high precision drive unit PRK and skidless pick-ups with radii indicated in the technical protocol of the comparison.

Isolated measurement area and table along with strict and stable ambient conditions.

To obtain and analize data it was used the Perthometer software plus a Talymap Universal 2.0.

Measurement Method:

There were measured several significant profiles distributed on the standard according to the instructions of the technical report for the different standards.

Vertical amplification of the instrument always adjusted by means of a depth setting standard type A1 with a certified value close to the nominal d/Pt (steps/grooves) or Rz (roughness) value of the standard to be measured.

Noise influence evaluated by measuring parameters on a flat glass with the same measurement conditions established as for the different standards.

Before measurements, alignment of the measurement plane of the step/standard with respect to the reference surface, in order to obtain the best internal alignment of all profiles.

Measurement results and uncertainty evaluation following GUM document after applying ANOVA method in order to identify and quantify random individual effects.

THIS PAGE INTENTIONALLY

LEFT BLANK

Measurement Report (DATASHEET 1)

Depth setting standard type A2

Measurement conditions (for Groove R1):

According to the technical protocol

- Nominal Value: 0,20 µm
- Tracing Length: 0,30 mm
- Stylus Tracking Force: 0,4 mN
- Scan Speed: 0,10 mm/s
- Sampling Spacing: 0,50 µm
- Stylus Tip radius: 2 µm (diamond)

Measurement conditions (for Groove R3):

According to the technical protocol

- Nominal Value: 1,50 µm
- Tracing Length: 0,50 mm
- Stylus Tracking Force: 0,4 mN
- Scan Speed: 0,10 mm/s
- Sampling Spacing: 0,50 µm
- Stylus Tip radius: 2 µm (diamond)

Measurement conditions (for Groove R6):

According to the technical protocol

- Nominal Value: 8,00 µm
- Tracing Length: 1,00 mm
- Stylus Tracking Force: 0,4 mN
- Scan Speed: 0,10 mm/s
- Sampling Spacing: 0,50 µm
- Stylus Tip radius: 2 µm (diamond)

Other complementary data

- Vertical Range: ±25 µm
- Data Points: 600
- Temperature: 20 °C ±0,5 °C

Other complementary data

- Vertical Range: ±25 µm
- Data Points: 1000
- Temperature: 20 °C ±0,5 °C

Other complementary data

- Vertical Range: ±25 µm
- Data Points: 2000
- Temperature: 20 °C ±0,5 °C
Measurement results:

Groove nominal value		measured value	uncertainty	eff. DoF
R1	(µm)	(µm)	$u_c(\mu m)$	$ u_{ m eff}$
<i>Pt</i> (μm)	0,2	0,308	0,030	152
d (μm) ^(*)				

^(*) Waiting for taking new measurements when receiving again the standard.

Groove	Groove nominal value		uncertainty	eff. DoF
R3	(µm)	(µm)	$u_c(\mu m)$	$ u_{ m eff}$
<i>Pt</i> (µm)	1,5	1,428	0,033	120
$d (\mu m)^{(*)}$				

^(*) Waiting for taking new measurements when receiving again the standard.

Groove nominal value		measured value	uncertainty	eff. DoF
R6	(µm)	(µm)	$u_c(\mu m)$	$ u_{ m eff}$
<i>Pt</i> (μm)	8,0	8,152	0,026	28
d (µm) ^(*)				

^(*) Waiting for taking new measurements when receiving again the standard.

Uncertainty of measurement (DATASHEET 1)

Mathematical model:

$$\begin{aligned} H &= f \cdot h + C_1(N), \text{ with } f = \frac{h_p}{h_m} \end{aligned} \qquad \qquad u^2(f) = \left(\frac{\partial f}{\partial h_p}\right)^2 u^2(h_p) + \left(\frac{\partial f}{\partial h_m}\right)^2 u^2(h_m) \end{aligned}$$
$$u^2(H) &= \left(\frac{\partial H}{\partial f}\right)^2 u^2(f) + \left(\frac{\partial H}{\partial h}\right)^2 u^2(h) + u^2(C_1) \end{aligned}$$
$$u^2(H) &= \left(\frac{h}{h_m}\right)^2 u^2(h_p) + \left(\frac{h}{h_m}\right)^2 \left(\frac{h_p}{h_m}\right)^2 u^2(h_m) + \left(\frac{h_p}{h_m}\right)^2 u^2(h) + u^2(C_1) \cong u^2(h_p) + u^2(h_m) + u^2(h) + u^2(C_1) \end{aligned}$$

where,

f = calibration factor

 h_p = certified value of the step height standard used for adjusting the measuring system h_m = measured height on the step height standard with a calibration factor f = 1h = measured height on the step/groove under calibration with a calibration factor f = 1 C_I = correction by noise effect

Quantity	Estimate	Uncertainty $u(r_{\cdot})$	Probability distribution	Sensitivity coefficient	Uncertainty contribution	Degrees of freedom
	\boldsymbol{x}_l	(μm)	uistribution	coefficient C _i	$u_i(Pt)$ (µm)	V _i
Amplification					0,0131	101
Calibrated step	$P_t(1)$	0,013	N		0,013	100
height standard						
Measurement on the	Pt_m		Ν		0,001	8
groove standard						
Dispersion	$s(Pt_m(1))$	0,0013	Ν			8
Resolution	res	2,89E-04	R			100
Sample homogenity	$P_t(2)$			1	0,0054	16
Dispersion	$s(Pt_m(2))$	0,0054	N			16
Resolution	res	2,89E-04	R			100
Datum/Noise	$C_{I}(N)$	0,027	R	1	0,027	100

Identification: groove R1

Combined standard uncertainty: $u_c(Pt) = 0,030 \,\mu\text{m}$

Effective degrees of freedom: v_{eff} (*Pt*) = 152

Expanded uncertainty:

 $U(Pt) = 0,060 \ \mu m$

with a coverage factor k=2

NOTES:

- 1. Dispersion includes both homogenity of the sample and measurement repeatability
- 2. In rectangular distributions we always consider DoF = 100. Acting so, we try to be conservative and avoiding using $DoF = \infty$ because its lack of physical meaning.

Quantity	Estimate	Uncertainty	Probability	Sensitivity	Uncertainty	Degrees of
X_i	x_i	$u(x_i)$	distribution	coefficient	contribution	freedom
		(µm)		c_i	$u_i(Pt)$ (µm)	V_i
Amplification					0,005	103
Calibrated step	Pt(1)	0,005	Ν		0,005	100
height standard						
Measurement on the	Pt_m		Ν		0,001	5
groove standard						
Dispersion	$s(Pt_m(1))$	0,001	Ν			5
Resolution	res	2,89E-04	R			100
Sample homogenity					0,0107	16
Dispersion	$s(Pt_m(2))$	0,0107	N			16
Resolution	res	2,89E-04	R			100
Datum/Noise	$C_{I}(N)$	0,0310	R	1	0,0310	100

Identification: groove R3

Combined standard uncertainty: $u_c(Pt) = 0,033 \,\mu\text{m}$

Effective degrees of freedom: v_{eff} (*Pt*) = 120

Expanded uncertainty:

 $U(Pt) = 0,065 \ \mu m$

with a coverage factor k=2

Identification: groove R6

Quantity	Estimate	Uncertainty	Probability	Sensitivity	Uncertainty	Degrees of
X_i	x_i	$u(x_i)$	distribution	coefficient	contribution	freedom
		(µm)		c_i	$u_i(Pt)$ (µm)	v_i
Amplification					0,023	17
Calibrated step	Pt(1)	0,013	Ν		0,013	100
height standard						
Measurement on the	Pt _m		Ν		0,019	8
groove standard						
Dispersion	$s(Pt_m(1))$	0,0185	Ν			8
Resolution	res	2,89E-04	R			100
Sample homogenity					0,0109	16
Dispersion	$s(Pt_m(2))$	0,0109	Ν			16
Resolution	res	2,89E-04	R			100
Datum/Noise	$C_{I}(N)$	0,0072	R	1	0,0072	100

Combined standard uncertainty: $u_c(Pt) = 0,026 \,\mu\text{m}$

Effective degrees of freedom: v_{eff} (*Pt*) = 28

Expanded uncertainty:

 $U(Pt) = 0,053 \ \mu m$

Measurement Report (DATASHEET 2)

Measurement conditions (Specimen 7070):

According to the technical protocol

- Sampling Spacing: 1,50 µm
- Evaluation Length: 12,50 mm
- Scan Speed: 0,50 mm/s
- Stylus Tip radius: 2 µm (diamond)
- Stylus Tracking Force: 0,4 mN
- Cut-off wavelength: 2,5 mm

Measurement conditions (Specimen 8194):

According to the technical protocol

- Sampling Spacing: 0,50 µm
- Evaluation Length: 4,00 mm
- Scan Speed: 0,50 mm/s
- Stylus Tip radius: 2 µm (diamond)
- Stylus Tracking Force: 0,4 mN
- Cut-off wavelength: 0,8 mm

Measurement conditions (Specimen P114A):

According to the technical protocol

- Sampling Spacing: 0,50 µm
- Evaluation Length: 1,25 mm
- Scan Speed: 0,50 mm/s
- Stylus Tip radius: 2 µm (diamond)
- Stylus Tracking Force: 0,4 mN
- Cut-off wavelength: 0,25 mm

Other complementary data

Other complementary data

- Vertical Range: ±25 µm
- Tracing Length: 17,50 mm
- Data Points: 11674
- Filter: GAUSS
- Temperature: 20 °C ±0,5 °C

Other complementary data

- Vertical Range: ±25 µm
- Tracing Length: 5,60 mm
- Data Points: 11200
- Filter: GAUSS
- Temperature: 20 °C ±0,5 °C
- Vertical Range: ±25 µm
- Tracing Length: 1,75 mm
- Data Points: 3500
- Filter: GAUSS
- Temperature: 20 °C ±0,5 °C

Measurement results:

Specimen 7070	nominal value (µm)	measured value (µm)	uncertainty $u_c(\mu m)$	eff. DoF V _{eff}
Ra (µm)	3,00	2,909	0,085	94
R z (µm)	9,80	9,476	0,093	128
<i>Rmax</i> (µm)		9,627	0,375	125
RSm (µm)	200	197,853	1,904	100

Specimen	nominal value	measured value	uncertainty	eff. DoF
8194	(µm)	(µm)	$u_c(\mu m)$	$ u_{ m eff}$
Ra (µm)	0,88	0,894	0,014	123
<i>Rz</i> (µm)	3,10	3,091	0,054	117
<i>Rmax</i> (µm)		3,113	0,110	104
RSm (µm)	120	118,719	3,427	100

Specimen	nominal value	measured value	uncertainty	eff. DoF
P114A	(µm)	(µm)	$u_c(\mu m)$	$ u_{ m eff}$
Ra (µm)	0,5	0,491	0,002	12
<i>Rz</i> (µm)		1,575	0,017	101
<i>Rmax</i> (µm)		1,588	0,055	198
RSm (µm)	50	49,536	1,430	100

Uncertainty of measurement (Datasheet 2)

General comment:

The mathematical model shown in Datasheet 1 is basically valid for the different parameters obtained on the different standards, because the measurement process is maintained, independently of the sample type. We consider always four main uncertainty components (excluding temperature effects because the stability of the ambient conditions at the Lab.)

These uncertainty components are coming from:

- a) a step height standard used for adjusting the amplification of the profiler (certified value)
- b) measuring the certified step height standard (resolution + repeatability obtained)
- c) measuring the sample (resolution +homogenity + repeatability, for each of the parameters)
- d) noise effects (for each of the parameters, measuring on a flat glass, maintaining same measurement conditions as for the sample)

Between steps b) and c) we measure an own certified standard similar to the sample and with parameter values close to those of the sample to be measured in step c) (this is only possible for some typical parameters as Ra, Rz or Rmax. Other parameters are not typically certified).

We take into account any significative difference between the certified value and our result by applying a correction factor, taking also into account a fith uncertainty component due to this difference.

For instance, for a parameter *P*, we calculate the value $\Delta_P = \frac{\overline{P} - P_{certif}}{\overline{P}}$,

where

 \overline{P} is the mean value of the parameter, obtained on the certified standard, and P_{certif} is the certified value of the parameter

From here we obtain a correction factor $C_P = \Delta_P \cdot \overline{P}$, where \overline{P} is the great mean value obtained on the sample along several days. Its contribution to the uncertainty is $u(C_P) = \frac{C_P}{\sqrt{12}}$

NOTE: P may be Ra, Rz, Rmax, ...

THIS PAGE INTENTIONALLY

LEFT BLANK

Uncertainty budgets for *Ra*

Identification: 7070

Quantity	Estimate	Uncertainty	Probability	Sensitivity	Uncertainty	Degrees of
X_i	x_i	$u(x_i)$	distribution	coefficient	contribution	freedom
		(µm)		C_i	$u_i(Ra)$ (µm)	V_i
Amplification	C1(Ampl)			1	0,0853	94
Calibrated step	$P_t(cert)$	0,080	Ν			100
height standard						
Dispersion	$s(Pt_m)$	0,0295	N			5
Resolution	res	2,89E-04	R			100
Sample homogenity	Ra(1)			1	0,0034	44
Dispersion	$s(Ra_m(1))$	0,003	N			44
Resolution	res	2,89E-04	R			100
Datum/Noise	$C_2(N)$	0,0011	R	1	0,0011	100

Combined standard uncertainty: $u_c(Ra) = 0.085 \,\mu\text{m}$

Effective degrees of freedom: v_{eff} (*Ra*) = 94

Expanded uncertainty:

 $U(Ra) = 0,169 \ \mu m$ with a coverage factor k=2

Identification: 8194

Quantity	Estimate	Uncertainty	Probability	Sensitivity	Uncertainty	Degrees of
X_i	x_i	$u(x_i)$	distribution	coefficient	contribution	freedom
		(µm)		c_i	$u_i(Ra)$ (µm)	V_i
Amplification	C1(Ampl)			1	0,014	110
Calibrated step	P_t (cert)	0,013	Ν			100
height standard						
Dispersion	$s(Pt_m)$	0,004	Ν			11
Resolution	res	2,89E-04	R			100
Sample homogenity	Ra(1)			1	0,001	53
Dispersion	$s(Ra_m(1))$	0,001	Ν			47
Resolution	res	2,89E-04	R			100
Datum/Noise	$C_2(N)$	0,003	R	1	0,003	100

Combined standard uncertainty: $u_c(Ra) = 0,014 \,\mu\text{m}$

Effective degrees of freedom: v_{eff} (*Ra*) = 123

Expanded uncertainty:

 $U(Ra) = 0,027 \,\mu\text{m}$ with a coverage factor k=2

Quantity X_i	Estimate x_i	Uncertainty $u(x_i)$ (µm)	Probability distribution	Sensitivity coefficient c _i	Uncertainty contribution $u_i(Ra)$ (µm)	Degrees of freedom V _i
Amplification	C1(Ampl)			1	0,0015	6
Calibrated step	$P_t(cert)$	0,0005	N			100
height standard						
Dispersion	$s(Pt_m)$	0,0014	Ν			5
Resolution	res	2,89E-04	R			100
Sample homogenity	Ra(1)			1	0,0004	131
Dispersion	$s(Ra_m(1))$	0,0003	N			47
Resolution	res	2,89E-04	R			100
Datum/Noise	$C_2(N)$	0,0009	R	1	0,0009	100

Identification: P114A

Combined standard uncertainty: $u_c(Ra) = 0,002 \ \mu m$

Effective degrees of freedom: v_{eff} (*Ra*) = 12

Expanded uncertainty:

 $U(Ra) = 0,004 \,\mu m$ with a coverage

Uncertainty budgets for *Rz*

Identification: 7070

Quantity	Estimate	Uncertainty	Probability	Sensitivity	Uncertainty	Degrees
X_i	x_i	$u(x_i)$	distribution	coefficient	contribution	of
		(µm)		c_i	$u_i(Rz)$	freedom
					(µm)	V_i
Amplification	C1(Ampl)			1	0,085	94
Calibrated step	P_t (cert)	0,080	N			100
height standard						
Dispersion	$s(Pt_m)$	0,0295	Ν			5
Resolution	res	2,89E-04	R			100
Sample	R z(1)			1	0,006	47
homogeneity						
Dispersion	$s(Rz_m(1))$	0,006	Ν			47
Resolution	res	2,89E-04	R			100
Datum/Noise	$C_2(N)$	0,036	R	1	0,036	100

Combined standard uncertainty: $u_c(Rz) = 0,093 \,\mu\text{m}$

Effective degrees of freedom: v_{eff} (*Rz*) = 128

Expanded uncertainty:

 $U(Rz) = 0.182 \ \mu m$ with a coverage factor k=2

Identification: 8194

Quantity	Estimate	Uncertainty	Probability	Sensitivity	Uncertainty	Degrees
X_i	X_i	$u(x_i)$	distribution	coefficient	contribution	of
		(µm)		c_i	$u_i(Rz)$	freedom
					(µm)	V_i
Amplification	C1(Ampl)			1	0,014	110
Calibrated step	P_t (cert)	0,013	Ν			100
height standard						
Dispersion	$s(Pt_m)$	0,0038	Ν			11
Resolution	res	2,89E-04	R			100
Sample	R z(1)			1	0,007	47
homogeneity						
Dispersion	$s(Rz_m(1))$	0,007	Ν			47
Resolution	res	2,89E-04	R			100
Datum/Noise	$C_2(N)$	0,0518	R	1	0,0518	100

Combined standard uncertainty: $u_c(Rz) = 0,054 \,\mu\text{m}$

Effective degrees of freedom: v_{eff} (*Rz*) = 117

Expanded uncertainty:

 $U(Rz) = 0,106 \,\mu\text{m}$ with a coverage factor k=2

		TT . • .	D 1 1 11	a	TT . • .	D
Quantity	Estimate	Uncertainty	Probability	Sensitivity	Uncertainty	Degrees
X_i	x_i	$u(x_i)$	distribution	coefficient	contribution	of
		(µm)		C_i	$u_i(Rz)$	freedom
					(µm)	V_i
Amplification	C1(Ampl)			1	0,0014	5
Calibrated step	$P_t(cert)$	0,0005	Ν			100
height standard						
Dispersion	$s(Pt_m)$	0,0014	N			5
Resolution	res	0,0003	R			100
Sample	R z(1)			1	0,0010	54
homogeneity						
Dispersion	$s(Rz_m(1))$	0,0010	Ν			47
Resolution	res	2,89E-04	R			100
Datum/Noise	$C_2(N)$	0,0173	R	1	0,0173	100

Identification: P114A

Combined standard uncertainty: $u_c(Rz) = 0,017 \,\mu\text{m}$

Effective degrees of freedom: v_{eff} (*Rz*) = 101

Expanded uncertainty:

 $U(Rz) = 0,034 \ \mu m$

Uncertainty budgets for *Rmax*

Identification: 7070

Quantity	Estimate	Uncertainty	Probability	Sensitivity	Uncertainty	Degrees
X_i	x_i	$u(x_i)$	distribution	coefficient	contribution	of
		(µm)		c_i	$u_i(Rmax)$	freedom
					(µm)	V_i
Amplification	C1(Ampl)			1	0,0853	94
Calibrated step	P_t (cert)	0,080	Ν			100
height standard						
Dispersion	$s(Pt_m)$	0,0295	Ν			5
Resolution	res	2,89E-04	R			100
Sample	Rmax(1)			1	0,3539	100
homogeneity						
Dispersion	$s(Rmax_m(1))$	0,009	Ν			47
Resolution	res	2,89E-04	R			100
Correction	C(Rmax)	0,3538				100
Datum/Noise	$C_2(N)$	0,090	R	1	0,0904	100

Combined standard uncertainty: $u_c(Rmax) = 0.375 \,\mu\text{m}$

Effective degrees of freedom: v_{eff} (*Rmax*) = 125

Expanded uncertainty:

 $U(Rmax) = 0,735 \ \mu m$

with a coverage factor k=2

Identification: 8194

Quantity	Estimate	Uncertainty	Probability	Sensitivity	Uncertainty	Degrees
X_i	x_i	$u(x_i)$	distribution	coefficient	contribution	of
		(µm)		c_i	$u_i(Rmax)$	freedom
					(µm)	V_i
Amplification	C1(Ampl)			1	0,0135	110
Calibrated step	P_t (cert)	0,013	N			100
height standard						
Dispersion	$s(Pt_m)$	0,0038	N			11
Resolution	res	2,89E-04	R			100
Sample	Rmax(1)			1	0,008	47
homogeneity						
Dispersion	$s(Rmax_m(1))$	0,008	N			47
Resolution	res	2,89E-04	R			100
Datum/Noise	$C_2(N)$	0,1086	R	1	0,1086	100

Combined standard uncertainty: $u_c(Rmax) = 0,110 \,\mu\text{m}$

Effective degrees of freedom: v_{eff} (*Rmax*) = 104

Expanded uncertainty:

 $U(Rmax) = 0,215 \ \mu m$

Quantity	Estimate	Uncertainty	Probability	Sensitivity	Uncertainty	Degrees
Qualitity	Estimate	u(r)	distribution	acofficient	contribution	Degrees
Λ_i	λ_i	$u(x_i)$	uisuitoution	coefficient		
		(µm)		c_i	$u_i(Rmax)$	freedom
					(µm)	V_i
Amplification	C1(Ampl)			1	0,0015	6
Calibrated step	$P_t(cert)$	0,0005	Ν			100
height standard						
Dispersion	$s(Pt_m)$	0,0014	N			5
Resolution	res	2,89E-05	R			100
Sample	Rmax(1)			1	0.0369	100
homogeneity					,	
Dispersion	$s(Rmax_m(1))$	0,0014	Ν			47
Resolution	res	2,89E-04	R			100
Correction	C(Rmax)	0,0369	R			100
Datum/Noise	$C_2(N)$	0,0403	R	1	0,0403	100

Identification: P114A

Combined standard uncertainty:

 $u_c(Rmax) = 0.055 \ \mu m$

Effective degrees of freedom: v_{eff} (*Rmax*) = 198

Expanded uncertainty: *k*=2

 $U(Rmax) = 0,107 \ \mu m$

Uncertainty budgets for *RSm*

Identification: 7070

Quantity	Estimate	Uncertainty	Probability	Sensitivity	Uncertainty	Degrees
X_i	x_i	$u(x_i)$	distribution	coefficient	contribution	of
		(µm)		c_i	$u_i(RSm)$	freedom
					(µm)	v_i
Sample	RSm(1)			1	0,0047	47
homogeneity						
Dispersion	$s(RSm_m(1))$	0,005	Ν			47
Resolution	res	2,89E-04	R			100
movement accuracy				1	1,9038	100
x-axis		1,9038	R			

Combined standard uncertainty: $u_c(RSm) = 1,904 \ \mu m$

Effective degrees of freedom: v_{eff} (*RSm*) = 100

Expanded uncertainty:

 $U(RSm) = 3,808 \ \mu m$ with a coverage factor k=2

Identification: 8194

Quantity	Estimate	Uncertainty	Probability	Sensitivity	Uncertainty	Degrees
X_i	x_i	$u(x_i)$	distribution	coefficient	contribution	of
		(µm)		c_i	$u_i(RSm)$	freedom
					(µm)	V_i
Sample	RSm(1)			1	0,0067	47
homogeneity						
Dispersion	$s(RSm_m(1))$	0,007	Ν			47
Resolution	res	2,89E-04	R			100
movement accuracy				1	1,1424	100
x-axis		1,1424	R			

Combined standard uncertainty: $u_c(RSm) = 3,427 \,\mu\text{m}$

Effective degrees of freedom: v_{eff} (*RSm*) = 100

Expanded uncertainty:

 $U(RSm) = 6,854 \mu m$ with a coverage factor k=2

Quantity	Estimate	Uncertainty	Probability	Sensitivity	Uncertainty	Degrees
X_i	x_i	$u(x_i)$	distribution	coefficient	contribution	of
		(µm)		c_i	$u_i(RSm)$	freedom
					(µm)	v_i
Sample	RSm(1)			1	0,0067	44
homogeneity						
Dispersion	$s(RSm_m(1))$	0,0067	Ν			44
Resolution	res	2,89E-04	R			100
movement accuracy				1	1,430	100
x-axis		1,430	R			

Combined standard uncertainty: $u_c(RSm) = 1,430 \,\mu\text{m}$

Effective degrees of freedom: v_{eff} (*RSm*) = 100

Expanded uncertainty:

 $U(RSm) = 2,860 \ \mu m$ with a coverage factor k=2

Measurement Report (DATASHEET 3)

Roughness Standards of type D1 - Specimens: 629f, 633g and 686sg

Measurement conditions (Specimen: 629f):

According to the technical protocol

- Sampling Spacing: 0,50 µm
- Evaluation Length: 4,00 mm
- Scan Speed: 0,50 mm/s
- *Stylus Tip radius:* 2 µm (*diamond*)
- Stylus Tracking Force: 0,4 mN
- *Cut-off wavelength: 0,8* mm

Measurement conditions (Specimen: 633g):

According to the technical protocol

- Sampling Spacing: 0,50 µm
- Evaluation Length: 4,00 mm
- Scan Speed: 0,50 mm/s
- Stylus Tip radius: 2 µm (diamond)
- Stylus Tracking Force: 0,4 mN
- *Cut-off wavelength: 0,8* mm

Measurement conditions (Specimen: 686sg):

According to the technical protocol

- Sampling Spacing: 1,50 µm
- Evaluation Length: 12,50 mm
- Scan Speed: 0,50 mm/s
- Stylus Tip radius: 2 µm (diamond)
- Stylus Tracking Force: 0,4 mN
- *Cut-off wavelength: 0,25* mm

Other complementary data

- Vertical Range: ±25 µm
- Tracing Length: 5,60 mm
- Data Points: 11200
- Filter: GAUSS
- Temperature: 20 °C ± 0.5 °C

Other complementary data

- Vertical Range: $\pm 25 \ \mu m$
- Tracing Length: 5,60 mm
- Data Points: 11200
- Filter: GAUSS
- Temperature: 20 °C ±0,5 °C

Other complementary data

- Vertical Range: ±25 µm
- Tracing Length: 17,50 mm
- Data Points: 11674
- Filter: GAUSS
- Temperature: 20 °C ±0,5 °C

Measurement results:

	nominal	measured		
Specimen	value	value	uncertainty	eff. DoF
629f	(µm)	(µm)	$u_c(\mu m)$	$ u_{ m eff}$
Ra (µm)	0,2	0,146	0,006	171
Rz (μm)	1,5	1,248	0,052	105
Rmax (µm)		1,428	0,114	122
Rk (µm)		0,442	0,011	163
Rpk (μm)		0,133	0,008	140
Rvk (μm)		0,290	0,009	169
	measure	ed value	uncertainty	eff. DoF
	(%	6)	$u_{c}(\%)$	$ u_{ m eff}$
Mr1 (%)	9,	33	0,144	143
Mr2 (%)	87,	691	0,166	131

Specimen 633g	nominal value (µm)	measured value (µm)	uncertainty u_c (µm)	eff. DoF v _{eff}
Ra (µm)	1,5	1,487	0,023	17
Rz (μm)	8,5	7,397	0,063	157
Rmax (µm)		8,743	0,340	123
Rk (µm)		4,320	0,057	12
Rpk (μm)		0,733	0,056	12
Rvk (μm)		2,433	0,056	12
	-			
Specimen	measur	ed value	uncertainty	eff. DoF
633g	(%	%)	$u_c(\%)$	$ u_{ m eff}$
Mr1 (%)	6,3	311	0,131	118
Mr2 (%)	81,	803	0,169	131

	nominal	measured	_	
Specimen	value	value	uncertainty	eff. DoF
686sg	(µm)	(µm)	$u_c(\mu m)$	$ u_{ m eff}$
Ra (µm)	2,5	2,303	0,085	94
Rz (μm)	14	14,046	0,097	148
Rmax (µm)		15,297	0,576	109
Rk (μm)		7,930	0,035	50
Rpk (μm)		1,275	0,015	65
Rvk (μm)		3,110	0,029	51
Specimen	measur	ed value	uncertainty	eff. DoF
686sg	(%)		$u_{c}(\%)$	$ u_{ m eff}$
Mr1 (%)	8,0)65	0,191	111
Mr2 (%)	92,	839	0,230	133

Uncertainty of measurement (DATASHEET 3)

Uncertainty budgets for *Ra*

Identification: 629f

Quantity	Estimate	Uncertainty	Probability	Sensitivity	Uncertainty	Degrees
X_i	x_i	$u(x_i)$	distribution	coefficient	contribution	of
		(µm)		c_i	$u_i(Ra)$	freedom
					(µm)	V_i
Amplification	C1(Ampl)			1	0,0052	104
Calibrated step	P_t (cert)	0,0050	Ν			100
height standard						
Dispersion	$s(Pt_m)$	0,0014	Ν			5
Resolution	res	2,89E-04	R			100
Sample	Ra(1)			1	0,0005	103
homogeneity						
Dispersion	$s(Ra_m(1))$	0,0004	Ν			47
Resolution	res	2,89E-04	R			100
Datum/Noise	$C_2(N)$	0,0031	R	1	0,0031	100

Combined standard uncertainty: $u_c(Ra) = 0,006 \,\mu\text{m}$

Effective degrees of freedom: v_{eff} (*Ra*) = 171

Expanded uncertainty:

 $U(Ra) = 0,012 \ \mu m$ with a coverage factor k=2

Identification: 633g

Quantity	Estimate	Uncertainty	Probability	Sensitivity	Uncertainty	Degrees
X_i	x_i	$u(x_i)$	distribution	coefficient	contribution	of
		(µm)		c_i	$u_i(Ra)$	freedom
					(µm)	V_i
Amplification	C1(Ampl)			1	0,0226	17
Calibrated step	P_t (cert)	0,013	Ν			100
height standard						
Dispersion	$s(Pt_m)$	0,0185	Ν			8
Resolution	res	2,89E-04	R			100
Sample	Ra(1)			1	0,0014	51
homogeneity						
Dispersion	$s(Ra_m(1))$	0,0014	Ν			47
Resolution	res	2,89E-04	R			100
Datum/Noise	$C_2(N)$	0,0031	R	1	0,0031	100

Combined standard uncertainty: $u_c(Ra) = 0,023 \,\mu\text{m}$

Effective degrees of freedom: v_{eff} (*Ra*) = 17

Expanded uncertainty:

 $U(Ra) = 0.048 \ \mu m$ with a coverage factor k=2

Quantity	Estimate	Uncertainty	Probability	Sensitivity	Uncertainty	Degrees
X_i	x_i	$u(x_i)$	distribution	coefficient	contribution	of
		(µm)		C_i	$u_i(Ra)$	freedom
					(µm)	V_i
Amplification	C1(Ampl)			1	0,0853	94
Calibrated step	$P_t(cert)$	0,080	Ν			100
height standard						
Dispersion	$s(Pt_m)$	0,0295	Ν			5
Resolution	res	2,89E-04	R			100
Sample	Ra(1)			1	0,0044	47
homogeneity						
Dispersion	$s(Ra_m(1))$	0,004	Ν			47
Resolution	res	2,89E-04	R			100
Datum/Noise	$C_2(N)$	0,0011	R	1	0,0011	100

Identification: 686sg

Combined standard uncertainty: $u_c(Ra) = 0.085 \,\mu m$

Effective degrees of freedom: v_{eff} (*Ra*) = 94

Expanded uncertainty:

 $U(Ra) = 0,169 \ \mu m$

Uncertainty budgets for Rz

Identification: 629f

Quantity	Estimate	Uncertainty	Probability	Sensitivity	Uncertainty	Degrees
X_i	x_i	$u(x_i)$	distribution	coefficient	contribution	of
		(µm)		c_i	$u_i(Rz)$	freedom
					(µm)	V_i
Amplification	C1(Ampl)			1	0,0052	104
Calibrated step	P_t (cert)	0,005	Ν			100
height standard						
Dispersion	$s(Pt_m)$	0,0014	Ν			5
Resolution	res	2,89E-04	R			100
Sample	R z(1)			1	0,0064	47
homogeneity						
Dispersion	$s(Rz_m(1))$	0,006	Ν			47
Resolution	res	2,89E-04	R			100
Datum/Noise	$C_2(N)$	0,0518	R	1	0,0518	100

Combined standard uncertainty: $u_c(Rz) = 0.052 \,\mu\text{m}$

Effective degrees of freedom: v_{eff} (*Rz*) = 105

Expanded uncertainty:

 $U(Rz) = 0,103 \ \mu m$

with a coverage factor k=2

Identification: 633g

Quantity	Estimate	Uncertainty	Probability	Sensitivity	Uncertainty	Degrees
X_i	x_i	$u(x_i)$	distribution	coefficient	contribution	of
		(µm)		c_i	$u_i(Rz)$	freedom
					(µm)	V_i
Amplification	C1(Ampl)			1	0,0226	17
Calibrated step	P_t (cert)	0,013	Ν			100
height standard						
Dispersion	$s(Pt_m)$	0,0185	Ν			8
Resolution	res	2,89E-04	R			100
Sample	R z(1)			1	0,028	47
homogeneity						
Dispersion	$s(Rz_m(1))$	0,028	Ν			47
Resolution	res	2,89E-04	R			100
Datum/Noise	$C_2(N)$	0,0518	R	1	0,0518	100

Combined standard uncertainty: $u_c(Rz) = 0,063 \ \mu m$

Effective degrees of freedom: v_{eff} (*Rz*) = 157

Expanded uncertainty:

 $U(Rz) = 0,125 \ \mu m$ with a coverage factor k=2

Quantity	Estimate	Uncertainty	Probability	Sensitivity	Uncertainty	Degrees
X_i	x_i	$u(x_i)$	distribution	coefficient	contribution	of
		(µm)		C_i	$u_i(Rz)$	freedom
					(µm)	V_i
Amplification	C1(Ampl)			1	0,0853	94
Calibrated step	$P_t(cert)$	0,080	Ν			100
height standard						
Dispersion	$s(Pt_m)$	0,0295	Ν			5
Resolution	res	2,89E-04	R			100
Sample	R z(1)			1	0,028	47
homogeneity						
Dispersion	$s(Rz_m(1))$	0,028	N			47
Resolution	res	2,89E-04	R			100
Datum/Noise	C2(N)	0,0362	R	1	0,0362	100

Identification: 686sg

Combined standard uncertainty: $u_c(Rz) = 0,097 \,\mu\text{m}$

Effective degrees of freedom: v_{eff} (*Rz*) = 148

Expanded uncertainty:

 $U(Rz) = 0,19 \ \mu m$

Uncertainty budgets for *Rmax*

Identification: 629f

Quantity	Estimate	Uncertainty	Probability	Sensitivity	Uncertainty	Degrees
X_i	x_i	$u(x_i)$	distribution	coefficient	contribution	of
		(µm)		c_i	$u_i(Rmax)$	freedom
					(µm)	V_i
Amplification	C1(Ampl)			1	0,0052	104
Calibrated step	$P_t(cert)$	0,005	Ν			100
height standard						
Dispersion	$s(Pt_m)$	0,0014	Ν			5
Resolution	res	2,89E-04	R			100
Sample	Rmax(1)			1	0,0362	131
homogeneity						
Dispersion	$s(Rmax_m(1))$	0,0143	Ν			47
Resolution	res	2,89E-04	R			100
Correction	C(Rmax)	0,0332	R			100
(Rmax)						
Datum/Noise	$C_2(N)$	0,1086	R	1	0,1086	100

Combined standard uncertainty: $u_c(Rmax) = 0,114 \,\mu\text{m}$

Effective degrees of freedom: v_{eff} (*Rmax*) = 122

Expanded uncertainty: *k*=2

 $U(Rmax) = 0,225 \ \mu m$

with a coverage factor

Identificatio

o n:	633g

Quantity	Estimate	Uncertainty	Probability	Sensitivity	Uncertainty	Degrees
X_i	x_i	$u(x_i)$	distribution	coefficient	contribution	of
		(µm)		C_i	$u_i(Rmax)$	freedom
					(µm)	V_i
Amplification	C1(Ampl)			1	0,0226	17
Calibrated step	P_t (cert)	0,013	Ν			100
height standard						
Dispersion	$s(Pt_m)$	0,0185	Ν			8
Resolution	res	2,89E-04	R			100
Sample	Rmax(1)			1	0,3219	100
homogeneity						
Dispersion	$s(Rmax_m(1))$	0,018	Ν			47
Resolution	res	2,89E-04	R			100
Corrección	C(Rmax)	0,3214	R			100
(Rmax)						
Datum/Noise	C ₂ (N)	0,1086	R	1	0,1086	100

Combined standard uncertainty: $u_c(Rmax) = 0,340 \,\mu\text{m}$

Effective degrees of freedom: v_{eff} (*Rmax*) = 123

Expanded uncertainty:	$U(Rmax) = 0,667 \ \mu m$	with a coverage factor
<i>k</i> =2		

Identification: 686sg

Quantity	Estimate	Uncertainty	Probability	Sensitivity	Uncertainty	Degrees
X_i	x_i	$u(x_i)$	distribution	coefficient	contribution	of
		(µm)		c_i	$u_i(Rmax)$	freedom
					(µm)	V_i
Amplification	C1(Ampl)			1	0,085	94
Calibrated step	$P_t(cert)$	0,080	Ν			100
height standard						
Dispersion	$s(Pt_m)$	0,0295	N			5
Resolution	res	2,89E-04	R			100
Sample	Rmax(1)			1	0,5623	100
homogeneity						
Dispersion	$s(Rmax_m(1))$	0,007	Ν			47
Resolution	res	2,89E-04	R			100
Correccion	C(Rmax9	0,562	R			100
(Rmax)						
Datum/Noise	C2(N)	0,0904	R	1	0,0904	100

 $u_c(Rmax) = 0,576 \ \mu m$ Combined standard uncertainty:

Effective degrees of freedom: v_{eff} (*Rmax*) = 109

Expanded uncertainty: *k*=2

 $U(Rmax) = 1,129 \ \mu m$

Uncertainty budgets for *Rpk*

Identification: 629f

Quantity	Estimate	Uncertainty	Probability	Sensitivity	Uncertainty	Degrees
X_i	x_i	$u(x_i)$	distribution	coefficient	contribution	of
		(µm)		c_i	$u_i(Rpk)$	freedom
					(µm)	V_i
Amplification	C1(Ampl)			1	0,006	69
Calibrated step	P_t (cert)	0,005	Ν			100
height standard						
Dispersion	$s(Pt_m)$	0,003	Ν			11
Resolution	res	2,89E-04	R			100
Sample	Rpk(1)			1	0,001	59
homogeneity	- · ·					
Dispersion	$s(Rpk_m(1))$	0,001	Ν			47
Resolution	res	2,89E-04	R			100
Datum/Noise	$C_2(N)$	0,0046	R	1	0,0046	100

Combined standard uncertainty: $u_c(Rpk) = 0,008 \,\mu\text{m}$

Effective degrees of freedom: v_{eff} (*Rpk*) = 140

Expanded uncertainty:

 $U(Rpk) = 0,015 \ \mu m$

with a coverage factor k=2

Identification: 633g

Quantity	Estimate	Uncertainty	Probability	Sensitivity	Uncertainty	Degrees
X_i	x_i	$u(x_i)$	distribution	coefficient	contribution	of
		(µm)		c_i	$u_i(Rpk)$	freedom
					(µm)	V_i
Amplification	C1(Ampl)			1	0,056	12
Calibrated step	P_t (cert)	0,013	Ν			100
height standard						
Dispersion	$s(Pt_m)$	0,054	Ν			11
Resolution	res	2,89E-04	R			100
Sample	Rpk(1)			1	0,005	47
homogeneity						
Dispersion	$s(Rpk_m(1))$	0,005	Ν			47
Resolution	res	2,89E-04	R			100
Datum/Noise	$C_2(N)$	0,0046	R	1	0,0046	100

Combined standard uncertainty: $u_c(Rpk) = 0,056 \,\mu\text{m}$

Effective degrees of freedom: v_{eff} (*Rpk*) = 12

Expanded uncertainty:

 $U(Rpk) = 0,112 \ \mu m$

Quantity	Estimate	Uncertainty	Probability	Sensitivity	Uncertainty	Degrees
X_i	x_i	$u(x_i)$	distribution	coefficient	contribution	of
		(µm)		C_i	$u_i(Rpk)$	freedom
					(µm)	V_i
Amplification	C1(Ampl)			1	0,006	69
Calibrated step	$P_t(cert)$	0,005	Ν			100
height standard						
Dispersion	$s(Pt_m)$	0,003	Ν			11
Resolution	res	2,89E-04	R			100
Sample	Rpk(1)			1	0,014	47
homogeneity	- · ·					
Dispersion	$s(Rpk_m(1))$	0,014	Ν			47
Resolution	res	2,89E-04	R			100
Datum/Noise	$C_2(N)$	0,0009	R	1	0,0009	100

Identification: 686sg

Combined standard uncertainty: $u_c(Rpk) = 0,015 \,\mu\text{m}$

Effective degrees of freedom: v_{eff} (*Rpk*) = 65

Expanded uncertainty:

 $U(Rpk) = 0,030 \ \mu m$ with a coverage factor k=2

Uncertainty budgets for Rk

Identification: 629f

Quantity	Estimate	Uncertainty	Probability	Sensitivity	Uncertainty	Degrees
X_i	x_i	$u(x_i)$	distribution	coefficient	contribution	of
		(µm)		c_i	$u_i(Rk)$	freedom
					(µm)	V_i
Amplification	C1(Ampl)			1	0,006	69
Calibrated step	P_t (cert)	0,005	Ν			100
height standard						
Dispersion	$s(Pt_m)$	0,003	Ν			11
Resolution	res	2,89E-04	R			100
Sample	Rk(1)			1	0,001	52
homogeneity						
Dispersion	$s(Rk_m(1))$	0,001	Ν			47
Resolution	res	2,89E-04	R			100
Datum/Noise	$C_2(N)$	0,0095	R	1	0,0095	100

Combined standard uncertainty: $u_c(Rk) = 0,011 \,\mu\text{m}$

Effective degrees of freedom: v_{eff} (*Rk*) = 163

Expanded uncertainty:

 $U(Rk) = 0,023 \mu m$ with a coverage factor k=2

Identification: 633g

Quantity	Estimate	Uncertainty	Probability	Sensitivity	Uncertainty	Degrees
X_i	x_i	$u(x_i)$	distribution	coefficient	contribution	of
		(µm)		c_i	$u_i(Rk)$	freedom
					(µm)	V_i
Amplification	C1(Ampl)			1	0,056	12
Calibrated step	P_t (cert)	0,013	Ν			100
height standard						
Dispersion	$s(Pt_m)$	0,054	Ν			11
Resolution	res	2,89E-04	R			100
Sample	Rk(1)			1	0,01	47
homogeneity						
Dispersion	$s(Rk_m(1))$	0,01	Ν			47
Resolution	res	2,89E-04	R			100
Datum/Noise	$C_2(N)$	0,0095	R	1	0,0095	100

Combined standard uncertainty: $u_c(Rk) = 0,057 \,\mu\text{m}$

Effective degrees of freedom: v_{eff} (*Rk*) = 12

Draft A - Appendix B2 - Reports of CEM

Expanded uncertainty:

 $U(Rk) = 0,115 \mu m$ with a coverage factor k=2

Quantity	Estimate	Uncertainty	Probability	Sensitivity	Uncertainty	Degrees
X_i	x_i	$u(x_i)$	distribution	coefficient	contribution	of
		(µm)		C_i	$u_i(Rk)$	freedom
					(µm)	V_i
Amplification	C1(Ampl)			1	0,006	69
Calibrated step	$P_t(cert)$	0,005	Ν			100
height standard						
Dispersion	$s(Pt_m)$	0,003	Ν			11
Resolution	res	2,89E-04	R			100
Sample	Rk(1)			1	0,034	47
homogeneity						
Dispersion	$s(Rk_m(1))$	0,034	Ν			47
Resolution	res	2,89E-04	R			100
Datum/Noise	C ₂ (N)	0,0023	R	1	0,0023	100

Identification: 686sg

Combined standard uncertainty: $u_c(Rk) = 0,035 \,\mu\text{m}$

Effective degrees of freedom: v_{eff} (*Rk*) = 50

Expanded uncertainty:

 $U(Rk) = 0,070 \ \mu m$ with

Uncertainty budgets for Rvk

Identification: 629f

Quantity	Estimate	Uncertainty	Probability	Sensitivity	Uncertainty	Degrees
X_i	x_i	$u(x_i)$	distribution	coefficient	contribution	of
		(µm)		c_i	$u_i(Rvk)$	freedom
					(µm)	V_i
Amplification	C1(Ampl)			1	0,006	69
Calibrated step	P_t (cert)	0,005	Ν			100
height standard						
Dispersion	$s(Pt_m)$	0,003	Ν			11
Resolution	res	2,89E-04	R			100
Sample	Rvk(1)			1	0,001	50
homogeneity					, i i i i i i i i i i i i i i i i i i i	
Dispersion	$s(Rvk_m)(1)$	0,001	Ν			47
Resolution	res	2,89E-04	R			100
Datum/Noise	$C_2(N)$	0,0059	R	1	0,0059	100

Combined standard uncertainty: $u_c(Rvk) = 0,009 \,\mu\text{m}$

Effective degrees of freedom: v_{eff} (*Rvk*) = 169

Expanded uncertainty:

 $U(Rvk) = 0,017 \mu m$ with a coverage factor k=2

Identification: 633g

Quantity	Estimate	Uncertainty	Probability	Sensitivity	Uncertainty	Degrees
X_i	x_i	$u(x_i)$	distribution	coefficient	contribution	of
		(µm)		c_i	$u_i(Rvk)$	freedom
					(µm)	V_i
Amplification	C1(Ampl)			1	0,056	12
Calibrated step	P_t (cert)	0,013	Ν			100
height standard						
Dispersion	$s(Pt_m)$	0,054	N			11
Resolution	res	2,89E-04	R			100
Sample	Rvk(1)			1	0,007	47
homogeneity						
Dispersion	$s(Rvk_m)(1)$	0,007	Ν			47
Resolution	res	2,89E-04	R			100
Datum/Noise	$C_2(N)$	0,0059	R	1	0,0059	100

Combined standard uncertainty: $u_c(Rvk) = 0,056 \,\mu\text{m}$

Effective degrees of freedom: v_{eff} (*Rvk*) = 12

Expanded uncertainty:

 $U(Rvk) = 0,113 \mu m$ with a coverage factor k=2

Quantity	Estimate	Uncertainty	Probability	Sensitivity	Uncertainty	Degrees
X_i	x_i	$u(x_i)$	distribution	coefficient	contribution	of
		(µm)		C_i	$u_i(Rvk)$	freedom
					(µm)	V_i
Amplification	C1(Ampl)			1	0,006	69
Calibrated step	$P_t(cert)$	0,005	Ν			100
height standard						
Dispersion	$s(Pt_m)$	0,003	Ν			11
Resolution	res	2,89E-04	R			100
Sample	Rvk(1)			1	0,028	47
homogeneity						
Dispersion	$s(Rvk_m)(1)$	0,028	Ν			47
Resolution	res	2,89E-04	R			100
Datum/Noise	C ₂ (N)	0,0013	R	1	0,0013	100

Identification: 686sg

Combined standard uncertainty: $u_c(Rvk) = 0,029 \,\mu\text{m}$

Effective degrees of freedom: v_{eff} (*Rvk*) = 51

Expanded uncertainty:

 $U(Rvk) = 0,057 \mu m$ with a coverage factor k=2

Uncertainty budgets for Mr1

Identification: 629f

Quantity	Estimate	Uncertainty	Probability	Sensitivity	Uncertainty	Degrees
X_i	x_i	$u(x_i)$	distribution	coefficient	contribution	of
		(%)		c_i	$u_i(Mr1)$	freedom
					(%)	V_i
Amplification	C1(Ampl)			1	0,006	69
Calibrated step	P_t (cert)	0,005	Ν			100
height standard						
Dispersion	$s(Pt_m)$	0,003	Ν			11
Resolution	res	2,89E-04	R			100
Sample	$\mathbf{R}_{\mathbf{Mr1}}(1)$			1	0,071	47
homogeneity						
Dispersion	$s(RMr_m(1))$	0,071	Ν			47
Resolution	res	2,89E-04	R			100
Datum/Noise	$C_2(N)$	0,1248	R	1	0,1248	100

Combined standard uncertainty: $u_c(Mr1) = 0,144 \%$

Effective degrees of freedom: v_{eff} (*Mr1*) = 143

Expanded uncertainty:

U(Mr1) = 0,288 % with a coverage factor k=2

Identification: 633g

Quantity	Estimate	Uncertainty	Probability	Sensitivity	Uncertainty	Degrees
X_i	x_i	$u(x_i)$	distribution	coefficient	contribution	of
		(%)		c_i	$u_i(Mr1)$	freedom
					(%)	V_i
Amplification	C1(Ampl)			1	0,021	27
Calibrated step	$P_t(cert)$	0,013	Ν			100
height standard						
Dispersion	$s(Pt_m)$	0,017	Ν			11
Resolution	res	2,89E-04	R			100
Sample	R _{Mr1} (1)			1	0,032	47
homogeneity						
Dispersion	$s(RMr_m(1))$	0,032	Ν			47
Resolution	res	2,89E-04	R			100
Datum/Noise	$C_2(N)$	0,1248	R	1	0,1248	100

Combined standard uncertainty: $u_c(Mr1) = 0,131 \%$

Effective degrees of freedom: v_{eff} (*Mr1*) = 118

Expanded uncertainty:

U(Mr1) = 0,26 %

Quantity	Estimate	Uncertainty	Probability	Sensitivity	Uncertainty	Degrees
X_i	x_i	$u(x_i)$	distribution	coefficient	contribution	of
		(%)		c_i	$u_i(Mr1)$	freedom
					(%)	V_i
Amplification	C1(Ampl)			1	0,005	106
Calibrated step	$P_t(cert)$	0,005	Ν			100
height standard						
Dispersion	$s(Pt_m)$	0,001	Ν			11
Resolution	res	2,89E-04	R			100
Sample	R _{Mr1} (1)			1	0,146	47
homogeneity						
Dispersion	$s(RMr_m(1))$	0,146	Ν			47
Resolution	res	2,89E-04	R			100
Datum/Noise	$C_2(N)$	0,1231	R	1	0,1231	100

Identification: 686sg

Combined standard uncertainty: $u_c(Mr1) = 0,191 \%$

Effective degrees of freedom: v_{eff} (Mr1) = 111

Expanded uncertainty:

U(*Mr1*) = 0,382 % with a coverage factor *k*=2

Uncertainty budgets for *Mr2*

Identification: 629f

Quantity	Estimate	Uncertainty	Probability	Sensitivity	Uncertainty	Degrees
X_i	x_i	$u(x_i)$	distribution	coefficient	contribution	of
		(%)		c_i	u_i (Mr2)	freedom
					(%)	V_i
Amplification	C1(Ampl)			1	0,006	69
Calibrated step	P_t (cert)	0,005	Ν			100
height standard						
Dispersion	$s(Pt_m)$	0,003	Ν			11
Resolution	res	2,89E-04	R			100
Sample	$\mathbf{R}_{\mathrm{Mr2}}(1)$			1	0,067	47
homogeneity						
Dispersion	$s(RMr_m(1))$	0,067	Ν			47
Resolution	res	2,89E-04	R			100
Datum/Noise	$C_2(N)$	0,1519	R	1	0,1519	100

Combined standard uncertainty: $u_c(Mr2) = 0,166 \%$

Effective degrees of freedom: v_{eff} (*Mr2*) = 131

Expanded uncertainty:

U(Mr2) = 0,332 % with a coverage factor k=2

Identification: 633g

Quantity	Estimate	Uncertainty	Probability	Sensitivity	Uncertainty	Degrees
X_i	x_i	$u(x_i)$	distribution	coefficient	contribution	of
		(%)		c_i	u_i (Mr2)	freedom
					(%)	V_i
Amplification	C1(Ampl)			1	0,056	12
Calibrated step	P_t (cert)	0,013	Ν			100
height standard						
Dispersion	$s(Pt_m)$	0,054	Ν			11
Resolution	res	2,89E-04	R			100
Sample	R _{Mr2} (1)			1	0,050	47
homogeneity						
Dispersion	$s(RMr_m(1))$	0,050	Ν			47
Resolution	res	2,89E-04	R			100
Datum/Noise	$C_2(N)$	0,1519	R	1	0,1519	100

Combined standard uncertainty: $u_c(Mr2) = 0,169 \%$

Effective degrees of freedom: v_{eff} (*Mr2*) = 131

Expanded uncertainty:

U(Mr2) = 0,339 % with a coverage factor k=2

Quantity	Estimate	Uncertainty	Probability	Sensitivity	Uncertainty	Degrees
X_i	x_i	$u(x_i)$	distribution	coefficient	contribution	of
		(%)		c_i	$u_i(Mr2)$	freedom
					(%)	V_i
Amplification	C1(Ampl)			1	0,006	69
Calibrated step	$P_t(cert)$	0,005	Ν			100
height standard						
Dispersion	$s(Pt_m)$	0,003	Ν			11
Resolution	res	2,89E-04	R			100
Sample	$\mathbf{R}_{\mathrm{Mr2}}(1)$			1	0,096	47
homogeneity					, i i i i i i i i i i i i i i i i i i i	
Dispersion	$s(RMr_m(1))$	0,096	Ν			47
Resolution	res	2,89E-04	R			100
Datum/Noise	$C_2(N)$	0,2094	R	1	0,2094	100

Identification: 686sg

Combined standard uncertainty: $u_c(Mr2) = 0,230 \%$

Effective degrees of freedom: v_{eff} (Mr2) = 133

Expanded uncertainty:

U(*Mr2*) = 0,461 % with a coverage factor *k*=2

Measurement Report (DATASHEET 4)

Superfine roughness standard of type D2 - Specimen SF 150

Measurement data (Specimen SF150):

According to the technical protocol

- *Sampling Spacing*: 0,50 µm
- Evaluation Length: 1,25 mm
- *Scan Speed*: 0,10 mm/s
- Stylus Tip radius: 2 µm (diamond)
- Stylus Tracking Force: 0,4 mN
- *Cut-off wavelength*: 0,8 mm

Other complementary data

- Vertical Range: ±25 µm
- Tracing Length: 1,75 mm
- Data Points: 3500
- Filter: GAUSS
- Temperature: 20 °C ±0,5 °C

Specimen	measured value	uncertainty	eff. DoF	
SF150	(nm)	u_c (nm)	$ u_{ m eff}$	
<i>Ra</i> (nm)	23,52	13	101	
R_{z} (nm)	133,29	16	182	
<i>Rmax</i> (nm)	172,90	19	207	
Rk (nm)	72,56	13	101	
<i>Rpk</i> (nm)	26,10	13	107	
<i>Rvk</i> (nm)	29,83	14	138	
	measured value	uncertainty	eff. DoF	
	(%)	$u_{c}(\%)$	$\mathcal{V}_{\mathrm{eff}}$	
Mr1 (%)	11,862	0,099	48	
Mr2 (%)	86,421	0,100	48	

Measurement results:

Uncertainty of measurement (DATASHEET 4)

Uncertainty budget for *Ra*

Identification: SF 150

Quantity	Estimate	Uncertainty	Probability	Sensitivity	Uncertainty	Degrees
X_i	X_i	$u(x_i)$	distribution	coefficient	contribution	of
		(nm)		c_i	$u_i(Ra)$	freedom
					(nm)	$v_{\rm i}$
Amplification	C1(Ampl)			1	13,068	101
Calibrated step	$P_t(cert)$	13,00	Ν			100
height standard						
Dispersion	$s(Pt_m)$	1,303	Ν			8
Resolution	res	2,89E-01	R			100
Sample	Ra(1)			1	0,299	114
homogeneity						
Dispersion	$s(Ra_m)(1))$	0,0079	Ν			47
Resolution	res	2,89E-01	R			100
Datum/Noise	$C_2(N)$	0,721	R	1	0,721	100

Combined standard uncertainty: $u_c(Ra) = 13,09 \text{ nm}$

Effective degrees of freedom: v_{eff} (*Ra*) = 101

Expanded uncertainty:

U(Ra) = 25,66 nm with a coverage factor k=2

Uncertainty budget for *Rz*

Identification: SF 150

Quantity	Estimate	Uncertainty	Probability	Sensitivity	Uncertainty	Degrees
X_i	x_i	$u(x_i)$	distribution	coefficient	contribution	of
		(nm)		c_i	$u_i(Rz)$	freedom
					(nm)	Vi
Amplification	C1(Ampl)			1	13,070	101
Calibrated step	$P_t(cert)$	13,00	Ν			100
height standard						
Dispersion	$s(Pt_m)$	1,303	Ν			8
Resolution	res	0,289	R			100
Sample	R z(1)			1	0,7071	66
homogeneity						
Dispersion	$s(Rz_m)(1)$	0,645	Ν			47
Resolution	res	0,289	R			100
Datum/Noise	$C_2(N)$	9,310	R	1	9,310	100

Roughness standard with a nominal value of Rz = 150 nm

Combined standard uncertainty: $u_c(Rz) = 16,05 nm$

Effective degrees of freedom: v_{eff} (*Rz*) = 182

Expanded uncertainty:

U(Rz) = 31,45 nm with a coverage factor k=2
Uncertainty budget for *Rmax*

Identification: SF 150

Quantity	Estimate	Uncertainty	Probability	Sensitivity	Uncertainty	Degrees
X_i	x_i	$u(x_i)$	distribution	coefficient	contribution	of
		(nm)		c_i	$u_i(Rmax)$	freedom
					(nm)	V_{i}
Amplification	C1(Ampl)			1	13,07	101
Calibrated step	$P_t(cert)$	13,00	Ν			100
height standard						
Dispersion	$s(Pt_m)$	1,303				8
Resolution	res	0,289	r			100
Sample	Rmax(1)			1	2,408	48
homogeneity						
Dispersion	$s(Rmax_m(1))$	2,391	Ν			47
Resolution	res	0,289	R			100
Datum/Noise	$C_2(N)$	13,40	R	1	13,40	100

Combined standard uncertainty: $u_c(Rmax) = 18,87 nm$

Effective degrees of freedom: v_{eff} (*Rmax*) = 207

Expanded uncertainty:

U(Rmax) = 37 nm with a coverage factor k=2

Uncertainty budget for *Rpk*

Identification: SF 150

Quantity	Estimate	Uncertainty	Probability	Sensitivity	Uncertainty	Degrees
X_i	x_i	$u(x_i)$	distribution	coefficient	contribution	of
		(µm)		c_i	$u_i(Rpk)$	freedom
					(µm)	V_i
Amplification	C1(Ampl)			1	0,013	101
Calibrated step	P_t (cert)	0,013	Ν			100
height standard						
Dispersion	$s(Pt_m)$	0,001	Ν			11
Resolution	res	2,89E-04	R			100
Sample	Rpk(1)			1	0,0003	144
homogeneity	- · ·					
Dispersion	$s(Rpk_m)(1)$	0,0002	Ν			47
Resolution	res	2,89E-04	R			100
Datum/Noise	$C_2(N)$	0,0023	R	1	0,0023	100

Combined standard uncertainty: $u_c(Rpk) = 13 nm$

Effective degrees of freedom: v_{eff} (*Rpk*) = 107

Expanded uncertainty:

U(Rpk) = 27 nm

with a coverage factor k=2

Uncertainty budget for *Rk*

Identification: SF 150

Quantity	Estimate	Uncertainty	Probability	Sensitivity	Uncertainty	Degrees
X_i	x_i	$u(x_i)$	distribution	coefficient	contribution	of
		(µm)		C_i	$u_i(Rk)$	freedom
					(µm)	V_i
Amplification	C1(Ampl)			1	0,013	101
Calibrated step	P_t (cert)	0,013	Ν			100
height standard						
Dispersion	$s(Pt_m)$	0,001	Ν			11
Resolution	res	2,89E-04	R			100
Sample	Rk(1)			1	0,0006	83
homogeneity						
Dispersion	$s(Rk_m)(1)$	0,0005	Ν			47
Resolution	res	2,89E-04	R			100
Datum/Noise	$C_2(N)$	0,0002	R	1	0,0002	100

Combined standard uncertainty: $u_c(Rk) = 13 nm$

Effective degrees of freedom: v_{eff} (*Rk*) = 101

Expanded uncertainty:

U(Rk) = 26 nm

with a coverage factor k=2

Uncertainty budgets for *Rvk*

Identification: SF 150

Quantity	Estimate	Uncertainty	Probability	Sensitivity	Uncertainty	Degrees
X_i	x_i	$u(x_i)$	distribution	coefficient	contribution	of
		(µm)		c_i	$u_i(Rk)$	freedom
					(µm)	V_i
Amplification	C1(Ampl)			1	0,013	101
Calibrated step	$P_t(cert)$	0,013	Ν			100
height standard						
Dispersion	$s(Pt_m)$	0,001	Ν			11
Resolution	res	2,89E-04	R			100
Sample	Rvk(1)			1	0,0004	124
homogeneity						
Dispersion	$s(Rvk_m)(1)$	0,0003	Ν			47
Resolution	res	2,89E-04	R			100
Datum/Noise	$C_2(N)$	0,0057	R	1	0,0057	100

Combined standard uncertainty:

 $u_c(Rvk) = 14 nm$

Effective degrees of freedom: v_{eff} (*Rvk*) = 138

Expanded uncertainty:

U(Rvk) = 29 nm

with a coverage factor *k*=2

Uncertainty budget for *Mr1*

Identification: SF 150

Quantity	Estimate	Uncertainty	Probability	Sensitivity	Uncertainty	Degrees
X_i	x_i	$u(x_i)$	distribution	coefficient	contribution	of
		(%)		c_i	$u_i(Mr1)$	freedom
					(%)	V_i
Amplification	C1(Ampl)			1	0,013	101
Calibrated step	P_t (cert)	0,013	Ν			100
height standard						
Dispersion	$s(Pt_m)$	0,001	Ν			11
Resolution	res	2,89E-04	R			100
Sample	Mr1(1)			1	0,099	83
homogeneity						
Dispersion	$s(Mr_m)(1)$	0,0985	Ν			47
Resolution	res	2,89E-04	R			100
Datum/Noise	$C_2(N)$	0,0005	R	1	0,0002	100

Combined standard uncertainty: $u_c(Mr1) = 0,099 \%$

Effective degrees of freedom: v_{eff} (*Mr1*) = 48

Expanded uncertainty:

U(Mr1) = 0,2 %

with a coverage factor k=2

Uncertainty budget for *Mr2*

Identification: SF 150

Quantity	Estimate	Uncertainty	Probability	Sensitivity	Uncertainty	Degrees
X_i	x_i	$u(x_i)$	distribution	coefficient	contribution	of
		(%)		c_i	u_i (Mr2)	freedom
					(%)	V_i
Amplification	C1(Ampl)			1	0,013	101
Calibrated step	P_t (cert)	0,013	Ν			100
height standard						
Dispersion	$s(Pt_m)$	0,001	Ν			11
Resolution	res	2,89E-04	R			100
Sample	Mr2(1)			1	0,099	83
homogeneity						
Dispersion	$s(Mr_m)(1)$	0,0994	Ν			47
Resolution	res	2,89E-04	R			100
Datum/Noise	$C_2(N)$	0,0005	R	1	0,0002	100

Combined standard uncertainty: $u_c(Mr2) = 0.1 \%$

Effective degrees of freedom: v_{eff} (*Mr2*) = 48

Expanded uncertainty:

U(Mr2) = 0,2 %

with a coverage factor *k*=2

Laboratory: Centro Español de Metrología (CEM) - SPAIN

Date: March 2002

Signature:

Luria Galaz

Nuria Galán Lab. Technician

Revised and Approved:

Emilio Prieto Head of Length Area 17/10/2002

Comparison of Surface Texture Measurements EUROMET Project: 600

Results obtained by

Stylus Profiler

New measurements on grooves R1, R3 and R6

(Parameters Pt and d)

Emilio Prieto 24th March 2003

THIS PAGE INTENTIONALLY

LEFT BLANK

Description of the measurement instruments:

There were used two commercial contact-stylus profilers, a **Perthometer Concept** from MahrTM and a **Dektak-3ST** from VeecoTM; the last one exclusively for measuring R1, R3 and R6 grooves. These instruments work according to the standardized profile method, following approved written standards.

Along with the Perthometer it was used a high precision drive unit PRK and skidless pick-ups with radii indicated in the technical protocol of the comparison. With the Dektak there was used a $2,5 \,\mu$ m stylus, the closest one to the value indicated in the technical protocol.

It was also used an isolated measurement area and table along with strict and stable ambient conditions.

To obtain and analize data there were used the instruments' resident software plus a Talymap Universal 2.0.

Measurement Method:

There were measured several significant profiles distributed on the standard according to the instructions of the technical report for the different standards.

Vertical amplification of the instrument always adjusted by means of a depth setting standard type A1 with a certified value close to the nominal d/Pt (steps/grooves) or Rz (roughness) value of the standard to be measured.

Noise influence evaluated by measuring parameters on a flat glass with the same measurement conditions established as for the different standards.

Before measurements, alignment of the measurement plane of the step/standard with respect to the reference surface, in order to obtain the best internal alignment of all profiles.

Measurement results and uncertainty evaluation following GUM document after applying ANOVA method in order to identify and quantify random individual effects.

Measurement Report (DATASHEET 1)

Depth setting standard type A2

Measurement conditions (for Groove R1):

According to the technical protocol

- Nominal Value: 0,20 µm
- Tracing Length: 0,30 mm
- Stylus Tracking Force: 0,9 mN
- Scan Speed: 0,10 mm/s
- Sampling Spacing: 0,50 µm
- Stylus Tip radius: 2,5 µm (diamond)

Measurement conditions (for Groove R3):

According to the technical protocol

- Nominal Value: 1,50 µm
- Tracing Length: 0,50 mm
- Stylus Tracking Force: 0,9 mN
- Scan Speed: 0,10 mm/s
- Sampling Spacing: 0,50 µm
- Stylus Tip radius: 2,5 µm (diamond)

Measurement conditions (for Groove R6):

According to the technical protocol

- Nominal Value: 8,00 µm
- Tracing Length: 1,00 mm
- Stylus Tracking Force: 0,9 mN
- Scan Speed: 0,10 mm/s
- Sampling Spacing: 0,50 µm
- Stylus Tip radius: 2,5 µm (diamond)

Other complementary data

- Vertical Range: 65,5 µm
- Temperature: 20 °C ±0,5 °C

Other complementary data

- Vertical Range: 65,5 µm
- Temperature: 20 °C ±0,5 °C

Other complementary data

- Vertical Range: 65,5 µm
- Temperature: 20 °C ±0,5 °C

Measurement results:

Groove	nominal value	measured value	uncertainty	eff. DoF
R1	(µm)	(µm)	$u_c(\mu m)$	$ u_{ m eff}$
<i>Pt</i> (μm)	0,2	0,284	0,005	107
<i>d</i> (µm)		0,277	0,005	107

Groove	nominal value	measured value	uncertainty	eff. DoF
R3	(µm)	(µm)	$u_c(\mu m)$	$ u_{ m eff}$
<i>Pt</i> (μm)	1,5	1,360	0,005	103
<i>d</i> (µm)		1,358	0,005	103

Groove	nominal value	measured value	uncertainty	eff. DoF
R6	(µm)	(µm)	u_c (µm)	$ u_{ m eff}$
<i>Pt</i> (μm)	8,0	8,329	0,006	150
<i>d</i> (µm)		8,315	0,006	150

Uncertainty of measurement (DATASHEET 1)

Mathematical model:

 $Pt = C_1(Adjust.) + Pt(1) + C_2(N)$

 $C_1(Adjust.) = Correction$ by equipment adjustment (calibration data of the step standard plus measurement results)

Pt(1) or d(1) = mean value obtained when measuring the step/groove under calibration $C_2(N)$ = correction by noise effects (after measuring a flat glass)

Quantity X _i	symbol	value	units	probability distribution	standard ur $u(x_i)$	ncertainties u _c (x _i)	degrees of partial	freedom, v total	sensitivity coefficients	uncertainty contribution to $u_i(Pt)$ units	degrees of freedom ບ	relative weight (in %)
C ₁ Equipment adjustment						0,005 µm		102	1	0,005 µm	102	97,36
step certified value	hp	0,01	μm	normal $(k=2)$	0,005 µm		100					
dispersion	s(hm)	1,00E-03	μm	normal	4,47E-04 µm		5					
resolution	r(eq)	0,001	μm	rectangular	2,89E-04 µm		100					
Sample homogenity						0,001 µm		13	1	0,001 µm	13	2,32
dispersion and homogenity	s(Pt(1))	0,002	μm	normal	0,001 µm		10					
resolution	r(eq)	0,001	μm	rectangular	2,89E-04 µm		100					
C ₂ (noise)	C ₂ (N)	0,001	μm	rectangular		0,000 µm	100	100	1	0,000 µm	100	0,32
												$\Sigma =$
									$u_{\rm c} = 0,005$	v = 107		100,00

Identification: groove R1

Combined standard uncertainty:

 $u_c(Pt/d) = 0,005 \ \mu m$

Effective degrees of freedom:

 $v_{eff} (Pt / d) = 107$

Expanded uncertainty:

 $U(Pt/d) = 0,01 \ \mu m$ with a coverage factor k = 2

NOTES:

2. In rectangular distributions we always consider DoF = 100. Acting so, we try to be conservative and avoiding using $DoF = \infty$ because its lack of physical meaning.

^{1.} Dispersion includes both homogenity of the sample and measurement repeatability

Identification: groove R3

Quantity X _i	symbol	value	units	probability distribution	standard ur	certainties	degrees of freedom, $\boldsymbol{\upsilon}$		sensitivity coefficients	uncertainty contribution to	degrees of freedom	relative weight
					$u(x_i)$	$u_{c}(x_{i})$	partial	total		$u_i(Pt)$ units	υ	(in %)
C ₁ Equipment adjustment						0,005 µm		102	1	0,005 µm	102	99,35
step certified value	hp	0,01	μm	normal(k=2)	0,01 µm		100					
dispersion	s(hm)	1,00E-03	μm	normal	4,47E-04 μm		5					
resolution	r(eq)	0,001	μm	rectangular	2,89E-04 µm		100					
Sample homogenity						0,000 µm		100	1	0,000 µm	100	0,33
dispersion and homogenity	s(Pt(1))	0,000	μm	normal	0,000 µm		9					
resolution	r(eq)	0,001	μm	rectangular	2,89E-04 µm		100					
C ₂ (noise)	C ₂ (N)	0,001	μm	rectangular		0,000 µm	100	100	1	0,000 µm	100	0,33
											-	$\Sigma =$
									<i>u</i> _c = 0,005	v = 103		100,00

Combined standard uncertainty:

 $u_c(Pt/d) = 0,005 \,\mu m$

Effective degrees of freedom:

 $v_{eff} (Pt/d) = 103$

Expanded uncertainty:

 $U(Pt / d) = 0,01 \ \mu m$ with a coverage factor k = 2

Identification: groove R6

Quantity X _i	symbol	value	units	probability distribution	standard ur	ncertainties	degrees of freedom, v		sensitivity coefficients	uncertainty contribution to	degrees of freedom	relative weight
					$u(x_i)$	$u_{\rm c}(x_{\rm i})$	partial	total		$u_i(Pt)$ units	υ	(in %)
C1 Equipment adjustment						0,005 µm		102	1	0,005 µm	102	63,24
step certified value	hp	0,01	μm	normal(k=2)	0,01 µm		100					
dispersion	s(hm)	1,00E-03	μm	normal	4,47E-04 μm		5					
resolution	r(eq)	0,001	μm	rectangular	2,89E-04 µm		100					
Sample homogenity						0,004 µm		49	1	0,004 µm	49	36,55
dispersion and homogenity	s(Pt(1))	0,008	μm	normal	0,003 µm		11					
resolution	r(eq)	0,010	μm	rectangular	2,89E-03 µm		100					
C ₂ (noise)	C ₂ (N)	0,001	μm	rectangular		0,000 µm	100	100	1	0,000 µm	100	0,21
												$\Sigma =$

 $u_{\rm c} = 0,006$ v = 150

Combined standard uncertainty:

 $u_c(Pt/d) = 0,006 \ \mu m$

Effective degrees of freedom:

 $v_{eff} (Pt/d) = 150$

Expanded uncertainty:

 $U(Pt/d) = 0,012 \ \mu \mathrm{m}$

with a coverage factor k = 2

100,00

Comment from CEM

At page 25/33, in Table 7, the comments on our results are true, but it is a little bit difficult to investigate on why such values. Because the existence of other uncertainty components, even when increasing the standard deviation, it is possible to get lower final uncertainty.

The contribution of the standard deviation is very small because it is divided by the number of measurements and this number may be different on different standards. Moreover, the A1 type standard used for adjusting the measurement equipment has different uncertainty depending on the value to be measured and this is another important contribution to the final uncertainty.

With respect to the comment at the end of the paragraph 8.3.2 it would be necessary to investigate much more on this item but unfortunately we did not have to much time to do it.

Appendix B1

Reports of CGM

$A3-MEASUREMENT\ Report$

Description of the measurement methods and instruments	
--	--

.....

Instrument: Taylor Hobson Talysurf 5-120 stylus instrument equipped with a Heidenhain scale on x-axis enabling sampling on position. PC based acquisition and control system with 12-Bit A/D converter and a capacity of 10200 samples in one trace.

Working principle: Continuously moving stylus

Data Collection: $2 \mu m$ radius stylus tip, sampling is made while stylus moving at equal steps in x- position. 10 different analog vertical measuring ranges, the range is chosen for each task as the minimum possible taken waviness and form error into account.

Data Evaluation: Data is evaluated as evaluated as "raw data" that is; no compensation for reference plane and linearity correction is made. The software used is in the evaluation: RCS4G ver 2.0 "Roughness Calibration Software" developed by CGM.

Characteristion of instrument: The instrument has a background noise level Rzo between 30 and 58 nm measured on an optical flat depending on measuring range and speed.....

.....

Environmental characterisation: The instrument is placed in a clima controlled measuring lab situated basement level the measurement table is mounted on its own ground vibration isolated from the floor and walls in the room.

Laboratory:CGM.....

Date: Signature:....

Step height standard with a nominal height of 1.5 μm : Identification: EN 806 Groove 1

Equation used: $d = C * (d_{meas}) + \partial (d)_{unlinarity} + \partial (d)_{resol} + \partial (d)_{residual}$

$$u^{2}(d) = u^{2}(D_{ref}) + u^{2}(\Delta D_{locus}) + u^{2}(\Delta D_{repeat}) + u^{2}(\delta_{unlinarity}) + u^{2}(\delta_{resol}) + u^{2}(\delta_{residual}) + u^{2}(\delta_{d})$$

quantity	estimate	uncertainty	probability	sensitivity	uncertainty	degrees of
Λ_{i}	\mathcal{X}_{i}	$u(x_i)$	distribution	coefficient	u(d) nm	needon
				- Ci	$u_{i}(a) \min$	Vi
Dref	155	3.5	normal	1	3.5	x
ΔDlocus	2	1.155	rectangular	1	1.2	00
∆Drepeat	0.31	0.31	normal	1	0.3	11
δunlinarity	9.6	6	rectangular	1	5.5	x
δresol	0.10	0	digital	1	0.0	x
δresidual	53	15	triangular	1	15.3	5
δ (d)	4	2	normal	1	1.8	4

For the type of probability distribution please use: N = normal; R = rectangular; T = triangular; U = U-shaped.

Combined standard uncertainty: $u_c(d) = 17$ Effective degree of freedom: $v_{eff}(d) = \infty$ Expanded uncertainty:U(d) = 34Laboratory:.....CGM.....Date:....12- august 2002.....Signature:

A4 - Uncertainty of measurement

Step height standard with a nominal height of 1.5 μm: Identification: EN 806 Groove 3

Equation used: $d = C * (d_{meas}) + \partial(d)_{unlinarity} + \partial(d)_{resol} + \partial(d)_{residual}$

$$u^{2}(d) = u^{2}(D_{ref}) + u^{2}(\Delta D_{locus}) + u^{2}(\Delta D_{repeat}) + u^{2}(\delta_{unlinarity}) + u^{2}(\delta_{resol}) + u^{2}(\delta_{residual}) + u^{2}(\delta_{d})^{i}$$

quantity X_i	estimate <i>x</i> i	uncertainty $u(x_i)$	probability distribution	sensitivity coefficient	uncertainty contribution	degrees of freedom
				c _i	$u_{\rm i}(d)$ nm	v_{i}
Dref	1110	6	normal	1	6.0	8
ΔDlocus	3	1.732	rectangular	1	1.7	00
ΔDrepeat	2.22	2.22	normal	1	2.2	11
δunlinarity	24.452	14	rectangular	1	14.1	00
δresol	0.49	0	digital	1	0.1	x
δresidual	50	14	triangular	1	14.4	5
δ (d)	5	2	normal	1	2.2	4

For the type of probability distribution please use: N = normal; R = rectangular; T = triangular; U = U-shaped.

Combined standard uncertainty:	$u_c(d) = 21$	
Effective degree of freedom:	$v_{\rm eff}(d) = \infty$	
Expanded uncertainty:	U(d) = 43	with a coverage factor k=2

Laboratory:CGM	
Date:12- august 2002	Signature:

A4 - Uncertainty of measurement

Step height standard with a nominal height of 8_ nm: Identification: EN 806 Groove 6

Equation used: $d = C * (d_{meas}) + \partial(d)_{unlinarity} + \partial(d)_{resol} + \partial(d)_{residual}$

$$u^{2}(d) = u^{2}(D_{ref}) + u^{2}(\Delta D_{locus}) + u^{2}(\Delta D_{repeat}) + u^{2}(\delta_{unlinarity}) + u^{2}(\delta_{resol}) + u^{2}(\delta_{residual}) + u^{2}(\delta_{d})^{\text{ii}}$$

an antitry	actionate		much chiliter			decrease of
quantity	estimate	uncertainty	probability	sensitivity	uncertainty	degrees of
Xi	x_{i}	$u(x_i)$	distribution	coefficient	contribution	freedom
				c _i	$u_{\rm i}(d)$ nm	v_{i}
Dref	9300	12.5	normal	1	12.5	8
ΔDlocus	10	5.774	rectangular	1	5.8	×
ΔDrepeat	18.6	18.6	normal	1	18.6	11
δunlinarity	25.05	14	rectangular	1	14.5	x
δresol	4.88	1	digital	1	1.4	x
δresidual	68	20	triangular	1	19.6	5
δ (d)	16	7	normal	1	7.2	4

For the type of probability distribution please use: N = normal; R = rectangular; T = triangular; U = U-shaped.

Combined standard uncertainty:	$u_c(d) = 34$	
Effective degree of freedom:	$v_{\rm eff}\left(d ight)=\infty$	
Expanded uncertainty:	U(d) = 69	with a coverage factor k=2

Laboratory:CGM	
Date:12- august 2002	Signature:

Geometri standard with a nominal Ra of 0.5 µm: Identification: P114A/528-RS

Equation used: $Ra = C * (Ra_{meas}) + \partial (Ra)_{unlinarity} + \partial (Ra)_{resol} + \partial (Ra)_{residual}$

$$u^{2}(Ra) = u^{2}(D_{ref}) + u^{2}(\Delta D_{locus}) + u^{2}(\Delta D_{repeat}) + u^{2}(\delta_{unlinarity}) + u^{2}(\delta_{resol}) + u^{2}(\delta_{resol}) + u^{2}(\delta(Ra))$$

quantity	estimate	uncertainty	probability	sensitivity	uncertainty	degrees of
X_{i}	xi	$u(x_i)$	distribution	coefficient	contribution	freedom
				c _i	$u_{i}(Ra)$ nm	Vi
Dref	2682	12.5	normal	1	12.5	x
ΔDlocus	15	8.660	rectangular	1	8.7	x
ΔDrepeat	5.364	5.364	normal	1	5.4	11
δunlinarity	11.50	6.6	rectangular	1	6.6	x
δresol	0.98	0.3	digital	1	0.3	x
δresidual	9	2.6	triangular	1	2.6	5
δ(Ra)	2	0.6	normal	1	0.6	11

For the type of probability distribution please use: N = normal; R = rectangular; T = triangular; U = U-shaped.

Combined standard uncertainty:	$u_c(Ra)=18$	
Effective degree of freedom:	$v_{\rm eff}(Ra) = \infty$	
Expanded uncertainty:	U(Ra) = 35	with a coverage factor k=2

Laboratory:CGM..... Date:12- august 2002...... Signature:.....

ⁱ A4 - Uncertainty of measurement

Geometri standard with a nominal Rz of 1.6 µm: Identification: P114A/528-RS

Equation used: $Rz = C * (Rz_{meas}) + \partial (Rz)_{unlinarity} + \partial (Rz)_{resol} + \partial (Rz)_{residual}$

$$u^{2}(Rz) = u^{2}(D_{ref}) + u^{2}(\Delta D_{locus}) + u^{2}(\Delta D_{repeat}) + u^{2}(\delta_{unlinarity}) + u^{2}(\delta_{resol}) + u^{2}(\delta_{resol}) + u^{2}(\delta(Rz))$$

quantity	estimate	uncertainty	probability	sensitivity	uncertainty	degrees of
Xi	x_{i}	$u(x_i)$	distribution	coefficient	contribution	freedom
				c _i	$u_{i}(Rz)$ nm	Vi
Dref	2682	10	normal	1	10.0	x
ΔDlocus	15	8.660	rectangular	1	8.7	x
ΔDrepeat	5.364	5.364	normal	1	5.4	11
δunlinarity	11.50	6.6	rectangular	1	6.6	x
δresol	0.98	0.3	digital	1	0.3	x
δresidual	56	16.2	triangular	1	16.2	5
δ (Rz)	6	1.7	normal	1	1.7	11

For the type of probability distribution please use: N = normal; R = rectangular; T = triangular; U = U-shaped.

Combined standard uncertainty:	$u_c(Rz) = 23$	
Effective degree of freedom:	$v_{\rm eff}(Rz) = \infty$	
Expanded uncertainty:	U(Rz) = 45	with a coverage factor k=2

Laboratory:CGM..... Date:12- august 2002...... Signature:.....

Geometri standard with a nominal Rsm of 50 µm: Identification: P114A/528-RS

Equation used: $Rsm = \frac{1}{n} \cdot \sum_{n} \Delta x_n$

$$u^{2}(Rsm) = 2*\{ u^{2}(Rsm, ref) + u^{2}(Rsm, resol) + \frac{1}{12} \cdot s^{2}(\overline{Rsm}) + \frac{1}{12} \cdot (\frac{w}{h} \cdot Rz_{0})^{2} + \frac{1}{12} \cdot (\frac{1}{4} \cdot \frac{w}{h} \cdot Wt_{0})^{2} \}$$

quantity	estimate	uncertainty	probability	sensitivity	uncertainty	degrees of
$X_{ m i}$	x _i	$u(x_i)$	distribution	coefficient	contribution	freedom
				c _i	u _i (Rsm) nm	v_{i}
Rsm,ref	10000	200	normal	1.00	200.0	11
Rsm,resol	200	57.7	digital	1	57.7	x
Wto	150	43.3	rectangular	1.00	43.3	x
Rzo	56	64.7	rectangular	1.00	64.7	00
S(Rsm)	191	55.1	normal	1.00	55.1	11

For the type of probability distribution please use: N = normal; R = rectangular; T = triangular; U = U-shaped.

Combined standard uncertainty:	$u_c(Rsm) = 324$	
Effective degree of freedom:	$v_{\rm eff}$ (<i>Rsm</i>)= ∞	
Expanded uncertainty:	U(sm) = 648	with a coverage factor k=2
Laboratory:CGM Date:10- oktober 2002	Signature:	

Geometri standard with a nominal Ra of 3 μm : Identification: 7070/PGN10

Equation used: $Ra = C * (Ra_{meas}) + \partial (Ra)_{unlinarity} + \partial (Ra)_{resol} + \partial (Ra)_{residual}$

$$u^{2}(Ra) = u^{2}(D_{ref}) + u^{2}(\Delta D_{locus}) + u^{2}(\Delta D_{repeat}) + u^{2}(\delta_{unlinarity}) + u^{2}(\delta_{resol}) + u^{2}(\delta_{resol}) + u^{2}(\delta(Ra))$$

quantity	estimate	uncertainty	probability	sensitivity	uncertainty	degrees of
$X_{ m i}$	xi	$u(x_i)$	distribution	coefficient	contribution	freedom
				c _i	$u_{\rm i}(Ra)$ nm	Vi
Dref	9300	12.5	normal	1	12.5	x
ΔDlocus	10	5.774	rectangular	1	5.8	x
ΔDrepeat	18.6	18.6	normal	1	18.6	11
δunlinarity	25.05	14	rectangular	1	14.5	x
δresol	4.88	1	digital	1	1.4	x
δresidual	10	3	triangular	1	2.9	5
δ (Ra)	10	4	normal	1	4.5	4

For the type of probability distribution please use: N = normal; R = rectangular; T = triangular; U = U-shaped.

Combined standard uncertainty:	$u_c(Ra)=28$	
Effective degree of freedom:	$v_{\rm eff}(Ra) = \infty$	
Expanded uncertainty:	U(Ra) = 56	with a coverage factor k=2

Laboratory:CGM..... Date:12- august 2002...... Signature:.....

Geometri standard with a nominal Rz of 10 μm : Identification: 7070/PGN10

Equation used: $Rz = C * (Rz_{meas}) + \partial (Rz)_{unlinarity} + \partial (Rz)_{resol} + \partial (Rz)_{residual}$

$$u^{2}(Rz) = u^{2}(D_{ref}) + u^{2}(\Delta D_{locus}) + u^{2}(\Delta D_{repeat}) + u^{2}(\delta_{unlinarity}) + u^{2}(\delta_{resol}) + u^{2}(\delta_{resol}) + u^{2}(\delta(Rz))$$

quantity X_i	estimate x_i	uncertainty $u(x_i)$	probability distribution	sensitivity coefficient	uncertainty contribution	degrees of freedom
	201	<i>w</i> (<i>w</i>)	alburoution	ci	$u_i(Rz)$ nm	Vi
Dref	9300	12.5	normal	1	12.5	x
ΔDlocus	10	5.774	rectangular	1	5.8	x
ΔDrepeat	18.6	18.6	normal	1	18.6	11
δunlinarity	25.05	14.5	rectangular	1	14.5	00
δresol	4.88	1.4	digital	1	1.4	00
δresidual	68	19.6	triangular	1	19.6	5
δ (Rz)	34	9.8	normal	1	9.8	11

For the type of probability distribution please use: N = normal; R = rectangular; T = triangular; U = U-shaped.

Combined standard uncertainty:	$u_c(Rz) = 35$	
Effective degree of freedom:	$v_{\rm eff}(Rz) = \infty$	
Expanded uncertainty:	U(Rz) = 70	with a coverage factor k=2

Laboratory:CGM..... Date:12- august 2002...... Signature:.....

Geometri standard with a nominal Rsm of 200 μm : Identification: 7070/PGN10

Equation used: $Rsm = \frac{1}{n} \cdot \sum_{n} \Delta x_{n}$

$$u^{2}(Rsm) = 2*\{ u^{2}(Rsm, ref) + u^{2}(Rsm, resol) + \frac{1}{12} \cdot s^{2}(\overline{Rsm}) + \frac{1}{12} \cdot (\frac{w}{h} \cdot Rz_{0})^{2} + \frac{1}{12} \cdot (\frac{1}{4} \cdot \frac{w}{h} \cdot Wt_{0})^{2} \}$$

quantity $X_{\rm i}$	estimate <i>x</i> _i	uncertainty $u(x_i)$	probability distribution	sensitivity coefficient	uncertainty contribution	degrees of freedom
				c _i	u _i (Rsm) nm	v_{i}
Rsm,ref	10000	200	normal	1	200.0	11
Rsm,resol	1500	433.0	digital	1	433.0	x
Wto	150	43.3	rectangular	1	43.3	x
Rzo	68	78.5	rectangular	1	78.5	x
S(Rsm)	140	40.4	normal	1	40.4	11

For the type of probability distribution please use: N = normal; R = rectangular; T = triangular; U = U-shaped.

Combined standard uncertainty:	$u_c(Rsm) = 689$	
Effective degree of freedom:	$v_{\rm eff}$ (Rsm)= ∞	
Expanded uncertainty:	U(sm) = 1377	with a coverage factor k=2
Laboratory:CGM Date:10- oktober 2002	Signature:	

Geometri standard with a nominal Ra of 0.9 µm: Identification: 8194/PGN3

Equation used: $Ra = C * (Ra_{meas}) + \partial (Ra)_{unlinarity} + \partial (Ra)_{resol} + \partial (Ra)_{residual}$

$$u^{2}(Ra) = u^{2}(D_{ref}) + u^{2}(\Delta D_{locus}) + u^{2}(\Delta D_{repeat}) + u^{2}(\delta_{unlinarity}) + u^{2}(\delta_{resol}) + u^{2}(\delta_{residual}) + u^{2}(\delta(Ra))$$

quantity	estimate	uncertainty $u(x)$	probability distribution	sensitivity	uncertainty	degrees of
Λ_1	\mathcal{A}_1	$u(x_1)$	distribution	coefficient	$u_{\rm i}(Ra)$ nm	Vi
Dref	5803	10	normal	1	10.0	x
ΔDlocus	6.5	3.753	rectangular	1	3.8	x
ΔDrepeat	11.606	11.606	normal	1	11.6	11
δunlinarity	34.10	19.7	rectangular	1	19.7	8
δresol	1.95	0.6	digital	1	0.6	∞
δresidual	8	2.3	triangular	1	2.3	5
δ (Ra)	10	2.9	normal	1	2.9	11

For the type of probability distribution please use: N = normal; R = rectangular; T = triangular; U = U-shaped.

Combined standard uncertainty:	$u_c(Ra)=26$	
Effective degree of freedom:	$v_{\rm eff}(Ra) = \infty$	
Expanded uncertainty:	U(Ra) = 51	with a coverage factor k=2

Laboratory:CGM..... Date:12- august 2002...... Signature:.....

Geometri standard with a nominal Rz of 3 µm: Identification: 8194/PGN3

Equation used: $Rz = C * (Rz_{meas}) + \partial (Rz)_{unlinarity} + \partial (Rz)_{resol} + \partial (Rz)_{residual}$

$$u^{2}(Rz) = u^{2}(D_{ref}) + u^{2}(\Delta D_{locus}) + u^{2}(\Delta D_{repeat}) + u^{2}(\delta_{unlinarity}) + u^{2}(\delta_{resol}) + u^{2}(\delta_{residual}) + u^{2}(\delta(Rz))$$

quantity	estimate	uncertainty	probability	sensitivity	uncertainty	degrees of
Λ_{i}	λ_{i}	$u(x_i)$	distribution	coefficient	$u_1(R_7)$ nm	needom
					$u_1(\mathbf{n}_{\lambda})$ mm	<i>v</i> ₁
Dref	5803	10	normal	1	10.0	8
ΔDlocus	6.5	3.753	rectangular	1	3.8	8
ΔDrepeat	11.606	11.606	normal	1	11.6	11
δunlinarity	34.10	19.7	rectangular	1	19.7	8
δresol	1.95	0.6	digital	1	0.6	×
δresidual	49	14.1	triangular	1	14.1	5
δ (Rz)	48	13.9	normal	1	13.9	11

For the type of probability distribution please use: N = normal; R = rectangular; T = triangular; U = U-shaped.

Combined standard uncertainty:	$u_c(Rz) = 32$	
Effective degree of freedom:	$v_{\rm eff}(Rz) = \infty$	
Expanded uncertainty:	U(Rz) = 64	with a coverage factor k=2

Laboratory:CGM..... Date:12- august 2002...... Signature:.....

Geometri standard with a nominal Rsm of 118 µm: Identification: 8194/PGN3

Equation used: $Rsm = \frac{1}{n} \cdot \sum_{n} \Delta x_n$

$$u^{2}(Rsm) = 2*\{ u^{2}(Rsm, ref) + u^{2}(Rsm, resol) + \frac{1}{12} \cdot s^{2}(\overline{Rsm}) + \frac{1}{12} \cdot (\frac{w}{h} \cdot Rz_{0})^{2} + \frac{1}{12} \cdot (\frac{1}{4} \cdot \frac{w}{h} \cdot Wt_{0})^{2} \}$$

			1			
quantity	estimate	uncertainty	probability	sensitivity	uncertainty	degrees of
$X_{ m i}$	x _i	$u(x_i)$	distribution	coefficient	contribution	freedom
				c _i	<i>u</i> _i (<i>Rsm</i>) nm	v_{i}
Rsm,ref	10000	200	normal	1	200.0	11
Rsm,resol	500	144.3	digital	1	144.3	x
Wto	150	43.3	rectangular	1	43.3	x
Rzo	49	56.6	rectangular	1	56.6	x
S(Rsm)	1052	303.7	normal	1	303.7	11

For the type of probability distribution please use: N = normal; R = rectangular; T = triangular; U = U-shaped.

Combined standard uncertainty: $u_c(Rsm) = 562$ Effective degree of freedom: $v_{eff}(Rsm) = \infty$ Expanded uncertainty:U(sm) = 1125 with a coverage factor k=2Laboratory:.....CGM......Date:....10- oktober 2002.......Signature:.................

Roughness standard with a nominal Ra of 0.15 μm : Identification: 629f

Equation used: $Ra = C * (Ra_{meas}) + \partial (Ra)_{unlinarity} + \partial (Ra)_{resol} + \partial (Ra)_{residual}$

$$u^{2}(Ra) = u^{2}(D_{ref}) + u^{2}(\Delta D_{locus}) + u^{2}(\Delta D_{repeat}) + u^{2}(\delta_{unlinarity}) + u^{2}(\delta_{resol}) + u^{2}(\delta_{residual}) + u^{2}(\delta(Ra))$$

quantity	estimate	uncertainty $u(x)$	probability distribution	sensitivity	uncertainty	degrees of
Λ_1	\mathcal{A}_1	$u(x_1)$	distribution	coefficient	$u_{i}(Ra)$	V _i
Dref	2682	12.5	normal	1	12.5	8
ΔDlocus	15	8.660	rectangular	1	8.7	8
ΔDrepeat	5.364	5.364	normal	1	5.4	11
δunlinarity	11.50	6.6	rectangular	1	6.6	8
δresol	0.98	0.3	digital	1	0.3	8
δresidual	9	2.6	triangular	1	2.6	5
δ (Ra)	4	1.2	normal	1	1.2	11

For the type of probability distribution please use: N = normal; R = rectangular; T = triangular; U = U-shaped.

Combined standard uncertainty:	$u_c(Ra)=18$	
Effective degree of freedom:	$v_{\rm eff}(Ra) = \infty$	
Expanded uncertainty:	U(Ra) = 35	with a coverage factor k=2

Laboratory:CGM..... Date:12- august 2002...... Signature:.....

Roughness standard with a nominal Rz of 1.2 μm : Identification: 629f

Equation used: $Rz = C * (Rz_{meas}) + \partial (Rz)_{unlinarity} + \partial (Rz)_{resol} + \partial (Rz)_{residual}$

$$u^{2}(Rz) = u^{2}(D_{ref}) + u^{2}(\Delta D_{locus}) + u^{2}(\Delta D_{repeat}) + u^{2}(\delta_{unlinarity}) + u^{2}(\delta_{resol}) + u^{2}(\delta_{residual}) + u^{2}(\delta(Rz))$$

quantity	Estimate	uncertainty	probability	sensitivity	uncertainty	degrees of
Xi	x_i	$u(x_i)$	distribution	coefficient	contribution	Treedom
				Ci	$u_i(Rz)$ nm	vi
Dref	2682	10	normal	1	10.0	x
ΔDlocus	15	8.660	rectangular	1	8.7	00
ΔDrepeat	5.364	5.364	normal	1	5.4	11
δunlinarity	11.50	6.6	rectangular	1	6.6	x
δresol	0.98	0.3	digital	1	0.3	x
δresidual	56	16.2	triangular	1	16.2	5
δ (Rz)	41	11.8	normal	1	11.8	11

For the type of probability distribution please use: N = normal; R = rectangular; T = triangular; U = U-shaped.

Combined standard uncertainty:	$u_c(Rz) = 25$	
Effective degree of freedom:	$v_{\rm eff}(Rz) = \infty$	
Expanded uncertainty:	U(Rz) = 51	with a coverage factor k=2

Laboratory:CGM..... Date:12- august 2002...... Signature:.....

Roughness standard with a nominal Rz of 1.24 µm: Identification: 629f Rk

Equation used: $Rk = C * (Rk_{meas}) + \partial (Rk)_{unlinarity} + \partial (Rk)_{resol} + \partial (Rk)_{residual}$

$$u^{2}(Rk) = u^{2}(D_{ref}) + u^{2}(\Delta D_{locus}) + u^{2}(\Delta D_{repeat}) + u^{2}(\delta_{unlinarity}) + u^{2}(\delta_{resol}) + u^{2}(\delta_{residual}) + u^{2}(\delta(Rk))$$

quantity	estimate	uncertainty	probability	Sensitivity	uncertainty	degrees of
X_{i}	x_{i}	$u(x_i)$	distribution	coefficient	contribution	freedom
				ci	$u_{i}(Rk)$ nm	v _i
Dref	2682	12.5	normal	1	12.5	∞
ΔDlocus	15	8.660	rectangular	1	8.7	∞
ΔDrepeat	5.364	5.364	normal	1	5.4	11
δunlinarity	11.50	6.6	rectangular	1	6.6	x
δresol	0.98	0.3	digital	1	0.3	x
δresidual	26	7.5	triangular	1	7.5	5
δ (Rk)	12	3.5	normal	1	3.5	11

For the type of probability distribution please use: N = normal; R = rectangular; T = triangular; U = U-shaped.

Combined standard uncertainty:	$u_c(Rk) = 19$	
Effective degree of freedom:	$v_{\rm eff}(Rk) = \infty$	
Expanded uncertainty:	U(Rk) = 39	with a coverage factor k=2

Laboratory:CGM..... Date:12- august 2002...... Signature:.....

Roughness standard with a nominal Ra of 1.5 μm : Identification: 633g

Equation used: $Ra = C * (Ra_{meas}) + \partial (Ra)_{unlinarity} + \partial (Ra)_{resol} + \partial (Ra)_{residual}$

$$u^{2}(Ra) = u^{2}(D_{ref}) + u^{2}(\Delta D_{locus}) + u^{2}(\Delta D_{repeat}) + u^{2}(\delta_{unlinarity}) + u^{2}(\delta_{resol}) + u^{2}(\delta_{resol}) + u^{2}(\delta(Ra))$$

quantity X_i	estimate x_i	uncertainty $u(x_i)$	probability distribution	sensitivity coefficient	uncertainty contribution	degrees of freedom
1	1			c _i	$u_{\rm i}(Ra)$ nm	v_{i}
Dref	9300	12.5	normal	1	12.5	8
ΔDlocus	10	5.774	rectangular	1	5.8	x
ΔDrepeat	18.6	18.6	normal	1	18.6	11
δunlinarity	25.05	14.5	rectangular	1	14.5	∞
δresol	4.88	1.4	digital	1	1.4	00
δresidual	10	2.9	triangular	1	2.9	5
δ (Ra)	4	1.2	normal	1	1.2	11

For the type of probability distribution please use: N = normal; R = rectangular; T = triangular; U = U-shaped.

Combined standard uncertainty:	$u_c(Ra)=28$				
Effective degree of freedom:	$v_{\rm eff}(Ra) = \infty$				
Expanded uncertainty:	U(Ra) = 55	with a coverage factor k=2			
Laboratory:CGM					
Date:12- august 2002 Signature:					

Roughness standard with a nominal Rz of 7.45 μm : Identification: 633g

Equation used: $Rz = C * (Rz_{meas}) + \partial (Rz)_{unlinarity} + \partial (Rz)_{resol} + \partial (Rz)_{residual}$

$$u^{2}(Rz) = u^{2}(D_{ref}) + u^{2}(\Delta D_{locus}) + u^{2}(\Delta D_{repeat}) + u^{2}(\delta_{unlinarity}) + u^{2}(\delta_{resol}) + u^{2}(\delta_{residual}) + u^{2}(\delta(Rz))$$

quantity	Estimate	uncertainty	probability	sensitivity	uncertainty	degrees of
Λ_{i}	Xi	$u(x_i)$	distribution	coefficient	contribution	freedom
				ci	$u_{i}(Rz) \text{ nm}$	v _i
Dref	9300	12.5	normal	1	12.5	x
ΔDlocus	10	5.774	rectangular	1	5.8	x
ΔDrepeat	18.6	18.6	normal	1	18.6	11
δunlinarity	25.05	14.5	rectangular	1	14.5	x
δresol	4.88	1.4	digital	1	1.4	x
δresidual	68	19.6	triangular	1	19.6	5
δ (Rz)	259	74.8	normal	1	74.8	11

For the type of probability distribution please use: N = normal; R = rectangular; T = triangular; U = U-shaped.

Combined standard uncertainty:	$u_c(Rz) = 42$	
Effective degree of freedom:	$v_{\rm eff}(Rz) = \infty$	
Expanded uncertainty:	U(Rz) = 84	with a coverage factor k=2

Laboratory:CGM..... Date:12- august 2002...... Signature:.....

Roughness standard with a nominal Rz of 7.5 μm: Identification: 633g Rk

Equation used: $Rk = C * (Rk_{meas}) + \partial (Rk)_{unlinarity} + \partial (Rk)_{resol} + \partial (Rk)_{residual}$

$$u^{2}(Rk) = u^{2}(D_{ref}) + u^{2}(\Delta D_{locus}) + u^{2}(\Delta D_{repeat}) + u^{2}(\delta_{unlinarity}) + u^{2}(\delta_{resol}) + u^{2}(\delta_{resol}) + u^{2}(\delta(Rk))$$

quantity	estimate	uncertainty $u(x)$	probability distribution	Sensitivity	uncertainty	degrees of
Λ_1	λ_1	$u(x_1)$	distribution	coefficient	$u_i(Rk)$ nm	Vi
Dref	9300	12.5	normal	1	12.5	x
ΔDlocus	10	5.774	rectangular	1	5.8	x
ΔDrepeat	18.6	18.6	normal	1	18.6	11
δunlinarity	25.05	14.5	rectangular	1	14.5	x
δresol	4.88	1.4	digital	1	1.4	8
δresidual	34	9.8	triangular	1	9.8	5
δ(Rk)	19	5.5	normal	1	5.5	11

For the type of probability distribution please use: N = normal; R = rectangular; T = triangular; U = U-shaped.

Combined standard uncertainty:	$u_c(Rk)=30$	
Effective degree of freedom:	$v_{\rm eff}(Rk) = \infty$	
Expanded uncertainty:	U(Rk) = 59	with a coverage factor k=2

Laboratory:CGM..... Date:12- august 2002...... Signature:.....

Roughness standard with a nominal Ra of 2.34 μm : Identification: 686sg

Equation used: $Ra = C * (Ra_{meas}) + \partial (Ra)_{unlinarity} + \partial (Ra)_{resol} + \partial (Ra)_{residual}$

$$u^{2}(Ra) = u^{2}(D_{ref}) + u^{2}(\Delta D_{locus}) + u^{2}(\Delta D_{repeat}) + u^{2}(\delta_{unlinarity}) + u^{2}(\delta_{resol}) + u^{2}(\delta_{residual}) + u^{2}(\delta(Ra))$$

quantity	estimate	uncertainty	probability	sensitivity	uncertainty	degrees of
$X_{ m i}$	Xi	$u(x_i)$	distribution	coefficient	contribution	freedom
				c _i	$u_{i}(Ra)$ nm	v_{i}
Dref	9300	12.5	normal	1	12.5	00
ΔDlocus	10	5.774	rectangular	1	5.8	x
ΔDrepeat	18.6	18.6	normal	1	18.6	11
δunlinarity	25.90	15.0	rectangular	1	15.0	∞
δresol	9.77	2.8	digital	1	2.8	∞
δresidual	9	2.6	triangular	1	2.6	5
δ (Ra)	19	5.5	normal	1	5.5	11

For the type of probability distribution please use: N = normal; R = rectangular; T = triangular; U = U-shaped.

Combined standard uncertainty: $u_c(Ra) = 28$ Effective degree of freedom: $v_{eff}(Ra) = \infty$ Expanded uncertainty:U(Ra) = 57 with a coverage factor k=2Laboratory:.....CGM......Date:....12- august 2002......Signature:......

Roughness standard with a nominal Rz of 14 μm : Identification: 686sg

Equation used: $Rz = C * (Rz_{meas}) + \partial (Rz)_{unlinarity} + \partial (Rz)_{resol} + \partial (Rz)_{residual}$

$$u^{2}(Rz) = u^{2}(D_{ref}) + u^{2}(\Delta D_{locus}) + u^{2}(\Delta D_{repeat}) + u^{2}(\delta_{unlinarity}) + u^{2}(\delta_{resol}) + u^{2}(\delta_{residual}) + u^{2}(\delta(Rz))$$

quantity	Estimate	uncertainty $u(x)$	probability distribution	sensitivity	uncertainty	degrees of
<i>n</i> ₁	\mathcal{A}_1	$u(x_1)$	distribution	coefficient	$u_i(Rz)$ nm	V _i
Dref	9300	12.5	Normal	1	12.5	x
ΔDlocus	10	5.774	rectangular	1	5.8	x
∆Drepeat	18.6	18.6	Normal	1	18.6	11
δunlinarity	25.90	15.0	rectangular	1	15.0	8
δresol	9.77	2.8	Digital	1	2.8	8
δresidual	68	19.6	Triangular	1	19.6	5
δ (Rz)	326	94.1	normal	1	94.1	11

For the type of probability distribution please use: N = normal; R = rectangular; T = triangular; U = U-shaped.

Combined standard uncertainty:	$u_c(Rz) = 100$	
Effective degree of freedom:	$v_{\rm eff}(Rz) = \infty$	
Expanded uncertainty:	U(Rz) = 200	with a coverage factor k=2

Laboratory:CGM..... Date:12- august 2002...... Signature:.....
Roughness standard with a nominal Rz of 14 μm : Identification: 686sg $\,$ Rk $\,$

Equation used: $Rk = C * (Rk_{meas}) + \partial (Rk)_{unlinarity} + \partial (Rk)_{resol} + \partial (Rk)_{residual}$

$$u^{2}(Rk) = u^{2}(D_{ref}) + u^{2}(\Delta D_{locus}) + u^{2}(\Delta D_{repeat}) + u^{2}(\delta_{unlinarity}) + u^{2}(\delta_{resol}) + u^{2}(\delta_{residual}) + u^{2}(\delta(Rk))$$

quantity	estimate	uncertainty	probability	Sensitivity	uncertainty	degrees of
Xi	x_{i}	$u(x_i)$	distribution	coefficient	contribution	Ireedom
				c _i	<i>u</i> _i (Rk) nm	vi
Dref	9300	12.5	normal	1	12.5	x
ΔDlocus	10	5.774	rectangular	1	5.8	8
ΔDrepeat	18.6	18.6	normal	1	18.6	11
δunlinarity	25.90	15.0	rectangular	1	15.0	8
δresol	9.77	2.8	digital	1	2.8	00
δresidual	34	9.8	triangular	1	9.8	5
δ (Rk)	109	31.5	normal	1	31.5	11

For the type of probability distribution please use: N = normal; R = rectangular; T = triangular; U = U-shaped.

Combined standard uncertainty:	$u_c(Rk) = 43$	
Effective degree of freedom:	$v_{\rm eff}(Rk) = \infty$	
Expanded uncertainty:	U(Rk) = 86	with a coverage factor k=2

Laboratory:CGM..... Date:12- august 2002...... Signature:.....

Appendix B1 - Reports of CGM

Roughness standard type D2 with a Ra of 0.026 μm: Identification: SFRN 150

Equation used: $Ra = C * (Ra_{meas}) + \partial (Ra)_{unlinarity} + \partial (Ra)_{resol} + \partial (Ra)_{residual}$

$$u^{2}(Ra) = u^{2}(D_{ref}) + u^{2}(\Delta D_{locus}) + u^{2}(\Delta D_{repeat}) + u^{2}(\delta_{unlinarity}) + u^{2}(\delta_{resol}) + u^{2}(\delta_{residual}) + u^{2}(\delta(Ra))$$

quantity X:	estimate	uncertainty $\mu(x_i)$	probability distribution	sensitivity coefficient	uncertainty contribution	degrees of freedom
	201		ansunoution	c _i	$u_i(Ra)$ nm	v _i
Dref	416	4	normal	1	4.0	8
ΔDlocus	1	0.577	rectangular	1	0.6	∞
∆Drepeat	0.832	0.832	normal	1	0.8	11
δunlinarity	9.60	5.5	rectangular	1	5.5	∞
δresol	0.20	0.1	digital	1	0.1	∞
δresidual	8	2.3	triangular	1	2.3	5
δ (Ra)	1	0.3	normal	1	0.3	11

For the type of probability distribution please use: N = normal; R = rectangular; T = triangular; U = U-shaped.

Combined standard uncertainty: $u_c(Ra) = 7$ Effective degree of freedom: $v_{eff}(Ra) = \infty$ Expanded uncertainty:U(Ra) = 15 with a coverage factor k=2Laboratory:.....CGM......Date:....12- august 2002......Signature:......

Roughness standard type D2 with a nominal Rz of 0.14 μ m: Identification: SFRN 150

Equation used: $Rz = C * (Rz_{meas}) + \partial (Rz)_{unlinarity} + \partial (Rz)_{resol} + \partial (Rz)_{residual}$

$$u^{2}(Rz) = u^{2}(D_{ref}) + u^{2}(\Delta D_{locus}) + u^{2}(\Delta D_{repeat}) + u^{2}(\delta_{unlinarity}) + u^{2}(\delta_{resol}) + u^{2}(\delta_{residual}) + u^{2}(\delta(Rz))$$

quantity	Estimate	uncertainty	probability	sensitivity	uncertainty	degrees of
Λ_{i}	$\mathcal{X}_{\mathbf{i}}$	$u(x_i)$	distribution	coefficient	$u_1(R_7)$ nm	needoni
				c_1	$u_1(n_{\lambda})$ mm	<i>v</i> ₁
Dref	416	4	normal	1	4.0	8
ΔDlocus	1	0.577	rectangular	1	0.6	∞
ΔDrepeat	0.832	0.832	normal	1	0.8	11
δunlinarity	9.60	5.5	rectangular	1	5.5	×
δresol	0.20	0.1	digital	1	0.1	8
δresidual	44	12.7	triangular	1	12.7	5
δ (Rz)	6	1.7	normal	1	1.7	11

For the type of probability distribution please use: N = normal; R = rectangular; T = triangular; U = U-shaped.

Combined standard uncertainty:	$u_c(Rz) = 15$	
Effective degree of freedom:	$v_{\rm eff}(Rz) = \infty$	
Expanded uncertainty:	U(Rz) = 29	with a coverage factor k=2

Laboratory:CGM..... Date:12- august 2002...... Signature:.....

Appendix B1 - Reports of CGM

Roughness standard type D2 with a Rk of 0.076 μm: Identification: SFRN 150

Equation used: $Rk = C * (Rk_{meas}) + \partial (Rk)_{unlinarity} + \partial (Rk)_{resol} + \partial (Rk)_{residual}$

$$u^{2}(Rk) = u^{2}(D_{ref}) + u^{2}(\Delta D_{locus}) + u^{2}(\Delta D_{repeat}) + u^{2}(\delta_{unlinarity}) + u^{2}(\delta_{resol}) + u^{2}(\delta_{resol}) + u^{2}(\delta(Rk))$$

quantity X_i	estimate x_i	uncertainty $u(x_i)$	probability distribution	Sensitivity coefficient	uncertainty contribution	degrees of freedom
	-			c _i	$u_{\rm i}(Ra)$ nm	v_{i}
Dref	416	4	normal	1	4.0	x
ΔDlocus	1	0.577	rectangular	1	0.6	00
ΔDrepeat	0.832	0.832	normal	1	0.8	11
δunlinarity	9.60	5.5	rectangular	1	5.5	∞
δresol	0.20	0.1	digital	1	0.1	x
δresidual	23	6.6	triangular	1	6.6	5
δ (Rk)	6	1.7	normal	1	1.7	11

Combined standard uncertainty:	$u_c(Rk) = 10$	
Effective degree of freedom:	$v_{\rm eff}(Rk) = \infty$	
Expanded uncertainty:	U(Rk) = 19	with a coverage factor k=2
Laboratory:CGM		
Date:12- august 2002	Signature:	

CGM

We have some comments to our results which we would like to be added to our report.

Our result for the RSm parameter did all come out too small in the report. They were computed by our own developed software RCS4G version 2.0. An investigation of the applied algorithm showed us that there was a systematic error in the calculation of the length of the first profile element. By removing the first profile element from the calculation we obtain the following values for RSm.

 RSm values computed with the software after correction:

 7070 /PGN 10:
 RSm = (199960 +/- 1376) nm

 8194 PGN 3:
 RSm = (119990 +/- 1125) nm

 P114A:
 RSm = (50036 +/- 648)nm

Fortunately this has not given us any problems as replacing of customer certificates since we have not been making any with RSm using version 2.0.

Concerning the results we are surprisingly having problem with the coarse type C standard 7070/PGN10 when measuring Rz but not Rzmax. We have no explanation for this at the moment.

Appendix B1

Reports of CMI

A3 – MEASUREMENT REPORT

Description of the measurement methods and instruments **1. TYPE OF INSTRUMENT**

The measurement was carried out by surface tracing device HOMMEL TESTER T8000 made by the firm Hommelwerke GmbH. This equipment consists of the own apparatus HOMMEL TESTER T8000 of serial number 44731 with the absolute taking-off device TKL 100s of serial number 76151 with the diamond tip of radius of curvature 2 μ m.

2. KIND OF OPERATION

The measurement was performed by the surface tracing method. It deals with inductive sy stem of measurement of traversing lenght. The diamond tip is led along the measured surface. The measured sample is placed on the table and the taking-off arm with the diamond tip is moving.

3. CONDITIONS OF DATA COLLECTION

Data are collected by that system automatically by means of the hardware and software components. The hardware and software components at the heart of the system are provided by an intelligent PC slot card together with the TURBO Roughness for Windows software. These meet the very latest requirements in terms of on-line roughness measurement technology.

4. CONDITIONS OF EVALUATION

The equipment was calibrated by means of the following set of standards:

1 piece of standard A2 of serial number 0909

- 1 piece of standard D of serial number 0764
- 1 piece of standard D of serial number 0906
- 1 piece of standard D of serial number 0889

These standards were calibrated in the PTB.

The calibration was taken into consideration by the evaluation of results of measurement comparison.

5. CHARAKTERISATION OF INSTRUMENT NOISE AND DEVIATION OF IDEAL BEHAVIOUR

Within the framework of calibration the measurement by means of flat glass was caried out. The deviations determined in this way are deviations produced by instrument noise. The equipment setting up in the laboratory doesn't allow to give rise to other undesirable devi a-tions.

6. Enviroment characterisation

The apparatus is placed in the laboratory on the granite board, which is put on the own basis (without basis of building) because of vibration isolation. In that laboratory there is an air-conditioning, which keeps the temperature within $\pm 1^{\circ}$ C and the air humidity below 65 %.

7. THE MEASUREMENT UNCERTAINTIES

The uncertainties of measurement are divided into two parts:

- 1. part the uncertainty caused by standard, which is measured.
 - This uncertainty is given by the quality of standard surface. It is the type A uncertainty, evaluted according to the relation:

$$u_{1} = \sqrt{\frac{1}{n(n-1)} \sum_{i=1}^{i=n} (x_{i} - \overline{x})^{2}}$$

n is the number of measurements

x_i is the single value of measurement is the average calculated according to the relation:

$$\overline{x} = \frac{1}{n} \sum_{i=1}^{i=n} x_i$$

This uncerntainty is introduced in the first line of the tables.

2. part – the uncertainty caused by the method. This uncertainty is given by sum of the uncertainties caused by the following influences:

- the uncertainty given by the radius of curvature r (μ m) of the diamond tip
- the uncertainty of standard used for calibration of device
- the uncertainty determined at the calibration of device
 - the uncertainty given by homogeneity of standard used
 - the uncertainty determined at the calibration of device from the standard deviation of the average of the single measured values
- the uncertainty given by the deviation of the measured length from its nominal value
- the uncertainty given by the deviation of the force from its nominal value.

Laboratory: CMI-LFM, Prague					
Date: .22.8.2001	Signature:Jiří BOROVSKÝ				

Step height standard with a nominal height of _5__ nm: Pt identification EN 806 R1

Equation used:

$$d=f(x_i)$$

 $d = f(Pt_1; r; u_e; Pt_2; h; l; F)$

quantity	estimate	uncertainty	probability	sensitivity	uncertainty	degrees of
X _i	x_{i}	$u(x_i)$	distribution	coefficient	contribution	freedom
				ci	$u_{i}(d)$	Vi
Pt ₁ [μm]		0,002	Ν	1	0,002	9
R [µm]	0,01	0,006	R	1	0,006	8
u _e [µm]		0,009	N	1	0,009	4
Pt ₂ [μm]		0,03	N	1	0,03	4
h [µm]	0,056	0,016	R	1	0,016	8
l [mm]	0,005	0,003	R	1	0,003	8
F [mN]	0,002	0,001	R	1	0,001	8

For the type of probability distribution please use: N = normal; R = rectangular; T = triangular; U = U-shaped.

Combined standard uncertainty: $u_c(d) = 0,036 \,\mu\text{m}$ Effective degree of freedom: $v_{\text{eff}}(d) = 8$

Expanded uncertainty: $U(d) = 0,072 \,\mu\text{m}$ with a coverage factor k=2

Step height standard with a nominal height of ____ nm: D identification EN 806 R1

Equation used:

 $d=f(x_i)$

 $d = f(D_1; r; u_e; D_2; h; l; F)$

quantity	estimate	uncertainty	probability	sensitivity	uncertainty	degrees of
$X_{ m i}$	x_{i}	$u(x_i)$	distribution	coefficient	contribution	freedom
				c _i	$u_{\rm i}(d)$	v_{i}
D ₁ [μm]		0,002	Ν	1	0,002	9
r [µm]	0,01	0,006	R	1	0,006	8
u _e [µm]		0,009	Ν	1	0,009	4
D ₂ [μm]		0,022	Ν	1	0,022	4
h [µm]	0,128	0,037	R	1	0,037	8
l [mm]	0,005	0,003	R	1	0,003	8
F [mN]	0,002	0,001	R	1	0,001	00

Combined standard uncertainty:	$u_c(d) = 45 \mu\mathrm{m}$	
Effective degree of freedom:	$v_{\rm eff}(d) = 59$	
Expanded uncertainty:	$U(d) = 90 \ \mu \mathrm{m}$	with a coverage factor k=2

Step height standard with a nominal height of _78_ nm: Pt identification EN806 R3

Equation used:

$$d=f(x_i)$$

 $d = f (Pt_1; r; u_e; Pt_2; h; l; F)$

quantity	estimate	uncertainty	probability	sensitivity	uncertainty	degrees of
$X_{ m i}$	Xi	$u(x_i)$	distribution	coefficient	contribution	freedom
				c _i	$u_{\rm i}(d)$	v_{i}
Pt ₁ [μm]		0,03	Ν	1	0,03	9
r [µm]	0,01	0,006	R	1	0,006	8
u _e [μm]		0,01	Ν	1	0,01	4
Pt ₂ [μm]		0,024	Ν	1	0,024	4
h [µm]	0,13	0,037	R	1	0,037	8
l [mm]	0,005	0,003	R	1	0,003	8
F [mN]	0,002	0,001	R	1	0,001	00

Combined standard uncertainty:	$u_c(d) = 0,046 \ \mu \mathrm{m}$	
Effective degree of freedom:	$v_{\rm eff}(d) = 53$	
Expanded uncertainty:	$U(d) = 0,092 \ \mu m$	with a coverage factor k=2

Step height standard with a nominal height of ____ nm: D identification EN 806 R3

Equation used:

 $d=f(x_i)$

 $d = f(D_1; r; u_e; D_2; h; l; F)$

quantity	estimate	uncertainty	probability	sensitivity	uncertainty	degrees of
$X_{ m i}$	Xi	$u(x_i)$	distribution	coefficient	contribution	freedom
				c _i	$u_{\rm i}(d)$	v_{i}
D ₁ [μm]		0,008	Ν	1	0,008	9
r [µm]	0,01	0,006	R	1	0,006	8
u _e [μm]		0,01	Ν	1	0,01	4
D ₂ [μm]		0,033	Ν	1	0,033	4
h [µm]	0,167	0,048	R	1	0,048	8
l [mm]	0,005	0,003	R	1	0,003	8
F [mN]	0,002	0,001	R	1	0,001	00

Combined standard uncertainty:	$u_c(d) = 60 \mu\mathrm{m}$	
Effective degree of freedom:	$v_{\rm eff}(d) = 42$	
Expanded uncertainty:	$U(d) = 120 \ \mu \mathrm{m}$	with a coverage factor k=2

Step height standard with a nominal height of _353_ nm: Pt identification EN806 R6

Equation used:

 $d=f(x_i)$

 $d = f(Pt_1; r; u_e; Pt_2; h; l; F)$

quantity	estimate	uncertainty	probability	sensitivity	uncertainty	degrees of
$X_{ m i}$	Xi	$u(x_i)$	distribution	coefficient	contribution	freedom
				c _i	$u_{\rm i}(d)$	v_{i}
Pt ₁ [μm]		0,007	Ν	1	0,007	9
r [µm]	0,01	0,006	R	1	0,006	8
u _e [µm]		0,04	Ν	1	0,04	4
Pt ₂ [μm]		0,027	Ν	1	0,027	4
h [µm]	0,15	0,04	R	1	0,04	8
l [mm]	0,005	0,003	R	1	0,003	8
F [mN]	0,002	0,001	R	1	0,001	8

Combined standard uncertainty:	$u_c(d) = 0,065$	
Effective degree of freedom:	$v_{\rm eff}(d) = 24$	
Expanded uncertainty:	U(d) = 0,130	with a coverage factor k=2

Step height standard with a nominal height of ____ nm: D identification EN 806 R6

Equation used:

 $d=f(x_i)$

 $d = f(D_1; r; u_e; D_2; h; l; F)$

quantity	estimate	uncertainty	probability	sensitivity	uncertainty	degrees of
$X_{ m i}$	x_{i}	$u(x_i)$	distribution	coefficient	contribution	freedom
				c _i	$u_{\rm i}(d)$	v_{i}
D ₁ [μm]		0,007	Ν	1	0,007	9
r [µm]	0,01	0,006	R	1	0,006	8
u _e [µm]		0,04	Ν	1	0,04	4
D ₂ [μm]		0,019	Ν	1	0,019	4
h [µm]	0,120	0,035	R	1	0,035	8
l [mm]	0,005	0,003	R	1	0,003	00
F [mN]	0,002	0,001	R	1	0,001	00

Combined standard uncertainty:	$u_c(d) = 57 \mu\mathrm{m}$	
Effective degree of freedom:	$v_{\rm eff}(d) = 76$	
Expanded uncertainty:	$U(d) = 114 \ \mu m$	with a coverage factor k=2

Step height standard with a nominal height of _1_ nm: Ra identification P114A

Equation used:

$$d=f(x_i)$$

 $d = f (Ra_1; r; u_e; Ra_2; h; l; F)$

quantity X _i	estimate x _i	uncertainty $u(x_i)$	probability distribution	sensitivity coefficient	uncertainty contribution	degrees of freedom
				c _i	$u_{i}(d)$	v_{i}
Ra ₁ [µm]		0,0006	Ν	1	0,0006	11
r [µm]	0,01	0,006	R	1	0,006	00
u _e [µm]		0,01	Ν	1	0,01	11
Ra ₂ [µm]		0,0008	Ν	1	0,0008	14
h [µm]	0,01	0,003	R	1	0,003	00
l [mm]	0,005	0,003	R	1	0,003	00
F [mN]	0,002	0,001	R	1	0,001	00

Combined standard uncertainty:	$u_c(d) =$	0,012 μm	
Effective degree of freedom:	$v_{\rm eff}(d) =$	26	
Expanded uncertainty:	U(d) =	0,024 µm	with a coverage factor k=2

Step height standard with a nominal height of ____ nm: Rz identification P114A

Equation used:

$$d=f(x_i)$$

 $d = f(Rz_1; r; u_e; Rz_2; h; l; F)$

quantity	estimate	uncertainty	probability	sensitivity	uncertainty	degrees of
$X_{ m i}$	xi	$u(x_i)$	distribution	coefficient	contribution	freedom
				c _i	$u_{\rm i}(d)$	v_{i}
Rz ₁ [μm]		0,002	Ν	1	0,002	11
r [µm]	0,01	0,006	R	1	0,006	8
u _e [µm]		0,06	Ν	1	0,06	11
Rz ₂ [μm]		0,006	Ν	1	0,006	14
h [µm]	0,072	0,021	R	1	0,021	8
l [mm]	0,005	0,003	R	1	0,003	8
F [mN]	0,002	0,001	R	1	0,001	00

Combined standard uncertainty:	$u_c(d) = 0,064 \ \mu m$
Effective degree of freedom:	$v_{\rm eff}(d) = 14$
Expanded uncertainty:	$U(d) = 0.128 \ \mu \text{mwith a coverage factor k} = 2$

Step height standard with a nominal height of ____ nm: Rmax identification P114A

Equation used:

$$d=f(x_i)$$

 $d = f (Rmax_1; r; u_e; Rmax_2; h; l; F)$

quantity	estimate	uncertainty	probability	sensitivity	uncertainty	degrees of
$X_{ m i}$	Xi	$u(x_i)$	distribution	coefficient	contribution	freedom
				c _i	$u_{\rm i}(d)$	Vi
Rmax ₁ [µm]		0,003	Ν	1	0,003	11
r [µm]	0,01	0,006	R	1	0,006	8
u _e [μm]		0,07	Ν	1	0,07	11
Rmax ₂ [µm]		0,008	Ν	1	0,008	14
h [µm]	0,103	0,030	R	1	0,030	8
l [mm]	0,005	0,003	R	1	0,003	8
F [mN]	0,002	0,001	R	1	0,001	00

Combined standard uncertainty:	$u_c(d) = 0,077 \ \mu m$	
Effective degree of freedom:	$v_{\rm eff}(d) = 16$	
Expanded uncertainty:	$U(d) = 0.154 \ \mu m$	with a coverage factor k=2

Step height standard with a nominal height of _200_ nm: RSm identification P114A

Equation used:

 $d=f(x_i)$

 $d = f (RSm_1; r; u_e; RSm_2; h; l; F)$

quantity	estimate	uncertainty	probability	sensitivity	uncertainty	degrees of
$X_{ m i}$	x_{i}	$u(x_i)$	distribution	coefficient	contribution	freedom
				c _i	$u_{\rm i}(d)$	v_{i}
RSm ₁ [µm]		0,348	Ν	1	0,0003	11
r [µm]	0,01	0,006	R	1	0,006	8
u _e [μm]		6,0	Ν	1	0,006	11
RSm ₂ [µm]		0,447	Ν	1	0,0003	14
h [µm]	0,0025	0,722	R	1	0,0007	8
l [mm]	0,005	0,003	R	1	0,003	00
F [mN]	0,002	0,001	R	1	0,001	00

Combined standard uncertainty:	$u_c(d) = 6,1 \ \mu m$	
Effective degree of freedom:	$v_{\rm eff}(d) = 4$	
Expanded uncertainty:	$U(d) = 12,2 \ \mu m$	with a coverage factor k=2

Step height standard with a nominal height of _60_ nm: Ra identification 7070

Equation used:

$$d=f(x_i)$$

 $d = f (Ra_1; r; u_e; Ra_2; h; l; F)$

quantity	estimate	uncertainty	probability	sensitivity	uncertainty	degrees of
$X_{ m i}$	Xi	$u(x_i)$	distribution	coefficient	contribution	freedom
				c _i	$u_{\rm i}(d)$	v_{i}
Ra ₁ [µm]		0,002	Ν	1	0,002	11
r [µm]	0,01	0,006	R	1	0,006	8
u _e [μm]		0,02	Ν	1	0,02	11
Ra ₂ [µm]		0,003	Ν	1	0,003	14
h [µm]	0,29	0,08	R	1	0,08	8
l [mm]	0,005	0,003	R	1	0,003	8
F [mN]	0,002	0,001	R	1	0,001	∞

Combined standard uncertainty:	$u_c(d) = 0,086 \ \mu m$	
Effective degree of freedom:	$v_{\rm eff}(d) = 3826$	
Expanded uncertainty:	$U(d) = 0,172 \ \mu m$	with a coverage factor k=2

Step height standard with a nominal height of _253_ nm: Rz identification 7070

Equation used:

$$d=f(x_i)$$

 $d = f(Rz_1; r; u_e; Rz_2; h; l; F)$

quantity	estimate	uncertainty	probability	sensitivity	uncertainty	degrees of
$X_{ m i}$	Xi	$u(x_i)$	distribution	coefficient	contribution	freedom
				c _i	$u_{\rm i}(d)$	Vi
Rz ₁ [μm]		0,005	Ν	1	0,005	11
r [µm]	0,01	0,006	R	1	0,006	8
u _e [µm]		0,11	Ν	1	0,11	11
Rz ₂ [μm]		0,02	Ν	1	0,02	14
h [µm]	0,19	0,05	R	1	0,05	8
l [mm]	0,005	0,003	R	1	0,003	8
F [mN]	0,002	0,001	R	1	0,001	∞

Combined standard uncertainty:	$u_c(d) = 0,124 \ \mu m$	
Effective degree of freedom:	$v_{\rm eff}(d) = 18$	
Expanded uncertainty:	$U(d) = 0,248 \ \mu m$	with a coverage factor k=2

Step height standard with a nominal height of ____ nm: Rmax identification 7070

Equation used:

$$d=f(x_i)$$

 $d = f (Rmax_1; r; u_e; Rmax_2; h; l; F)$

quantity	estimate	uncertainty	probability	sensitivity	uncertainty	degrees of
$X_{ m i}$	Xi	$u(x_i)$	distribution	coefficient	contribution	freedom
				c _i	$u_{\rm i}(d)$	v_{i}
Rmax ₁ [µm]		0,01	Ν	1	0,01	11
r [µm]	0,01	0,006	R	1	0,006	8
u _e [µm]		0,14	Ν	1	0,14	11
Rmax ₂ [µm]		0,008	Ν	1	0,008	14
h [µm]	0,108	0,03	R	1	0,03	8
l [mm]	0,005	0,003	R	1	0,003	8
F [mN]	0,002	0,001	R	1	0,001	00

Combined standard uncertainty:	$u_c(d) = 0,144 \ \mu \mathrm{m}$	
Effective degree of freedom:	$v_{\rm eff}(d) = 12$	
Expanded uncertainty:	$U(d) = 0,288 \ \mu m$	with a coverage factor k=2

Step height standard with a nominal height of ____ nm: RSm identification 7070

Equation used:

 $d=f(x_i)$

 $d = f (RSm_1; r; u_e; RSm_2; h; l; F)$

quantity	estimate	uncertainty	probability	sensitivity	uncertainty	degrees of
Xi	x_{i}	$u(x_i)$	distribution	coefficient	contribution	freedom
				c _i	$u_{i}(d)$	Vi
RSm ₁ [µm]		0,0	Ν	1	0,0	11
r [µm]	0,01	0,006	R	1	0,006	8
u _e [μm]		2,0	Ν	1	0,002	11
RSm ₂ [µm]		0,447	Ν	1	0,0003	14
h [µm]	0,003	0,866	R	1	0,0009	8
l [mm]	0,005	0,003	R	1	0,003	8
F [mN]	0,002	0,001	R	1	0,001	00

Combined standard uncertainty:	$u_c(d) = 2,2 \ \mu m$	
Effective degree of freedom:	$v_{\rm eff}(d) = 6$	
Expanded uncertainty:	$U(d) = 4,4 \ \mu m$	with a coverage factor k=2

Step height standard with a nominal height of _14_ nm: Ra identification 8194

Equation used:

$$d=f(x_i)$$

 $d = f(Ra_1; r; u_e; Ra_2; h; l; F)$

quantity	estimate	uncertainty	probability	sensitivity	uncertainty	degrees of
$X_{ m i}$	Xi	$u(x_i)$	distribution	coefficient	contribution	freedom
				c _i	$u_{\rm i}(d)$	Vi
Ra ₁ [µm]		0,002	Ν	1	0,002	11
r [µm]	0,01	0,006	R	1	0,006	8
u _e [µm]		0,022	Ν	1	0,022	11
$Ra_2[\mu m]$		0,001	Ν	1	0,001	14
h [µm]	0,013	0,004	R	1	0,004	8
l [mm]	0,005	0,003	R	1	0,003	8
F [mN]	0,002	0,001	R	1	0,001	∞

Combined standard uncertainty:	$u_c(d) = 0,023 \ \mu m$	
Effective degree of freedom:	$v_{\rm eff}(d) = 14$	
Expanded uncertainty:	$U(d) = 0,046 \ \mu m$	with a coverage factor k=2

Step height standard with a nominal height of _44_ nm: Rz identification 8194

Equation used:

$$d=f(x_i)$$

 $d = f(Rz_1; r; u_e; Rz_2; h; l; F)$

quantity	estimate	uncertainty	probability	sensitivity	uncertainty	degrees of
$X_{ m i}$	Xi	$u(x_i)$	distribution	coefficient	contribution	freedom
				c _i	$u_{\rm i}(d)$	v_{i}
R z ₁ [μm]		0,01	Ν	1	0,01	11
r [µm]	0,01	0,006	R	1	0,006	8
u _e [µm]		0,12	Ν	1	0,12	11
Rz ₂ [μm]		0,01	Ν	1	0,01	14
h [µm]	0,18	0,05	R	1	0,05	8
l [mm]	0,005	0,003	R	1	0,003	8
F [mN]	0,002	0,001	R	1	0,001	00

Combined standard uncertainty:	$u_c(d) = 0.132 \ \mu m$
Effective degree of freedom:	$v_{\rm eff}(d) = 16$
Expanded uncertainty:	$U(d) = 0,264 \ \mu m$ with a coverage factor k=2

Step height standard with a nominal height of ____ nm: Rmax identification 8194

Equation used:

$$d=f(x_i)$$

 $d = f (Rmax_1; r; u_e; Rmax_2; h; l; F)$

quantity	estimate	uncertainty	probability	sensitivity	uncertainty	degrees of
Λ_{i}	x_{i}	$u(x_i)$	distribution	coefficient	contribution u(d)	Ireedom
				c_i	$u_{i}(a)$	Vi
Rmax ₁ [µm]		0,01	Ν	1	0,01	11
r [µm]	0,01	0,006	R	1	0,006	8
u _e [μm]		0,14	Ν	1	0,14	11
Rmax ₂ [µm]		0,03	Ν	1	0,03	14
h [µm]	0,363	0,1	R	1	0,1	8
l [mm]	0,005	0,003	R	1	0,003	8
F [mN]	0,002	0,001	R	1	0,001	00

Combined standard uncertainty:	$u_c(d) = 0,178 \ \mu m$
Effective degree of freedom:	$v_{\rm eff}(d) = 29$
Expanded uncertainty:	$U(d) = 0,356 \ \mu m$ with a coverage factor k=2

Step height standard with a nominal height of ____ nm: RSm identification 8194

Equation used:

 $d=f(x_i)$

 $d = f (RSm_1; r; u_e; RSm_2; h; l; F)$

quantity	estimate	uncertainty	probability	sensitivity	uncertainty	degrees of
$X_{ m i}$	x_{i}	$u(x_i)$	distribution	coefficient	contribution	freedom
				c _i	$u_{\rm i}(d)$	v_{i}
RSm ₁ [µm]		0,538	Ν	1	0,0005	11
r [µm]	0,01	0,006	R	1	0,006	8
u _e [μm]		2,0	Ν	1	0,002	11
RSm ₂ [µm]		0,224	Ν	1	0,0001	14
h [µm]	0,0012	0,346	R	1	0,0003	8
l [mm]	0,005	0,003	R	1	0,003	00
F [mN]	0,002	0,001	R	1	0,001	00

Combined standard uncertainty:	$u_c(d) = 2,1 \ \mu \mathrm{m}$	
Effective degree of freedom:	$v_{\rm eff}(d) = 5$	
Expanded uncertainty:	$U(d) = 4,2 \ \mu m$	with a coverage factor k=2

Step height standard with a nominal height of _172_ nm: Ra identification 686sg

Equation used:

$$d=f(x_i)$$

 $d = f(Ra_1; r; u_e; Ra_2; h; l; F)$

quantity	estimate	uncertainty	probability	sensitivity	uncertainty	degrees of
$X_{ m i}$	x_{i}	$u(x_i)$	distribution	coefficient	contribution	freedom
				c _i	$u_{\rm i}(d)$	v_{i}
R a ₁ [μm]		0,010	Ν	1	0,010	11
r [µm]	0,01	0,006	R	1	0,006	8
u _e [μm]		0,02	Ν	1	0,02	11
Ra ₂ [µm]		0,003	Ν	1	0,003	14
h [µm]	0,29	0,084	R	1	0,084	8
l [mm]	0,005	0,003	R	1	0,003	8
F [mN]	0,002	0,001	R	1	0,001	00

Combined standard uncertainty:	$u_c(d) = 0,087 \ \mu m$
Effective degree of freedom:	$v_{\rm eff}(d) = 3688$
Expanded uncertainty:	$U(d) = 0,174 \ \mu m$ with a coverage factor k=2

Step height standard with a nominal height of _403_ nm: Rz identification 686sg

Equation used:

$$d=f(x_i)$$

 $d = f(Rz_1; r; u_e; Rz_2; h; l; F)$

quantity	estimate	uncertainty	probability	sensitivity	uncertainty	degrees of
$X_{ m i}$	Xi	$u(x_i)$	distribution	coefficient	contribution	freedom
				c _i	$u_{\rm i}(d)$	Vi
R z ₁ [μm]		0,13	Ν	1	0,13	11
r [µm]	0,01	0,006	R	1	0,006	8
u _e [μm]		0,11	Ν	1	0,11	11
Rz ₂ [μm]		0,015	Ν	1	0,015	14
h [µm]	0,19	0,055	R	1	0,055	8
l [mm]	0,005	0,003	R	1	0,003	8
F [mN]	0,002	0,001	R	1	0,001	∞

For the type of probability distribution please use: N = normal; R = rectangular; T = triangular; U = U-shaped.

Combined standard uncertainty: $u_c(d) = 0,177 \ \mu m$ Effective degree of freedom: $v_{eff}(d) = 27$ Expanded uncertainty: $U(d) = 0,354 \ \mu m$ with a coverage factor k=2

Step height standard with a nominal height of ____ nm: Rmax identification 686sg

Equation used:

$$d=f(x_i)$$

 $d = f (Rmax_1; r; u_e; Rmax_2; h; l; F)$

quantity	estimate	uncertainty	probability	sensitivity	uncertainty	degrees of
$X_{ m i}$	Xi	$u(x_i)$	distribution	coefficient	contribution	freedom
				c _i	$u_{i}(d)$	Vi
Rmax ₁ [µm]		0,018	Ν	1	0,018	11
r [µm]	0,01	0,006	R	1	0,006	8
u _e [μm]		0,15	Ν	1	0,15	11
Rmax ₂ [µm]		0,008	Ν	1	0,008	14
h [µm]	0,109	0,031	R	1	0,031	8
l [mm]	0,005	0,003	R	1	0,003	8
F [mN]	0,002	0,001	R	1	0,001	00

Combined standard uncertainty:	$u_c(d) = 0,155 \ \mu m$
Effective degree of freedom:	$v_{\rm eff}(d) = 12$
Expanded uncertainty:	$U(d) = 0,310 \ \mu m$ with a coverage factor k=2

Step height standard with a nominal height of ____ nm: Rk identification 686sg

Equation used:

$$d=f(x_i)$$

 $d = f(Rk_1; r; u_e; Rk_2; h; l; F)$

quantity	estimate	uncertainty	probability	sensitivity	uncertainty	degrees of
$X_{ m i}$	xi	$u(x_i)$	distribution	coefficient	contribution	freedom
				c _i	$u_{\rm i}(d)$	v_{i}
Rk1[µm]		0,070	Ν	1	0,070	11
r [µm]	0,01	0,006	R	1	0,006	8
u _e [µm]		0,8	Ν	1	0,8	11
Rk ₂ [μm]		0,010	Ν	1	0,010	14
h [µm]	0,95	0,274	R	1	0,274	8
l [mm]	0,005	0,003	R	1	0,003	8
F [mN]	0,002	0,001	R	1	0,001	8

Combined standard uncertainty:	$u_c(d) =$	0,849 μm
Effective degree of freedom:	$v_{\rm eff}(d) =$	14
Expanded uncertainty:	U(d) =	1,698 μ m with a coverage factor k=2

Step height standard with a nominal height of ____ nm: Rpk identification 686sg

Equation used:

$$d=f(x_i)$$

 $d = f (Rpk_1; r; u_e; Rpk_2; h; l; F)$

quantity	estimate	uncertainty	probability	sensitivity	uncertainty	degrees of
$X_{ m i}$	Xi	$u(x_i)$	distribution	coefficient	contribution	freedom
				c _i	$u_{\rm i}(d)$	v_{i}
Rpk1 [µm]		0,017	Ν	1	0,017	11
r [µm]	0,01	0,006	R	1	0,006	8
u _e [µm]		0,023	Ν	1	0,023	11
Rpk ₂ [µm]		0,008	Ν	1	0,008	14
h [µm]	0,35	0,101	R	1	0,101	8
l [mm]	0,005	0,003	R	1	0,003	8
F [mN]	0,002	0,001	R	1	0,001	00

Combined standard uncertainty:	$u_c(d) = 0,106 \ \mu \mathrm{m}$	
Effective degree of freedom:	$v_{\rm eff}\left(d\right) = 3715$	
Expanded uncertainty:	$U(d) = 0,212 \mu m$	with a coverage factor k=2

Step height standard with a nominal height of ____ nm: Rvk identification 686sg

Equation used:

$$d=f(x_i)$$

 $d = f(Rvk_1; r; u_e; Rvk_2; h; l; F)$

quantity	estimate	uncertainty	probability	sensitivity	uncertainty	degrees of
$X_{ m i}$	x_{i}	$u(x_i)$	distribution	coefficient	contribution	freedom
				c _i	$u_{\rm i}(d)$	v_{i}
Rvk ₁ [µm]		0,105	Ν	1	0,105	11
r [µm]	0,01	0,006	R	1	0,006	8
u _e [μm]		0,07	Ν	1	0,07	11
Rvk ₂ [µm]		0,008	Ν	1	0,008	14
h [µm]	0,102	0,029	R	1	0,029	8
l [mm]	0,005	0,003	R	1	0,003	8
F [mN]	0,002	0,001	R	1	0,001	∞

Combined standard uncertainty:	$u_c(d) = 0,130 \ \mu m$
Effective degree of freedom:	$v_{\rm eff}(d) = 22$
Expanded uncertainty:	$U(d) = 0,260 \ \mu m$ with a coverage factor k=2

Step height standard with a nominal height of ____ nm: Mr1 identification 686sg

Equation used:

 $d=f(x_i)$

 $d = f (Mr1_1; r; u_e; Mr1_2; h; l; F)$

quantity	estimate	uncertainty	probability	sensitivity	uncertainty	degrees of
$X_{ m i}$	Xi	$u(x_i)$	distribution	coefficient	contribution	freedom
				c _i	$u_{\rm i}(d)$	v_{i}
Mr1 ₁ [µm]		0,231	Ν	1	0,231	11
r [µm]	0,01	0,006	R	1	0,006	8
u _e [µm]		0,44	Ν	1	0,44	11
Mr1 ₂ [μm]		0,145	Ν	1	0,145	14
h [µm]	0,85	0,245	R	1	0,245	8
l [mm]	0,005	0,003	R	1	0,003	00
F [mN]	0,002	0,001	R	1	0,001	8

Combined standard uncertainty:	$u_c(d) = 0,6 \%$	
Effective degree of freedom:	$v_{\rm eff}(d) = 29$	
Expanded uncertainty:	U(d) = 1,2 %	with a coverage factor k=2

Step height standard with a nominal height of ____ nm: Mr2 identification 686sg

Equation used:

 $d=f(x_i)$

 $d = f (Mr2_1; r; u_e; Mr2_2; h; l; F)$

quantity	estimate	uncertainty	probability	sensitivity	uncertainty	degrees of
$X_{ m i}$	Xi	$u(x_i)$	distribution	coefficient	contribution	freedom
				c _i	$u_{\rm i}(d)$	Vi
Mr2 ₁ [μm]		0,260	Ν	1	0,260	11
r [µm]	0,01	0,006	R	1	0,006	8
u _e [μm]		0,99	Ν	1	0,99	11
Mr2 ₂ [μm]		0,310	Ν	1	0,310	14
h [µm]	0,75	0,217	R	1	0,217	8
l [mm]	0,005	0,003	R	1	0,003	8
F [mN]	0,002	0,001	R	1	0,001	00

Combined standard uncertainty:	$u_c(d) = 1,1 \%$	
Effective degree of freedom:	$v_{\rm eff}(d) = 16$	
Expanded uncertainty:	U(d) = 2,2 %	with a coverage factor k=2

Step height standard with a nominal height of _13_ nm: Ra identification 633g

Equation used:

$$d=f(x_i)$$

 $d = f(Ra_1; r; u_e; Ra_2; h; l; F)$

quantity	estimate	uncertainty	probability	sensitivity	uncertainty	degrees of
$X_{ m i}$	Xi	$u(x_i)$	distribution	coefficient	contribution	freedom
				c _i	$u_{\rm i}(d)$	Vi
Ra ₁ [µm]		0,007	Ν	1	0,007	11
r [µm]	0,01	0,006	R	1	0,006	8
u _e [μm]		0,02	Ν	1	0,02	11
Ra ₂ [µm]		0,003	Ν	1	0,003	14
h [µm]	0,29	0,084	R	1	0,084	8
l [mm]	0,005	0,003	R	1	0,003	8
F [mN]	0,002	0,001	R	1	0,001	∞

Combined standard uncertainty:	$u_c(d) = 0,087 \ \mu m$
Effective degree of freedom:	$v_{\rm eff}(d) = 3822$
Expanded uncertainty:	$U(d) = 0.174 \ \mu m$ with a coverage factor k=2

Step height standard with a nominal height of _1200_ nm: Rz identification 633g

Equation used:

$$d=f(x_i)$$

 $d = f(Rz_1; r; u_e; Rz_2; h; l; F)$

quantity	estimate	uncertainty	probability	sensitivity	uncertainty	degrees of
$X_{ m i}$	Xi	$u(x_i)$	distribution	coefficient	contribution	freedom
				c _i	$u_{\rm i}(d)$	Vi
R z ₁ [μm]		0,060	Ν	1	0,060	11
r [µm]	0,01	0,006	R	1	0,006	8
u _e [µm]		0,11	Ν	1	0,11	11
Rz ₂ [μm]		0,015	Ν	1	0,015	14
h [µm]	0,19	0,055	R	1	0,055	8
l [mm]	0,005	0,003	R	1	0,003	8
F [mN]	0,002	0,001	R	1	0,001	00

Combined standard uncertainty:	$u_c(d) = 0,138 \ \mu m$	
Effective degree of freedom:	$v_{\rm eff}(d) = 25$	
Expanded uncertainty:	U(d) = 0,276	with a coverage factor k=2
Step height standard with a nominal height of ____ nm: Rmax identification 633g

Equation used:

$$d=f(x_i)$$

 $d = f (Rmax_1; r; u_e; Rmax_2; h; l; F)$

quantity	estimate	uncertainty	probability	sensitivity	uncertainty	degrees of
Xi	Xi	$u(x_i)$	distribution	coefficient	contribution	freedom
				ci	$u_{i}(d)$	Vi
Rmax ₁ [µm]		0,038	Ν	1	0,038	11
r [µm]	0,01	0,006	R	1	0,006	8
u _e [μm]		0,15	Ν	1	0,15	11
Rmax ₂ [µm]		0,008	Ν	1	0,008	14
h [µm]	0,109	0,031	R	1	0,031	8
l [mm]	0,005	0,003	R	1	0,003	8
F [mN]	0,002	0,001	R	1	0,001	00

Combined standard uncertainty:	$u_c(d) = 0,158 \ \mu \mathrm{m}$	
Effective degree of freedom:	$v_{\rm eff}(d) = 14$	
Expanded uncertainty:	$U(d) = 0,316\mu m$	with a coverage factor k=2

Step height standard with a nominal height of ____ nm: Rk identification 633g

Equation used:

$$d=f(x_i)$$

 $d = f(Rk_1; r; u_e; Rk_2; h; l; F)$

quantity	estimate	uncertainty	probability	sensitivity	uncertainty	degrees of
Xi	x_{i}	$u(x_i)$	distribution	coefficient	contribution	freedom
				ci	$u_{i}(a)$	v_{i}
Rk1 [µm]		0,036	Ν	1	0,036	11
r [µm]	0,0	0,006	R	1	0,006	8
u _e [μm]		0,8	Ν	1	0,8	11
R k ₂ [μm]		0,010	Ν	1	0,010	14
h [µm]	0,95	0,274	R	1	0,274	8
l [mm]	0,005	0,003	R	1	0,003	8
F [mN]	0,002	0,001	R	1	0,001	00

For the type of probability distribution please use: N = normal; R = rectangular; T = triangular; U = U-shaped.

Combined standard uncertainty: $u_c(d) = 0,847 \ \mu m$ Effective degree of freedom: $v_{eff}(d) = 14$ Expanded uncertainty: $U(d) = 1,694 \ \mu m$ with a coverage factor k=2

Step height standard with a nominal height of ____ nm: Rpk identification 633g

Equation used:

$$d=f(x_i)$$

 $d = f (Rpk_1; r; u_e; Rpk_2; h; l; F)$

quantity	estimate	uncertainty	probability	sensitivity	uncertainty	degrees of
$X_{ m i}$	Xi	$u(x_i)$	distribution	coefficient	contribution	freedom
				c _i	$u_{\rm i}(d)$	v_{i}
Rpk ₁ [µm]		0,019	Ν	1	0,019	11
r [µm]	0,01	0,006	R	1	0,006	8
u _e [μm]		0,023	Ν	1	0,023	11
Rpk ₂ [µm]		0,008	Ν	1	0,008	14
h [µm]	0,35	0,101	R	1	0,101	8
l [mm]	0,005	0,003	R	1	0,003	8
F [mN]	0,002	0,001	R	1	0,001	8

Combined standard uncertainty:	$u_c(d) = 0,106 \ \mu m$
Effective degree of freedom:	$v_{\rm eff}(d) = 3389$
Expanded uncertainty:	$U(d) = 0,212 \ \mu m$ with a coverage factor k=2

Step height standard with a nominal height of ____ nm: Rvk identification 633g

Equation used:

$$d=f(x_i)$$

 $d = f(Rvk_1; r; u_e; Rvk_2; h; l; F)$

quantity	estimate	uncertainty	probability	sensitivity	uncertainty	degrees of
$X_{ m i}$	Xi	$u(x_i)$	distribution	coefficient	contribution	freedom
				c _i	$u_{\rm i}(d)$	v_{i}
Rvk ₁ [µm]		0,044	Ν	1	0,044	11
r [µm]	0,01	0,006	R	1	0,006	8
u _e [μm]		0,07	Ν	1	0,07	11
Rvk ₂ [µm]		0,008	Ν	1	0,008	14
h [µm]	0,102	0,029	R	1	0,029	8
l [mm]	0,005	0,003	R	1	0,003	8
F [mN]	0,002	0,001	R	1	0,001	00

For the type of probability distribution please use: N = normal; R = rectangular; T = triangular; U = U-shaped.

Combined standard uncertainty: $u_c(d) = 0,088 \ \mu m$ Effective degree of freedom: $v_{eff}(d) = 24$ Expanded uncertainty: $U(d) = 0,176 \ \mu m$ with a coverage factor k=2

Step height standard with a nominal height of ____ nm: Mr1 identification 633g

Equation used:

 $d=f(x_i)$

 $d = f (Mr1_1; r; u_e; Mr1_2; h; l; F)$

quantity	estimate	uncertainty	probability	sensitivity	uncertainty	degrees of
$X_{ m i}$	x_{i}	$u(x_i)$	distribution	coefficient	contribution	freedom
				c _i	$u_{\rm i}(d)$	v_{i}
Mr1 ₁ [μm]		0,087	Ν	1	0,087	11
r [µm]	0,01	0,006	R	1	0,006	8
u _e [μm]		0,44	Ν	1	0,44	11
Mr1 ₂ [μm]		0,145	Ν	1	0,145	14
h [µm]	0,85	0,245	R	1	0,245	8
l [mm]	0,005	0,003	R	1	0,003	8
F [mN]	0,002	0,001	R	1	0,001	00

Combined standard uncertainty:	$u_c(d) = 0,5 \%$	
Effective degree of freedom:	$v_{\rm eff}(d) = 23$	
Expanded uncertainty:	U(d) = 1,0 %	with a coverage factor k=2

Step height standard with a nominal height of ____ nm: Mr2 identification 633g

Equation used:

 $d=f(x_i)$

 $d = f (Mr2_1; r; u_e; Mr_2; h; l; F)$

quantity	estimate	uncertainty	probability	sensitivity	uncertainty	degrees of
$X_{ m i}$	Xi	$u(x_i)$	distribution	coefficient	contribution	freedom
				c _i	$u_{\rm i}(d)$	v_{i}
Mr2 ₁ [μm]		0,173	Ν	1	0,173	11
r [µm]	0,01	0,006	R	1	0,006	8
u _e [µm]		0,99	Ν	1	0,99	11
Mr2 ₂ [μm]		0,310	Ν	1	0,310	14
h [µm]	0,75	0,217	R	1	0,217	8
l [mm]	0,005	0,003	R	1	0,003	8
F [mN]	0,002	0,001	R	1	0,001	00

Combined standard uncertainty:	$u_c(d) = 1,1 \%$	
Effective degree of freedom:	$v_{\rm eff}(d) = 15$	
Expanded uncertainty:	U(d) = 2,2%	with a coverage factor k=2

Step height standard with a nominal height of _58_ nm: Ra identification 629f

Equation used:

$$d=f(x_i)$$

 $d = f(Ra_1; r; u_e; Ra_2; h; l; F)$

quantity	estimate	uncertainty	probability	sensitivity	uncertainty	degrees of
$X_{ m i}$	Xi	$u(x_i)$	distribution	coefficient	contribution	freedom
				c _i	$u_{\rm i}(d)$	v_{i}
R a ₁ [μm]		0,0009	Ν	1	0,0009	11
r [µm]	0,01	0,006	R	1	0,006	8
u _e [µm]		0,0049	Ν	1	0,0049	11
Ra ₂ [µm]		0,0005	Ν	1	0,0005	14
h [µm]	0,007	0,0020	R	1	0,0020	8
l [mm]	0,005	0,003	R	1	0,003	8
F [mN]	0,002	0,001	R	1	0,001	∞

Combined standard uncertainty:	$u_c(d) = 0,009 \ \mu m$	
Effective degree of freedom:	$v_{\rm eff}(d) = 99$	
Expanded uncertainty:	$U(d) = 0,018 \mu m$	with a coverage factor k=2

Step height standard with a nominal height of _328_ nm: Rz identification 629f

Equation used:

$$d=f(x_i)$$

 $d = f(Rz_1; r; u_e; Rz_2; h; l; F)$

quantity	estimate	uncertainty	probability	sensitivity	uncertainty	degrees of
$X_{ m i}$	Xi	$u(x_i)$	distribution	coefficient	contribution	freedom
				c _i	$u_{\rm i}(d)$	v_{i}
R z ₁ [μm]		0,016	Ν	1	0,016	11
r [µm]	0,01	0,006	R	1	0,006	8
u _e [µm]		0,04	Ν	1	0,04	11
$\mathbf{R}\mathbf{z}_{2}[\mu m]$		0,012	Ν	1	0,012	14
h [µm]	0,165	0,048	R	1	0,048	8
l [mm]	0,005	0,003	R	1	0,003	8
F [mN]	0,002	0,001	R	1	0,001	00

For the type of probability distribution please use: N = normal; R = rectangular; T = triangular; U = U-shaped.

Combined standard uncertainty: $u_c(d) = 0,066 \ \mu m$ Effective degree of freedom: $v_{eff}(d) = 77$ Expanded uncertainty: $U(d) = 0,132 \ \mu m$ with a coverage factor k=2

Step height standard with a nominal height of ____ nm: Rmax identification 629f

Equation used:

$$d=f(x_i)$$

 $d = f (Rmax_1; r; u_e; Rmax_2; h; l; F)$

quantity	estimate	uncertainty	probability	sensitivity	uncertainty	degrees of
X_{i}	x_{i}	$u(x_i)$	distribution	coefficient	contribution	freedom
				Ci	$u_{i}(a)$	v_i
Rmax ₁ [µm]		0,026	Ν	1	0,026	11
r [µm]	0,01	0,006	R	1	0,006	80
u _e [μm]		0,046	Ν	1	0,046	11
Rmax ₂ [µm]		0,020	Ν	1	0,020	14
h [µm]	0,288	0,083	R	1	0,083	8
l [mm]	0,005	0,003	R	1	0,003	8
F [mN]	0,002	0,001	R	1	0,001	00

Combined standard uncertainty:	$u_c(d) =$	0,101 μm
Effective degree of freedom:	$v_{\rm eff}(d) =$	224
Expanded uncertainty:	U(d) =	0,202 μ m with a coverage factor k=2

Step height standard with a nominal height of ____ nm: Rk

Equation used:

identification 629f

$$d=f(x_i)$$

 $d = f(Rk_1; r; u_e; Rk_2; h; l; F)$

quantity	estimate	uncertainty	probability	sensitivity	uncertainty	degrees of
$X_{ m i}$	Xi	$u(x_i)$	distribution	coefficient	contribution	freedom
				c _i	$u_{\rm i}(d)$	v_{i}
Rk ₁ [µm]		0,0026	Ν	1	0,0026	11
r [µm]	0,01	0,006	R	1	0,006	8
u _e [µm]		0,006	Ν	1	0,006	11
Rk ₂ [μm]		0,0008	Ν	1	0,0008	14
h [µm]	0,085	0,0245	R	1	0,0245	8
l [mm]	0,005	0,003	R	1	0,003	00
F [mN]	0,002	0,001	R	1	0,001	00

Combined standard uncertainty:	$u_c(d) = 0,026 \ \mu m$
Effective degree of freedom:	$v_{\rm eff}(d) = 3885$
Expanded uncertainty:	$U(d) = 0,052 \ \mu m$ with a coverage factor k=2

Step height standard with a nominal height of ____ nm: Rpk identification 629f

Equation used:

 $d=f(x_i)$

 $d = f (Rpk_1; r; u_e; Rpk_2; h; l; F)$

quantity	estimate	uncertainty	probability	sensitivity	uncertainty	degrees of
$X_{ m i}$	Xi	$u(x_i)$	distribution	coefficient	contribution	freedom
				c _i	$u_{\rm i}(d)$	Vi
Rpk ₁ [µm]		0,0020	Ν	1	0,0020	11
r [µm]	0,01	0,006	R	1	0,006	8
u _e [µm]		0,002	Ν	1	0,002	11
Rpk ₂ [µm]		0,0005	Ν	1	0,0005	14
h [µm]	0,005	0,0014	R	1	0,0014	8
l [mm]	0,005	0,003	R	1	0,003	8
F [mN]	0,002	0,001	R	1	0,001	00

For the type of probability distribution please use: N = normal; R = rectangular; T = triangular; U = U-shaped.

Combined standard uncertainty: $u_c(d) = 0,007 \ \mu m$ Effective degree of freedom: $v_{eff}(d) = 960$ Expanded uncertainty: $U(d) = 0,014 \ \mu m$ with a coverage factor k=2

Step height standard with a nominal height of ____ nm: Rvk identification 629f

Equation used:

 $d=f(x_i)$

 $d = f(Rvk_1; r; u_e; Rvk_2; h; l; F)$

quantity	estimate	uncertainty	probability	sensitivity	uncertainty	degrees of
$X_{ m i}$	x_{i}	$u(x_i)$	distribution	coefficient	contribution	freedom
				c _i	$u_{\rm i}(d)$	v_{i}
Rvk ₁ [µm]		0,0052	Ν	1	0,0052	11
r [µm]	0,01	0,006	R	1	0,006	8
u _e [µm]		0,008	Ν	1	0,008	11
Rvk ₂ [µm]		0,0013	Ν	1	0,0013	14
h [µm]	0,06	0,0173	R	1	0,0173	8
l [mm]	0,005	0,003	R	1	0,003	8
F [mN]	0,002	0,001	R	1	0,001	8

Combined standard uncertainty:	$u_c(d) = 0,021 \ \mu m$
Effective degree of freedom:	$v_{\rm eff}(d) = 433$
Expanded uncertainty:	$U(d) = 0,042 \ \mu m$ with a coverage factor k=2

Step height standard with a nominal height of ____ nm: Mr1 identification 629f

Equation used:

 $d=f(x_i)$

 $d = f (Mr1_1; r; u_e; Mr1_2; h; l; F)$

quantity	estimate	uncertainty	probability	sensitivity	uncertainty	degrees of
$X_{ m i}$	x_{i}	$u(x_i)$	distribution	coefficient	contribution	freedom
				c _i	$u_{\rm i}(d)$	v_{i}
Mr1 ₁ [μm]		0,173	Ν	1	0,173	11
r [µm]	0,01	0,006	R	1	0,006	8
u _e [µm]		0,25	Ν	1	0,25	11
Mr1 ₂ [μm]		0,065	Ν	1	0,065	14
h [µm]	0,4	0,115	R	1	0,115	8
l [mm]	0,005	0,003	R	1	0,003	8
F [mN]	0,002	0,001	R	1	0,001	8

Combined standard uncertainty:	$u_c(d) = 0,3 \%$	
Effective degree of freedom:	$v_{\rm eff}(d) = 28$	
Expanded uncertainty:	U(d) = 0,6%	with a coverage factor k=2

Step height standard with a nominal height of ____ nm: Mr2 identification 629f

Equation used:

 $d=f(x_i)$

 $d = f (Mr2_1; r; u_e; Mr2_2; h; l; F)$

quantity	estimate	uncertainty	probability	sensitivity	uncertainty	degrees of
$X_{ m i}$	Xi	$u(x_i)$	distribution	coefficient	contribution	freedom
				c _i	$u_{\rm i}(d)$	v_{i}
Mr2 ₁ [μm]		0,2021	Ν	1	0,2021	11
r [µm]	0,01	0,006	R	1	0,006	8
u _e [μm]		0,45	Ν	1	0,45	11
Mr2 ₂ [μm]		0,2453	Ν	1	0,2453	14
h [µm]	0,55	0,1588	R	1	0,1588	8
l [mm]	0,005	0,003	R	1	0,003	8
F [mN]	0,002	0,001	R	1	0,001	00

Combined standard uncertainty:	$u_c(d) = 0,6 \%$	
Effective degree of freedom:	$v_{\rm eff}(d) = 26$	
Expanded uncertainty:	U(d) = 1,2 %	with a coverage factor k=2

Step height standard with a nominal height of ____ nm: Ra identification Sf150

Equation used:

 $d=f(x_i)$

 $d = f(Ra_1; r; u_e; Ra_2; h; l; F)$

quantity	estimate	uncertainty	probability	sensitivity	uncertainty	degrees of
$X_{ m i}$	Xi	$u(x_i)$	distribution	coefficient	contribution	freedom
				c _i	$u_{\rm i}(d)$	Vi
Ra ₁ [µm]		0,0003	Ν	1	0,0003	11
r [µm]	0,01	0,006	R	1	0,006	8
u _e [µm]		0,0049	Ν	1	0,0049	11
Ra ₂ [µm]		0,0005	Ν	1	0,0005	14
h [µm]	0,007	0,0020	R	1	0,0020	8
l [mm]	0,005	0,003	R	1	0,003	8
F [mN]	0,002	0,001	R	1	0,001	00

For the type of probability distribution please use: N = normal; R = rectangular; T = triangular; U = U-shaped.

Combined standard uncertainty: $u_c(d) = 0,009 \ \mu m$ Effective degree of freedom: $v_{eff}(d) = 97$ Expanded uncertainty: $U(d) = 0,018 \ \mu m$ with a coverage factor k=2

47/54

Step height standard with a nominal height of $_4_$ nm: Rz identification Sf150

Equation used:

$$d=f(x_i)$$

 $d = f(Rz_1; r; u_e; Rz_2; h; l; F)$

quantity	estimate	uncertainty	probability	sensitivity	uncertainty	degrees of
$X_{ m i}$	xi	$u(x_i)$	distribution	coefficient	contribution	freedom
				c _i	$u_{\rm i}(d)$	v_{i}
R z ₁ [μm]		0,0026	Ν	1	0,0026	11
r [µm]	0,01	0,006	R	1	0,006	8
u _e [μm]		0,04	Ν	1	0,04	11
Rz ₂ [μm]		0,0119	Ν	1	0,0119	14
h [µm]	0,165	0,0476	R	1	0,0476	8
l [mm]	0,005	0,003	R	1	0,003	8
F [mN]	0,002	0,001	R	1	0,001	00

For the type of probability distribution please use: N = normal; R = rectangular; T = triangular; U = U-shaped.

Combined standard uncertainty: $u_c(d) = 0,064 \ \mu m$ Effective degree of freedom: $v_{eff}(d) = 70$ Expanded uncertainty: $U(d) = 0,128 \ \mu m$ with a coverage factor k=2

Step height standard with a nominal height of ____ nm: Rmax identification Sf150

Equation used:

$$d=f(x_i)$$

 $d = f (Rmax_1; r; u_e; Rmax_2; h; l; F)$

quantity	estimate	uncertainty	probability	sensitivity	uncertainty	degrees of
$X_{ m i}$	Xi	$u(x_i)$	distribution	coefficient	contribution	freedom
				c _i	$u_{\rm i}(d)$	v_{i}
Rmax ₁ [µm]		0,0040	Ν	1	0,0040	11
r [µm]	0,01	0,006	R	1	0,006	8
u _e [μm]		0,046	Ν	1	0,046	11
Rmax ₂ [µm]		0,0204	Ν	1	0,0204	14
h [µm]	0,288	0,0831	R	1	0,0831	8
l [mm]	0,005	0,003	R	1	0,003	00
F [mN]	0,002	0,001	R	1	0,001	00

Combined standard uncertainty:	$u_c(d) = 0,098 \ \mu m$	
Effective degree of freedom:	$v_{\rm eff}(d) = 215$	
Expanded uncertainty:	$U(d) = 0,196 \ \mu m$	with a coverage factor k=2

Step height standard with a nominal height of ____ nm: Rk identification Sf150

Equation used:

 $d=f(x_i)$

 $d = f(Rk_1; r; u_e; Rk_2; h; l; F)$

quantity	estimate	uncertainty	probability	sensitivity	uncertainty	degrees of
$X_{ m i}$	Xi	$u(x_i)$	distribution	coefficient	contribution	freedom
				c _i	$u_{\rm i}(d)$	v_{i}
Rk ₁ [µm]		0,0014	Ν	1	0,0014	11
r [µm]	0,01	0,006	R	1	0,006	8
u _e [μm]		0,006	Ν	1	0,006	11
R k ₂ [μm]		0,0008	Ν	1	0,0008	14
h [µm]	0,085	0,0245	R	1	0,0245	8
l [mm]	0,005	0,003	R	1	0,003	∞
F [mN]	0,002	0,001	R	1	0,001	∞

Combined standard uncertainty:	$u_c(d) = 0,026 \ \mu m$
Effective degree of freedom:	$v_{\rm eff}(d) = 3954$
Expanded uncertainty:	$U(d) = 0,052 \ \mu m$ with a coverage factor k=2

Step height standard with a nominal height of ____ nm: Rpk identification Sf150

Equation used:

 $d=f(x_i)$

 $d = f (Rpk_1; r; u_e; Rpk_2; h; l; F)$

quantity	estimate	uncertainty	probability	sensitivity	uncertainty	degrees of
$X_{ m i}$	Xi	$u(x_i)$	distribution	coefficient	contribution	freedom
				c _i	$u_{\rm i}(d)$	v_{i}
Rpk1 [µm]		0,0014	Ν	1	0,0014	11
r [µm]	0,01	0,006	R	1	0,006	8
u _e [µm]		0,002	Ν	1	0,002	11
Rpk ₂ [µm]		0,0005	Ν	1	0,0005	14
h [µm]	0,005	0,0014	R	1	0,0014	8
l [mm]	0,005	0,003	R	1	0,003	00
F [mN]	0,002	0,001	R	1	0,001	∞

For the type of probability distribution please use: N = normal; R = rectangular; T = triangular; U = U-shaped.

Combined standard uncertainty: $u_c(d) = 0,007 \ \mu m$ Effective degree of freedom: $v_{eff}(d) = 1427$ Expanded uncertainty: $U(d) = 0,014 \ \mu m$ with a coverage factor k=2

Step height standard with a nominal height of ____ nm: Rvk identification Sf150

Equation used:

 $d=f(x_i)$

 $d = f(Rvk_1; r; u_e; Rvk_2; h; l; F)$

quantity	estimate	uncertainty	probability	sensitivity	uncertainty	degrees of
$X_{ m i}$	x_{i}	$u(x_i)$	distribution	coefficient	contribution	freedom
				c _i	$u_{\rm i}(d)$	v_{i}
Rvk ₁ [µm]		0,0017	Ν	1	0,0017	11
r [µm]	0,01	0,006	R	1	0,006	8
u _e [μm]		0,008	Ν	1	0,008	11
Rvk ₂ [µm]		0,0013	Ν	1	0,0013	14
h [µm]	0,006	0,0017	R	1	0,0017	8
l [mm]	0,005	0,003	R	1	0,003	8
F [mN]	0,002	0,001	R	1	0,001	∞

Combined standard uncertainty:	$u_c(d) = 0,011 \ \mu m$
Effective degree of freedom:	$v_{\rm eff}(d) = 35$
Expanded uncertainty:	$U(d) = 0,022 \ \mu m$ with a coverage factor k=2

Step height standard with a nominal height of ____ nm: Mr1 identification Sf150

Equation used:

 $d=f(x_i)$

 $d = f (Mr1_1; r; u_e; Mr1_2; h; l; F)$

quantity	estimate	uncertainty	probability	sensitivity	uncertainty	degrees of
$X_{ m i}$	x_{i}	$u(x_i)$	distribution	coefficient	contribution	freedom
				c _i	$u_{\rm i}(d)$	v_{i}
Mr1 ₁ [µm]		0,548	Ν	1	0,548	11
r [µm]	0,01	0,006	R	1	0,006	8
u _e [µm]		0,25	Ν	1	0,25	11
Mr1 ₂ [µm]		0,065	Ν	1	0,065	14
h [µm]	0,4	0,115	R	1	0,115	8
l [mm]	0,005	0,003	R	1	0,003	8
F [mN]	0,002	0,001	R	1	0,001	∞

Combined standard uncertainty:	$u_c(d) = 0,6 \%$	
Effective degree of freedom:	$v_{\rm eff}(d) = 17$	
Expanded uncertainty:	U(d) = 1,2 %	with a coverage factor k=2

Step height standard with a nominal height of ____ nm: Mr2 identification Sf150

Equation used:

 $d=f(x_i)$

 $d = f (Mr2_1; r; u_e; Mr2_2; h; l; F)$

quantity	estimate	uncertainty	probability	sensitivity	uncertainty	degrees of
$X_{ m i}$	x_{i}	$u(x_i)$	distribution	coefficient	contribution	freedom
				c _i	$u_{\rm i}(d)$	v_{i}
Mr2 ₁ [μm]		0,491	Ν	1	0,491	11
r [µm]	0,01	0,006	R	1	0,006	8
u _e [µm]		0,45	Ν	1	0,45	11
Mr2 ₂ [μm]		0,245	Ν	1	0,245	14
h [µm]	0,55	0,159	R	1	0,159	8
l [mm]	0,005	0,003	R	1	0,003	00
F [mN]	0,002	0,001	R	1	0,001	8

For the type of probability distribution please use: N = normal; R = rectangular; T = triangular; U = U-shaped.

Combined standard uncertainty:	$u_c(d) = 0,7 \%$	
Effective degree of freedom:	$v_{\rm eff}(d) = 30$	
Expanded uncertainty:	U(d) = 1,4 %	with a coverage factor k=2

Laboratory:CMI-LFM Prague

Date:22.8.2001...... Signature: ...Jiří BOROVSKÝ.....

Comment from CMI

We have found two errors in our measurement report.

1) Depth standard EN 806 R1 0,2 $\,\mu m.$

By mistake we reported the value of our reference standard: 195 nm. The value we measured on Depth standard EN 806 R1 0,2 μ m was: 325 nm. The corrected measurement report is attached.

2) the similar mistake we did in the case of Roughness standard 686sg.

By mistake we reported the value of our reference standard

Rz: 13597 nm and Rmax: 15328 nm . The value we measured on Roughness standard 686sg was Rz: 14115 nm and Rmax: 15649 nm. The corrected measurement report is attached.

Appendix B1

Reports of GUM

A3 – MEASUREMENT REPORT

Description of the measurement methods and instruments:

In the **Central Office of Measures (GUM)** was used a commercial stylus instrument, a Rank Taylor Hobson Form Talysurf, Series 2 (1996).

- **Type of instrument:** The stylus instrument Form Talysurf Series 2, 120*i*, equipped with a standard inductive pick-up and 120 mm traverse unit.
- Kind of operation: The traverse unit with the inductive pick-up and moving stylus was mounted at a motorised column (up/down and tilt movement) with the granite base, where was placed a x-y axis table.
- Conditions of data collection: The probe tip radius was $r = 2 \mu m$, the measuring force <1 mN (about 0,7 mN), the sampling interval 0,25 μm and the vertical resolution 0,64 nm by 0,04 mm gauge range. The measuring speed of gauge was 0,5 mm/sec. The pick-up was used without a nose piece, in the skidless condition.
- Conditions of evaluation: The instrument was calibrated (made corrections) using a sphere of known radius – about 12,5 mm; but for measurements of roughness parameters values of calibration factors were determined by using roughness standards type A1, traceable to the PTB.
- Characterisation of instrument noise and deviation of ideal behaviour: The instrument noise was checked by using a flat glass and with the movement of gauge (see below table).

Rz _{DIN} /std. dev. [nm]	Rt/std. dev. [nm]	Rq/std. dev. [nm]	Notes
_	61,0/4,7	8,7/0,8	No filter, lp = 2 mm
32,6/2,3	41,5/4,0	6,6/0,4	$\lambda c = 0.08$ mm, $\lambda s = 1.25$ µm, $\ln = 0.4$ mm, Gauss filter
36,2/1,6	44,1/3,3	6,6/0,4	$\lambda c = 0.25$ mm, $\lambda s = 2.5$ μ m, ln = 1.25 mm, Gauss filter
41,5/2,6	52,6/7,8	6,4/0,4	$\lambda c = 0.8 \text{ mm}, \lambda s = 2.5 \mu \text{m}, \ln = 4.0 \text{ mm}, \text{Gauss filter}$
39,0/3,3	52,3/6,0	6,0/0,4	$\lambda c = 2,5 \text{ mm}, \lambda s = 8 \mu \text{m}, \ln = 12,5 \text{ mm}, \text{Gauss filter}$

A mean value of the parameter Wt obtained from the optical surface is given below:

Wz _{DIN} /std. dev.	Wt/std. dev.	Wq/std. dev.	Notes
[nm]	[nm]	[nm]	
8,0/1,8	14,5/4,6	4,3/1,5	$\lambda c = 0.8 \text{ mm}, \text{ ln} = 4.0 \text{ mm}, \text{ Gauss filter}$

• Environment characterisation: The measurements were performed in the laboratory, where was an air-conditioning with a thermal stability ±0,5 °C. The base of the instrument was a commercial epoxy granite construction on antivibration mounts.

Note:

The instrument was not able to read data in .smd format, therefore it was impossible to check of software.

Laboratory: Central Office of Measures (Glowny Urzad Miar GUM) Length and Angle Division, Surface Texture Measurements Laboratory 2 Elektoralna St., 00-950 Warsaw, POLAND

Date: 27th June 2002

Signature: Barbara Smereczynska

Depth standard EN 806

Table	1.	R1	– parameter	Pt
-------	----	-----------	-------------	----

Type A2; EN 806; R1 = 0,2 μm									
quantity	estimate	uncertainty	probability dis-	sensitivity coefficient	uncertainty con- tribution	degrees of free- dom			
$\Lambda_{\rm I}$	Λį	u(x _i)	libutori	Ci	u _i (Pt)	ν_i			
Pt _n	0,3614 µm	2,5 nm	Ν	1	2,5 nm	100			
ΔPt	0	0,29 nm	R	1	0,29 nm	8			
b	0	1,64 nm	N	1	1,64 nm	9			
Zt	0	0,62 nm	N	1	0,62 nm	14			
Z _{ref}	0	4,18 nm	R	1	4,18 nm	8			
Z ₀	0	10,45 nm	R	1	10,45 nm	9			
Zg	0	11,70 nm	N	2^0,5	16, 50 nm	54,29			
А	0	2,89 nm	R	1	2,89 nm	8			
Pt	0,287 µm		16,75 nm 57,30						
		u _c (Pt) = 16,5 n	m; U(Pt) = 34 nm	; $v_{eff} = 57$; k =	2,0				

Table 2. **R3** – parameter Pt

Type A2; EN 806; R3 = 1,5 μm									
quantity X _i	estimate x _i	uncertainty u(x _i)	uncertainty probability dis- u(x _i) tribution Sensit		uncertainty con- tribution u _i (Pt)	degrees of free- dom v _i			
Pt _n	2,657 µm	7,5 nm	N	7,5 nm	100				
∆Pt	0	0,58 nm	R	0,58 nm	8				
b	0	1,42 nm	N	1	1,42 nm	9			
Zt	0	0,75 nm	N	1	0,75 nm	14			
Z _{ref}	0	4,18 nm	R	1	4,18 nm	8			
Z ₀	0	10,45 nm	R	1	10,45 nm	9			
Zg	0	13,67nm	N	2^0,5	19,28 nm	99,00			
A	0	2,89 nm	R	1	2,89 nm	8			
Pt	1,379 µm		19,49 nm 102,86						
	u _c (Pt) = 19,5 nm; U(Pt) = 39nm ; v _{eff} = 102; k = 2,0								

Table 3. **R6** – parameter Pt

Type A2; EN806; R6 = 8 μm										
quantity X _i	estimate x _i	uncertainty u(x _i)	certainty u(x _i) probability dis- tribution c		uncertainty con- tribution u _i (Pt)	degrees of free- dom v _i				
Pt _n	2,657 µm	7,5 nm	N	3	22,5 nm	100				
∆Pt	0	0,58 nm	R	3	1,74 nm	8				
b	0	1,42 nm	N	3	4,26 nm	9				
Zt	0	1,76 nm	N	1	1,76 nm	14				
Z _{ref}	0	4,18 nm	R	1	4,18 nm	8				
Z ₀	0	10,45 nm	R	1	10,45 nm	99				
Zg	0	25,76 nm	N	2^0,5	36,25 nm	435,78				
А	0	2,89 nm	R	1	2,89 nm	8				
Pt	8,312 µm				36,37 nm	440,36				
	u _c (Pt) = 36,4nm; U(Pt) = 73 nm ; v _{eff} = 440; k = 2,0									

Type A2; EN 806; R1 = 0,2 μm										
quantity X _i	estimate x _i	uncertainty u(x _i)	tainty probability dis- x _i) tribution		uncertainty con- tribution u _i (D)	degrees of free- dom v _i				
Pt _n	0,3614 µm	2,5 nm	N	2,5 nm	100					
∆Pt	0	0,29 nm	R	1	0,29 nm	8				
b	0	1,64 nm	N	1	1,64 nm	9				
Zt	0	0,70 nm	N	1	0,70 nm	14				
Z _{ref}	0	4,18 nm	R	1	4,18 nm	8				
Z ₀	0	1,02 nm	R	1	1,02 nm	9				
А	0	1,44 nm	R	1	1,44 nm	8				
D	0,266 µm		5,49 nm 22,63							
		u _c (D) = 5,5 nn	n; U(D) = 12 nm ;	v _{eff} = 22; k = 2,	12					

Table 4. **R1** – parameter D

Table 5. **R3** – parameter D

	Type A2; EN 806; R1 = 1,5 μm									
quantity X _i	estimate x _i	uncertainty probability dis- u(x _i) tribution ci		sensitivity coefficient	uncertainty con- tribution	degrees of free- dom				
Pt _n	2.657 um	7.5 nm	N	1	7.5 nm	100				
ΔPt	0	0,58 nm	R	1	0,58 nm	8				
b	0	1,42 nm	N	1	1,42 nm	9				
Zt	0	0,59 nm	N	1	0,59 nm	14				
Z _{ref}	0	4,18 nm	R	1	4,18 nm	8				
Z ₀	0	0,78 nm	R	1	0,78 nm	9				
Α	0	1,44 nm	R	1	1,44 nm	8				
D	1,355 µm				8,89 nm	88,32				
	$u_c(D) = 8.9 \text{ nm}; U(D) = 18 \text{ nm}; v_{eff} = 88; k = 2.0$									

Table 6. **R6** – parameter D

Type A2; EN 806; R1 = 8 μm										
quantity X _i	estimate x _i	uncertainty u(x _i)	$\begin{array}{c} \text{uncertainty} \\ u(x_i) \end{array} \begin{array}{c} \text{probability dis-} \\ \text{tribution} \end{array} \begin{array}{c} \text{sensit} \\ \text{coeffic} \\ c_i \end{array}$		uncertainty con- tribution u _i (D)	$\begin{array}{c} \text{degrees of free-}\\ \text{dom}\\ \nu_i \end{array}$				
Pt _n	2,657 µm	7,5 nm	N	22,5 nm	100					
ΔPt	0	0,58 nm	R	3	1,74 nm	8				
b	0	1,42 nm	N	3	4,26 nm	9				
Zt	0	1,50 nm	N	1	1,50 nm	14				
Z _{ref}	0	4,18 nm	R	1	4,18 nm	8				
Z ₀	0	0,55 nm	R	1	0,55 nm	9				
А	0	1,44 nm	R	1	1,44 nm	8				
D	8,283 µm				23,44 nm	114,40				
	$u_c(D) = 23,4$ nm; U(D) = 47 nm ; $v_{eff} = 114$; k = 2,0									

1 GEOMETRICAL STANDARD P114A

	Type C; P114A; Ra = 0,5 μm									
quantity	estimate	uncertainty	probability distribution	sensitivity coefficient	uncertainty contribution	degrees of freedom				
X _i	X _i	u(x _i)		Ci	u _i (Ra)	ν_i				
Pt _n	2,657 µm	7,5 nm	N	1	7,5 nm	100				
Ra _t	0	0,25 nm	N	1	0,25 nm	35				
Z ₀	0	11,5 nm	R	1	11,5 nm	9				
Ra _s	0	2,72 nm	R	1	2,72 nm	8				
Ra	0,500 µm				14,00 nm	19,38				
	u _c (Ra) = 14,0 nm; U(Ra) = 29 nm ; v _{eff} = 19; k = 2,09									

Table 1. Parameter Ra

Table 2. Parameter Rz

	Type C; P114A; Ra = 0,5 μm										
quantity	estimate	uncertainty	probability distribution	sensitivity coefficient	uncertainty contribution	degrees of freedom					
Xi	X _i	u(x _i)		Ci	u _i (Rz)	ν_i					
Pt _n	2,657 µm	7,5 nm	N	1	7,5 nm	100					
Rzt	0	0,80 nm	N	1	0,80 nm	35					
Z ₀	0	11,5 nm	R	1	11,5 nm	9					
Rzs	0	6,84 nm	R	1	6,84 nm	8					
Rz	1,576 µm				15,36 nm	24,75					
	u _c (Rz) = 15,4 nm; U(Rz) = 32 nm ; v _{eff} = 24; k = 2,07										

Table 3. Parameter Rmax

	Type C; P114A; Ra = 0,5 μm								
quantity	estimate	uncertainty	probability distribution	sensitivity coefficient	uncertainty contribution	degrees of freedom			
X _i	X _i	u(x _i)		Ci	u _i (Rmax)	ν_i			
Ptn	2,657 µm	7,5 nm	N	1	7,5 nm	100			
Rmax _t	0	1,78 nm	N	1	1.78 nm	35			
Z ₀	0	11,5 nm	R	1	11,5 nm	9			
Rmax₅	0	6,94 nm	R	1	6,94 nm	8			
Rmax	1,589 µm				15,49 nm	25,39			
	$u_c(Rmax) = 15,5 \text{ nm}; U(Rmax) = 32 \text{ nm}; v_{eff} = 25; k = 2,06$								

	Type C; P114A; Ra = 0,5 μm								
quantity	estimate	uncertainty	probability distribution	sensitivity coefficient	uncertainty contribution	degrees of freedom			
X _i	Xi	u(x _i)		Ci	u _i (RSm)	ν_i			
RSm _n	0	150 nm	Ν	1	150 nm	100			
RSm _t	0	1,63 nm	N	1	1,63 nm	35			
RSm	50,03 µm				150,01 nm	100,02			
u _c (RSm) = 150,0 nm; U(RSm) = 300 nm ; v _{eff} = 100; k = 2,0									

Table 4. Parameter RSm

Geometrical standard 7070

	Type C; 7070; Ra = 3,00 μm								
quantity	estimate	uncertainty	probability distribution	sensitivity coefficient	uncertainty contribution	degrees of freedom			
X _i	Xi	u(x _i)		Ci	u _i (Ra)	ν			
Ptn	2,657 µm	7,5 nm	N	1	7,5 nm	100			
Ra _t	0	2,07 nm	N	1	2,07 nm	35			
Z ₀	0	11,3 nm	R	1	11,3 nm	9			
Ra _s	0	12,1 nm	R	1	12,1 nm	8			
Ra	2,944 µm				18,29 nm	24,76			
	$u_c(Ra) = 18,3 \text{ nm}; \text{ U}(Ra) = 38 \text{ nm}; v_{eff} = 24; \text{ k} = 2,05$								

Table 2. Parameter Rz

	Type C; 7070; Ra = 3,00 μm								
quantity	estimate	uncertainty	probability distribution	sensitivity coefficient	uncertainty contribution	degrees of freedom			
X _i	X _i	u(x _i)		Ci	u _i (Rz)	ν_i			
Pt _n	2,657 µm	7,5 nm	N	1	7,5 nm	100			
Rzt	0	7,58 nm	N	1	7,58 nm	35			
Z ₀	0	11,3 nm	R	1	11,3 nm	9			
Rzs	0	37,8 nm	R	1	37,8 nm	8			
Rz	9,614 µm				40,87 nm	10,85			
	u _c (Rz) = 40,9 nm; U(Rz) = 91 nm ; v _{eff} = 10; k = 2,23								

Table 3. Parameter Rmax

Type C; 7070; Ra = 3,00 μm								
quantity	estimate	uncertainty	probability distribution	sensitivity coefficient	uncertainty contribution	degrees of freedom		
X _i	Xi	u(x _i)		Ci	u _i (Rmax)	ν _i		
Pt _n	2,657 µm	7,5 nm	N	1	7,5 nm	100		
Rmax _t	0	9,6 nm	N	1	9,6 nm	35		
Z ₀	0	11,3 nm	R	1	11,3 nm	9		
Rmax _s	0	38,6 nm	R	1	38,6 nm	8		
Rmax	9,808 µm				42,02 nm	11,16		
	$u_c(Rmax) = 42,0 \text{ nm}; U(Rmax) = 92 \text{ nm}; v_{eff} = 11; k = 2,20$							

	Type C; 7070; Ra = 3,00 μm								
quantity	estimate	uncertainty	probability distribution	sensitivity coefficient	uncertainty contribution	degrees of freedom			
Xi	Xi	u(x _i)		Ci	u _i (RSm)	ν_i			
RSmn	0	150 nm	N	1	150 nm	100			
RSm _t	0	5,7 nm	Ν	1	3,31 nm	35			
RSm	199,94 µm				150,04 nm	100,10			
	u _c (RSm) = 150 nm; U(RSm) = 300 nm ; v _{eff} = 100; k = 2,0								

Table 4. Parameter RSm

2 GEOMETRICAL STANDARD 8194

Table 1. Parameter Ra

		Type C; 8194	4; Ra = 0,88 μm			
quantity	estimate	uncertainty	probability distribution	sensitivity coefficient	uncertainty contribution	degrees of freedom
X _i	Xi	u(x _i)		Ci	u _i (Ra)	ν
Pt _n	2,657 µm	7,5 nm	N	1	7,5 nm	100
Ra _t	0	1,08 nm	N	1	1,08 nm	35
Z ₀	0	12,0 nm	R	1	12,0 nm	9
Ra₅	0	4,22 nm	R	1	4,22 nm	8
Ra	0,891 µm				14,81 nm	20,23
	u _c (Ra) =	14,8 nm; U(Ra)	= 31 nm ; v_{eff} =	20; k = 2,09		

Table 2. Parameter Rz

	Type C; 8194; Ra = 0,88 μm								
quantity	estimate	uncertainty	probability distribution	sensitivity coefficient	uncertainty contribution	degrees of freedom			
X _i	Xi	u(x _i)		Ci	u _i (Rz)	ν_i			
Pt _n	2,657 µm	7,5 nm	N	1	7,5 nm	100			
Rzt	0	8,92 nm	N	1	8,92 nm	35			
Z ₀	0	12,0 nm	R	1	12,0 nm	9			
Rzs	0	12,6 nm	R	1	12,6 nm	8			
Rz	3,061 µm				20,94 nm	33,94			
	$u_c(Rz) = 20,9 \text{ nm}; U(Rz) = 42 \text{ nm}; v_{eff} = 33; k = 2,03$								

	Type C; 8194; Ra = 0,88 μm									
quantity	estimate	uncertainty	probability distribution	sensitivity coefficient	uncertainty contribution	degrees of freedom				
X _i	x _i	u(x _i)		Ci	u _i (Rmax)	ν_i				
Pt _n	2,657 µm	7,5 nm	N	1	7,5 nm	100				
Rmax _t	0	0,95 nm	Ν	1	0,95 nm	35				
Z ₀	0	12,0 nm	R	1	12,0 nm	9				
Rmax _s	0	12,7 nm	R	1	12,7 nm	8				
Rmax	3,081 µm				19,04 nm	23,51				
	$u_c(Rmax) = 19,0 \text{ nm}; U(Rmax) = 39 \text{ nm}; v_{ef}f = 23; k = 2,07$									

Table 3. Parameter Rmax

Table 4. Parameter RSm

	Type C; 8194; Ra = 0,88 μm								
quantity	estimate	uncertainty	probability distribution	sensitivity coefficient	uncertainty contribution	degrees of freedom			
X _i	Xi	u(x _i)		Ci	u _i (RSm)	vi			
RSm _n	0	150 nm	N	1	150 nm	100			
RSm _t	0	4,85 nm	Ν	1	4,85 nm	35			
RSm	119,99 µm				150,08 nm	100,29			
	u _c (RSm) = 150,1 nm; U(RSm) = 300 nm ; v _{eff} = 100; k = 2,0								

Roughness standard 629f

Table	1. Parameter Ra	

Type D; 629f; Ra = 0,2 μm							
quantity	estimate	uncertainty	probability dis- tribution	sensitivity coef- ficient	uncertainty con- tribution	degrees of freedom	
X _i	Xi	u(x _i)		Ci	u _i (Ra)	ν_i	
Pt _n	2,657 µm	7,5 nm	N	1	7,5 nm	100	
Ra _t	0	0,35 nm	Ν	1	0,35 nm	35	
Z ₀	0	12,0 nm	R	1	12,0 nm	9	
Ra₅	0	1,33 nm	R	1	1,33 nm	8	
Ra	0,147µm				14,22 nm	17,49	
u _c (Ra) = 14,2 nm; U(Ra) = 30 nm ; v _{eff} = 17; k = 2,11							

Table 2. Parameter Rz

Type D; 629f; Ra = 0,2 μm							
quantity	estimate	uncertainty	probability dis- tribution	sensitivity coef- ficient	uncertainty con- tribution	degrees of freedom	
Xi	Xi	u(x _i)		Ci	u _i (Rz)	ν_i	
Pt _n	2,657 µm	7,5 nm	N	1	7,5 nm	100	
Rzt	0	5,70 nm	N	1	5,70 nm	35	
Z ₀	0	12,0 nm	R	1	12,0 nm	9	
Rzs	0	5,59 nm	R	1	5,59 nm	8	
Rz	1,252 µm				16,25 nm	28,01	
$u_c(Rz) = 16,3 \text{ nm}; \text{ U}(Rz) = 33 \text{ nm}; v_{eff} = 28; \text{ k} = 2,05$							

Type D; 629f; Ra=0,2 μm							
quantity	estimate	uncertainty	probability dis- tribution	sensitivity coefficient	uncertainty con- tribution	degrees of freedom	
Xi	Xi	u(x _i)		Ci	u _i (Rmax)	ν_i	
Pt _n	2,657 µm	7,5 nm	N	1	7,5 nm	100	
Rmax _t	0	12,5 nm	Ν	1	12,5 nm	35	
Z ₀	0	12,0 nm	R	1	12,0 nm	9	
Rmax _s	0	6,36 nm	R	1	6,36 nm	8	
Rmax	1,423 µm				19,92 nm	48,67	
$u_c(Rmax) = 19,9 \text{ nm}; U(Rmax) = 40 \text{ nm}; v_{eff} = 48; k = 2,01$							

Table 3. Parameter Rmax

Table 4. Parameter Rk

Type D; 629f; Ra = 0,2 μm								
quantity	estimate	uncertainty	probability dis- tribution	sensitivity coefficient	uncertainty con- tribution	degrees of freedom		
Xi	x _i	u(x _i)		Ci	u _i (Rk)	ν		
Pt _n	2,657 µm	7,5 nm	Ν	1	7,5 nm	100		
Rk _t	0	2,65 nm	Ν	1	2,65 nm	35		
Z ₀	0	12,0 nm	R	1	12,0 nm	9		
Rks	0	2,50 nm	R	1	2,50 nm	50		
Rk	0,456 µm				14,61 nm	19,50		
$u_c(Rk)$ = 14,6 nm; U(Rk) = 31 nm ; v_{eff} = 19; k = 2,09								
	Type D; 629f; Ra = 0,2 μm							
------------------	--	--------------------	-------------------------------	-------------------------	-------------------------------	-----------------------	--	--
quantity	estimate	uncertainty	probability dis- tribution	sensitivity coefficient	uncertainty con- tribution	degrees of freedom		
Xi	Xi	u(x _i)		Ci	u _i (Rpk)	ν_i		
Pt _n	2,657 µm	7,5 nm	Ν	1	7,5 nm	100		
Rpk _t	0	1,53 nm	Ν	1	1,53 nm	35		
Z ₀	0	12,0 nm	R	1	12,0 nm	9		
Rpk _s	0	1,39 nm	R	1	1,39 nm	50		
Rpk	0,162 µm				14,30 nm	17,91		
	$u_c(Rpk) = 14,3 \text{ nm}; U(Rpk) = 30 \text{ nm}; v_{eff} = 17; k = 2,10$							

Table 5. Parameter Rpk

Table 6. Parameter Rvk

Type D; 629f; Ra = 0,2 μm								
quantity	estimate	uncertainty	probability dis- tribution	sensitivity coefficient	uncertainty con- tribution	degrees of freedom		
Xi	Xi	u(x _i)		Ci	u _i (Rvk)	ν_i		
Pt _n	2,657 µm	7,5 nm	N	1	7,5 nm	100		
Rvk _t	0	3,03 nm	Ν	1	3,03 nm	35		
Z ₀	0	12,0 nm	R	1	12,0 nm	9		
Rvk _s	0	1,91 nm	R	1	1,91 nm	50		
Rvk	0,302 µm				14,60nm	19,42		
	u _c (Rvk) = 14,6 nm; U(Rvk) = 31 nm ; v _{eff} = 19; k = 2,09							

	Type D; 629f; Ra = 0,2 μm							
quantity	estimate	uncertainty	probability dis- tribution	sensitivity coefficient	uncertainty con- tribution	degrees of freedom		
Xi	x _i	u(x _i)		Ci	u _i (Mr1)	ν_i		
Pt _n	2,657 µm	0,5 %	Ν	1	0,5 %	100		
Mr1 _t	0	0,08 %	Ν	1	0,08 %	35		
Z ₀	0	0,84 %	R	1	0,84 %	24		
Mr1 _s	0	0,29 %	R	1	0,29 %	50		
Mr1	8,3 %				1,02 %	50,87		
	$u_{c}(Mr1) = 1,0$ %; $U(Mr1) = 2,0$ % ; $v_{eff} = 50$; $k = 2,0$							

Table 7. Parameter Mr1

Table 8. Parameter Mr2

	Type D; 629f; Ra = 0,2 μm							
quantity	estimate	uncertainty	probability dis- tribution	sensitivity coefficient	uncertainty con- tribution	degrees of freedom		
Xi	x _i	u(x _i)		Ci	u _i (Mr2)	ν_i		
Pt _n	2,657 µm	0,5 %	N	1	0,5 %	100		
Mr2 _t	0	0,10 %	N	1	0,10 %	35		
Z ₀	0	0,84 %	R	1	0,84 %	24		
Mr2 _s	0	0,29 %	R	1	0,29 %	50		
Mr2	87,5 %				1,02 %	51,22		
$u_{c}(Mr2 = 1,0 \%; U(Mr2) = 2,0 \%; v_{eff} = 51; k = 2,0$								

3 ROUGHNESS STANDARD 633G

Table 1. Parameter Ra

	Type D; 633g; Ra = 1,5 μm							
quantity	estimate	uncertainty	probability dis- tribution	sensitivity coefficient	uncertainty con- tribution	degrees of freedom		
Xi	x _i	u(x _i)		Ci	u _i (Ra)	ν		
Pt _n	2,657 µm	7,5 nm	N	1	7,5 nm	100		
Ra _t	0	0,35 nm	N	1	0,35 nm	35		
Z ₀	0	12,0 nm	R	1	12,0 nm	9		
Ra₅	0	6,53 nm	R	1	6,53 nm	8		
Ra	1,500 µm				15,59 nm	23,04		
	u _c (Ra) = 15,6 nm; U(Ra) = 32 nm ; v _{eff} = 23; k = 2,07							

Table 2. Parameter Rz

Type D; 633g; Ra = 1,5 μm							
quantity	estimate	uncertainty	probability dis- tribution	sensitivity coefficient	uncertainty con- tribution	degrees of freedom	
Xi	Xi	u(x _i)		Ci	u _i (Rz)	ν_i	
Pt _n	2,657 µm	7,5 nm	Ν	1	7,5 nm	100	
Rzt	0	24,45 nm	Ν	1	24,45 nm	35	
Z ₀	0	12,0 nm	R	1	12,0 nm	9	
Rzs	0	29,5 nm	R	1	29,5 nm	8	
Rz	7,473 µm				40,84 nm	25,96	
$u_c(Rz) = 40.8 \text{ nm}; \text{ U}(Rz) = 84 \text{ nm}; v_{eff} = 25; \text{ k} = 2,06$							

	Type D; 633g; Ra = 1,5 μm							
quantity	estimate	uncertainty	probability dis- tribution	sensitivity coefficient	uncertainty con- tribution	degrees of freedom		
Xi	Xi	u(x _i)		Ci	u _i (Rmax)	ν_i		
Pt _n	2,657 µm	7,5 nm	N	1	7,5 nm	100		
Rmax _t	0	14,85 nm	Ν	1	14,85 nm	35		
Z ₀	0	12,0 nm	R	1	12,0 nm	9		
Rmax _s	0	34,5 nm	R	1	34,5 nm	8		
Rmax	8,752 µm				40,14 nm	14,35		
	$u_c(Rmax) = 40,1 \text{ nm}; U(Rmax) = 86 \text{ nm}; v_{eff} = 14; k = 2,14$							

Table 3. Parameter Rmax

Table 4. Parameter Rk

Type D; 633g; Ra =1,5 μm								
quantity	estimate	uncertainty	probability dis- tribution	sensitivity coefficient	uncertainty con- tribution	degrees of freedom		
Xi	Xi	u(x _i)		Ci	u _i (Rk)	ν		
Pt _n	2,657 nm	7,5 nm	N	1	7,5 nm	100		
Rk _t	0	22,7 nm	N	1	22.7 nm	35		
Z ₀	0	11,3 nm	R	1	12.0 nm	9		
Rk₅	0	17,5 nm	R	1	17,5 nm	50		
Rk	4,371 µm				31,97 nm	88,50		
	$u_c(Rk) = 32,0 \text{ nm}; U(Rk) = 64 \text{ nm}; v_{eff} = 88; k = 2,0$							

	Type D; 633g; Ra = 1,5 μm								
quantity	estimate	uncertainty	probability dis- tribution	sensitivity coefficient	uncertainty contri- bution	degrees of free- dom			
X _i	x _i	u(x _i)		Ci	u _i (Rpk)	ν_i			
Pt _n	2,657 nm	7,5 nm	Ν	1	7,5 nm	100			
Rpk _t	0	8,68 nm	Ν	1	8,68 nm	35			
Z ₀	0	12,0 nm	R	1	12,0 nm	9			
Rpk _s	0	4,05 nm	R	1	4,05 nm	50			
Rpk	0,833 µm				17,09 nm	34,06			
u _c (Rpk) = 17,1 nm; U(Rpk) = 35 nm ; v _{eff} = 34; k = 2,03;									

Table 5. Parameter Rpk

Table 6. Parameter Rvk

Type D; 633g; Ra = 1,5 μm							
quantity	estimate	uncertainty	probability dis- tribution	sensitivity coef- ficient	uncertainty contri- bution	degrees of freedom	
Xi	x _i	u(x _i)		Ci	u _i (R∨k)	ν_i	
Pt _n	2,657 nm	7,5 nm	N	1	7,5 nm	100	
Rvk _t	0	18,83 nm	N	1	18,83 nm	35	
Z ₀	0	12,0 nm	R	1	12,0 nm	9	
Rvk₅	0	11,4 nm	R	1	11,4 nm	50	
Rvk	2,735 µm				26,17 nm	74,84	
$u_c(Rvk) = 26,2 \text{ nm}; U(Rvk) = 52 \text{ nm}; v_{eff} = 74; k = 2,0;$							

Table 7. Parameter Mr1

	Type D; 633g; Ra = 1,5 µm								
quantity	estimate	uncertainty	probability dis- tribution	sensitivity coef- ficient	uncertainty contri- bution	degrees of freedom			
Xi	Xi	u(x _i)		Ci	u _i (Mr1)	ν			
Pt _n	2,657 µm	0,09 %	N	1	0,09 %	100			
Mr1 _t	0	0,08 %	Ν	1	0,08 %	35			
Z ₀	0	0,14 %	R	1	0,14 %	9			
Mr1 _s	0	0,29 %	R	1	0,29 %	8			
Mr1	6,5 %				0,34 %	73,42			
	$u_c(Mr1) = 0,34$ %; U(Mr1) = 1,0 % ; $v_{eff} = 73$; k = 2,0								

	Type D; 633g; Ra = 1,5 μm							
quantity	estimate	uncertainty	probability dis- tribution	sensitivity coefficient	uncertainty con- tribution	degrees of freedom		
Xi	Xi	u(x _i)		Ci	u _i (Mr2)	ν_i		
Pt _n	2,657 µm	0,09 %	N	1	0,09 %	100		
Mr2 _t	0	0,07 %	N	1	0,07 %	35		
Z ₀	0	0,14 %	R	1	0,14 %	9		
Mr2 _s	0	0,29 %	R	1	0,29 %	8		
Mr2	79,5 %				0,34 %	75,13		
	$u_c(Mr2) = 0,34$ %; U(Mr2) = 1,0 % ; $v_{eff} = 75$; k = 2,0							

Table 8. Parameter Mr2

4 ROUGHNESS STANDARD 686SG

Table 1. Parameter Ra

	Type D; 686sg; Ra = 2,5 μm							
quantity	estimate	uncertainty	probability distribution	sensitivity coefficient	uncertainty contribution	degrees of freedom		
X _i	Xi	u(x _i)		Ci	u _i (Ra)	ν_i		
Pt _n	2,657 µm	7,5 nm	Ν	1	7,5 nm	100		
Ra _t	0	3,52 nm	N	1	3,52 nm	35		
Z ₀	0	11,3 nm	R	1	11,3 nm	9		
Ra₅	0	9,65 nm	R	1	9,65 nm	8		
Ra	2,321 µm				17,01 nm	28,58		
	$u_c(Ra) = 17,0 \text{ nm}; U(Ra) = 35 \text{ nm}; v_{eff} = 28; k = 2,05$							

Table 2. Parameter Rz

Type D; 686sg; Ra = 2,5 μm							
quantity	estimate	uncertainty	probability distribution	sensitivity coefficient	uncertainty contribution	degrees of freedom	
X _i	Xi	u(x _i)		Ci	u _i (Rz)	ν_i	
Pt _n	2,657 µm	7,5 nm	Ν	1	7,5 nm	100	
Rzt	0	48,6 nm	Ν	1	48,6 nm	35	
Z ₀	0	11,3 nm	R	1	11,3 nm	9	
Rzs	0	55,5 nm	R	1	55,5 nm	8	
Rz	14,22 µm				75,01 nm	23,50	
	$u_c(Rz) = 75,0 \text{ nm}; U(Rz) = 160 \text{ nm}; v_{eff} = 23; k = 2,07$						

	Type D; 686sg; Ra = 2,5 μm							
quantity	estimate	uncertainty	probability distribution	sensitivity coefficient	uncertainty contribution	degrees of freedom		
X _i	Xi	u(x _i)		Ci	u _i (Rmax)	ν_i		
Pt _n	2,657 µm	7,5 nm	N	1	7,5 nm	100		
Rmax _t	0	5,0 nm	Ν	1	5,0 nm	35		
Z ₀	0	11,3 nm	R	1	11,3 nm	9		
Rmax₅	0	60,1 nm	R	1	60,1 nm	8		
Rmax	15,38 µm				61,81 nm	8,94		
	$u_c(Rmax) = 61,8 \text{ nm}; U(Rmax) = 140 \text{ nm}; v_{eff} = 8; k = 2,20$							

Table 3. Parameter Rmax

Table 4. Parameter Rk

	Type D; 686sg; Ra = 2,5 μm							
quantity	estimate	uncertainty	probability distribution	sensitivity coefficient	uncertainty contribution	degrees of freedom		
X _i	X _i	u(x _i)		Ci	u _i (Rk)	ν		
Pt _n	2,657 nm	7,5 nm	N	1	7,5 nm	100		
Rk _t	0	9,37 nm	Ν	1	9,37 nm	35		
Z ₀	0	11,3 nm	R	1	11,3 nm	9		
Rk₅	0	31,8 nm	R	1	31,8 nm	50		
Rk	8,051 µm				35,82 nm	73,11		
	u _c (Rk) = 35,8 nm; U(Rk) = 72 nm ; v _{eff} = 73; k = 2,0							

	Type D; 686sg; Ra = 2,5 μm							
quantity	estimate	uncertainty	probability distribution	sensitivity coefficient	uncertainty contribution	degrees of freedom		
X _i	Xi	u(x _i)		Ci	u _i (Rpk)	ν		
Pt _n	2,657 nm	7,5 nm	N	1	7,5 nm	100		
Rpk _t	0	8,62 nm	N	1	8,62 nm	35		
Z ₀	0	11,3 nm	R	1	11,3 nm	9		
Rpk _s	0	6,18 nm	R	1	6,18 nm	50		
Rpk	1,390 µm				17,22 nm	42,88		
	$u_c(Rpk) = 17,2 \text{ nm}; U(Rpk) = 35 \text{ nm}; v_{eff} = 42; k = 2,01$							

Table 5. Parameter Rpk

Table 6. Parameter Rvk

Type D; 686sg; Ra = 2,5 μm								
quantity	estimate	uncertainty probability sensitivity uncertainty degrees of distribution coefficient contribution freedom						
X _i	Xi	u(x _i)		Ci	u _i (R∨k)	ν_i		
Pt _n	2,657 nm	7,5 nm	N	1	7,5 nm	100		
Rvk _t	0	56,53 nm	N	1	56,53 nm	35		
Z ₀	0	11,3 nm	R	1	11,3 nm	9		
Rvk _s	0	13,12nm	R	1	13,12 nm	50		
Rvk	3,21 µm				59,60 nm	42,88		
	u _c (Rvk) = 59,6 nm; U(Rvk) = 120 nm ; v _{eff} = 42; k = 2,02							

Table 7. Parameter Mr1

Type D; 686sg; Ra = 2,5 μm								
quantity	estimate	uncertainty	probability distri- bution	sensitivity coefficient	uncertainty contribution	degrees of freedom		
X _i	Xi	u(x _i)		Ci	u _i (Mr1)	ν_i		
Pt _n	2,657 µm	0,05 %	N	1	0,05 %	100		
Mr1 _t	0	0,06 %	Ν	1	0,06 %	35		
Z ₀	0	0,07 %	R	1	0,07 %	9		
Mr1 _s	0	0,29 %	R	1	0,29 %	8		
Mr1	7,2 %				0,31 %	62,56		
	$u_c(Mr1) = 0.31$ %; U(Mr1) = 1.0 % ; $v_{eff} = 62$; k = 2.0							

Table 8. Parameter Mr2

	Type D; 686sg; Ra = 2,5 μm							
quantity	estimate	uncertainty	probability dis- tribution	sensitivity coefficient	uncertainty con- tribution	degrees of freedom		
Xi	x _i	u(x _i)		Ci	u _i (Mr2)	ν		
Pt _n	2,657 µm	0,05 %	N	1	0,05 %	100		
Mr1 _t	0	0,09 %	N	1	0,09 %	35		
Z ₀	0	0 07 %	R	1	0 07 %	9		
Mr1 _s	0	0 29 %	R	1	0 29 %	8		
Mr1	Ar1 91,7 % 0,32 % 67,92							
	$u_c(Mr2) = 0.32$ %; U(Mr2) = 1.0 % ; $v_{eff} = 67$; k = 2.0							

5 ROUGHNESS STANDARD 1006

Table	1.	Parameter	Ra
-------	----	-----------	----

	Type D; 1006; Rz = 150 nm							
quantity	estimate	uncertainty	probability distribution	sensitivity coefficient	uncertainty contribution	degrees of freedom		
X _i	Xi	u(x _i)		Ci	u _i (Ra)	ν		
Pt _n	0,3614 µm	2,5 nm	N	1	2,5 nm	100		
Ra _t	0	0,10 nm	N	1	0,10 nm	35		
Z ₀	0	8,7 nm	R	1	8,7 nm	24		
Ra _s	0	0,87 nm	R	1	0,87 nm	8		
Ra	0,024 µm				9,09 nm	28,60		
	$u_c(Ra) = 9,1 \text{ nm}; U(Ra) = 19 \text{ nm}; v_{eff} = 28; k = 2,05$							

Table 2. Parameter Rz

	Type D; 1006; Rz = 150 nm							
quantity	estimate	uncertainty	probability distribution	sensitivity coefficient	uncertainty contribution	degrees of freedom		
Xi	Xi	u(x _i)		Ci	u _i (Rz)	ν_i		
Pt _n	0,3614 µm	2,5 nm	N	1	2,5 nm	100		
Rzt	0	0,54 nm	N	1	0,54 nm	35		
Z ₀	0	8,7 nm	R	1	8,7 nm	24		
Rzs	0	1,30 nm	R	1	1,30 nm	8		
Rz	0,138 µm				9,16 nm	29,41		
	$u_c(Rz) = 9,2 \text{ nm}; U(Rz) = 19 \text{ nm}; v_{eff} = 29; k = 2,05$							

	Type D; 1006; Rz = 150 nm							
quantity	estimate	uncertainty	probability distribution	sensitivity coefficient	uncertainty contribution	degrees of freedom		
X _i	Xi	u(x _i)		Ci	u _i (Rmax)	ν_i		
Ptn	0,3614 µm	2,5 nm	N	1	2,5 nm	100		
Rmax _t	0	1,62 nm	N	1	1,62 nm	35		
Z ₀	0	8,7 nm	R	1	8,7 nm	24		
Rmax _s	0	1,45 nm	R	1	1,45 nm	8		
Rmax	0,171 µm				9,31 nm	31,32		
	$u_c(Ra) = 9,3 \text{ nm}; U(Ra) = 19 \text{ nm}; v_{eff} = 31; k = 2,03$							

Table 3. Parameter Rmax

Table 4. Parameter Rk

Type D; 1006; Rz = 150 nm						
quantity	estimate	uncertainty	probability distribution	sensitivity coefficient	uncertainty contribution	degrees of freedom
Xi	X _i	u(x _i)		Ci	u _i (Rk)	ν_i
Pt _n	0,3614 nm	2,5 nm	N	1	2,5 nm	100
Rkt	0	0,53 nm	N	1	0,53 nm	35
Z ₀	0	8,7 nm	R	1	8,7 nm	24
Rk₅	0	1,04 nm	R	1	1,04 nm	50
Rk	0,075 µm				9,13 nm	29,02
u _c (Rk) = 9,1 nm; U(Rk) = 19 nm ; v _{eff} = 29; k = 2,04						

Type D; 1006; Rz = 150 nm						
quantity	estimate	uncertainty	probability distribution	sensitivity coefficient	uncertainty contribution	degrees of freedom
X _i	Xi	u(x _i)		Ci	u _i (Rpk)	ν_{i}
Ptn	0,3614 nm	2,5 nm	N	1	2,5 nm	100
Rpk _t	0	0,48 nm	Ν	1	0,48 nm	35
Z ₀	0	8,7 nm	R	1	8,7 nm	24
Rpk₅	0	0,87 nm	R	1	0,87 nm	50
Rpk	Rpk 0,028 μm 9,11 nm 28,76					
	u _c (Rpk) = 9,1 nm; U(Rpk) = 19 nm ; v _{eff} = 29; k = 2,05					

Table 5. Parametr Rpk

Table 6. Parameter Rvk

Type D; 1006; Rz=150 nm						
quantity	estimate	uncertainty	probability distribution	sensitivity coefficient	uncertainty contribution	degrees of freedom
Xi	Xi	u(x _i)		Ci	u _i (R∨k)	ν_i
Pt _n	0,3614 nm	2,5 nm	N	1	2,5 nm	100
Rvk _t	0	0,73 nm	Ν	1	0,73 nm	35
Z ₀	0	8,7 nm	R	1	8,7 nm	24
Rvk _s	0	0,87 nm	R	1	0,87 nm	50
Rvk	0,032 µm	9,12 nm 29,97				
uc(Rvk) = 9,1 nm; U(Rvk) = 19 nm ; v _{eff} = 29; k = 2,04						

Type D; 1006; Rz = 150 nm						
quantity	estimate	uncertainty	probability distribution	sensitivity coefficient	uncertainty contribution	degrees of freedom
Xi	X _i	u(x _i)		Ci	u _i (Mr1)	ν
Pt _n	0,3614 µm	1,46 %	N	1	1,46 %	100
Mr1 _t	0	0,23 %	N	1	0,23 %	35
Z ₀	0	2,5 %	R	1	2,5 %	24
Mr1 _s	0	0,29 %	R	1	0,29 %	50
Mr1	10,8%				2,92 %	43,37
$u_c(Mr1) = 2,9$ %; $U(Mr2) = 5,8$ %; $v_{eff} = 43$; $k = 2,01$						

Table 8. Parameter Mr2

Type D; 1006; Rz = 150 nm						
quantity	estimate	uncertainty	probability distribution	sensitivity coefficient	uncertainty contribution	degrees of freedom
X _i	Xi	u(x _i)		Ci	u _i (Mr2)	ν_i
Pt _n	0,3614 µm	1,46 %	Ν	1	1,46 %	100
Mr2 _t	0	0,21 %	N	1	0,21 %	35
Z ₀	0	2,5 %	R	1	2,5 %	24
Mr2 _s	0	0,29 %	R	1	0,29 %	50
Mr2	81,4 %				2,92 %	43,37
$u_c(Mr2) = 2,9$ %; $U(Mr2) = 5,8$ % ; $v_{eff} = 43$; $k = 2,01$						

Appendix B1

Reports of ILM

A3 – MEASUREMENT REPORT

Description of the measurement methods and instruments The surface profiling instrument in use at ILM is a Form Talysurf 120 with a laser interferometric unit for measuring vertical pick-up to 6.0 mm tip radius 2µm. The range-toresolution ratio is of 600000:1 which corrisponds to a resolution of 10 nm. The instrument is autoranging. The traverse unit moves the stylus laterally ap to 120 mm with deviations from straightness within 0.1 µm over any 20 mm in the traverse range, as specified by the manufacturer. The instrument used a computer-based control for data acquisition, data analysis and measurements control, software version. 4.0.. The instrument is placed in a room with temperature control($\pm 1 \text{ C}^{\circ}$) over a anti-vibration table to minimise vibration noise. For standards of type A2 the condition of evaluation are : unfiltered, manual properly alignment and manual measurements. The software in accordance with ISO 5346 is not available. For Standards of type C3,D1,D2 the condition of evaluation are : phase correct profile filter according ISO 11562, least square reference. The values of roughness parameters on flat glass are : $Ra=0.002\mu m, Rt=0.018\mu m, Wa=0.003\mu m, Wt=0.012\mu m. ...$

Laboratory: ...Istituto Lavorazione Metalli.....

Date: ..2002/04/22..... Signature:....Cuppini Dario.....

Step height standard with a nominal height of 200 nm:

identification A2 depth-setting standard s/n EN 806 / PTB 99 073 groove R1

Equation used:

$$d = d_0 \cdot f_c \cdot f_{st}$$

d = 290 nm

quantity X_i	estimate <i>x</i> i	uncertainty $u(x_i)$	probability distribution	sensitivity coefficient	uncertainty contribution	degrees of freedom
				c _i	$u_{\rm i}(d)$ nm	v_{i}
Profile	d_0	6 nm	N	1	6	4
evaluation						
	f_c	0,011	Ν	d_0 . f_{st}	3,19	6
Repeatabilit						
DPTycalib.	f_{st}	0,0035	Ν	$d_0\;.\;f_c$	1,02	20
standard						

For the type of probability distribution please use: N = normal; R = rectangular; T = triangular; U = U-shaped.

Combined standard uncertainty:	$u_c(d) = 7 \text{ nm}$	
Effective degree of freedom:	$v_{\rm eff}(d) = 7$	
Expanded uncertainty:	U(d) = 17 nm	with a coverage factor k=2

Laboratory: Istituto Lavorazione		
wietam		
Date: .2002/04/22	Signature:Cuppini	Dario

Step height standard with a nominal height of 1500 nm: identification

Equation used:

$$d=f(x_i)$$

 $d = d_0 * f_c$

quantity X_i	estimate x _i	uncertainty $u(x_i)$	probability distribution	sensitivity coefficient	uncertainty contribution	degrees of freedom
				c _i	$u_{\rm i}(d)$	v_{i}
Profile	d_0	3 nm	N	1	3 nm	4
evaluation						
Calibration	f_c	0,008	Ν	1500nm	12nm	5
factor	-					
DPT calib.	f_c	0,0011	N	1500nm	2nm	20
standard						

For the type of probability distribution please use: N = normal; R = rectangular; T = triangular; U = U-shaped.

Combined standard uncertainty: $u_c(d) = 13 \text{ nm}$ Effective degree of freedom: $v_{eff}(d) = 9$ Expanded uncertainty:U(d) = 30 nm with a coverage factor k=2

Laboratory: .Istituto Lavorazione Metalli

Date: 2002/04/22..... Signature:...Cuppini Dario.....

Step height standard with a nominal height of 8000 nm: identification

Equation used:

$$d=f(x_i)$$

 $d = d_0 * f_c$

quantity	estimate	uncertainty	probability	sensitivity	uncertainty	degrees of
Λ_1	λ_{i}	$u(x_i)$	uisuitoution	coefficient	u(d)	needoni
D 61-	1	4	NT		$u_i(u)$	V ₁
Profile	d_0	4 nm	N	1	4 nm	4
evaluation						
Calibration	f_c	0,003	Ν	8000nm	24nm	8
factor	U I					
DPT calib.	f_c	0,0011	Ν	8000nm	9nm	20
standard						

For the type of probability distribution please use: N = normal; R = rectangular; T = triangular; U = U-shaped.

Combined standard uncertainty:	$u_c(d) = 26 \text{ nm}$	
Effective degree of freedom:	$v_{\rm eff}(d) = 9$	
Expanded uncertainty:	U(d) = 60 nm	with a coverage factor k=2

Laboratory: ...**Istituto Lavorazione** Metalli

Date: .2002/04/22..... Signature:....Cuppini Dario.....

Comment from ILM/ISTEC

Comment to our report added after Draft A was published:

Comparing our results with the reference values of Draft A we found that the parameter Ry provided by our instrument using a software based on ISO 4287:1984 is a better approach to Rmax then Rt.

Therefore our new values for type C,D standard are:

Geom. Stan- dard			(Rmax) Rt	(Rmax) Ry
Rub	P114A/528-RS 5	value	1,609	1,605
		std. dev.	12	13
		Meas. Unc.	65	65
РТВ	7070/PGN10	value	9,767	9,766
		std. dev.	66	70
		Meas. Unc.	391	391
РТВ	8194/PGN3	value	3,112	3,105
		std. dev.	51	53
		Meas. Unc.	125	124

Roughn.s	tandard		(Rmax) Rt	(Rmax) Ry
very coarse	686sg	value	15,568	15,531
		std. dev.	40	43
		Meas. Unc.	778	777
coarse	633g	value	8,842	8,821
		std. dev.	91	97
		Meas. Unc.	442	441
fine	629f	value	1,512	1,359
		std. dev.	49	29
		Meas. Unc.	76	68
SFRN 150	1.006	value	0,2030	0,1960
		std. dev.	15	24
		Meas. Unc.	12	12

Uncertainty budget doesn't need a new calculation.

Appendix B1

Reports of IMGC

A3 – MEASUREMENT REPORT

Description of the measurement methods and instruments

The roughness and groove standards have been measured at IMGC using a stylus profilometer (Talystep 1, Taylor Hobson- RTH). The instrument works with a PC control (RTH Talystep PC software 0,01 SP) for data acquisition, calibration and setting of measurement parameters. The surface profiles have been analysed using the software RTH – Groove (3.02P IMGC), which calculates the step-height according the ISO 5436.

The instrument has a traverse scan range of ### 2 mm and a measuring pick-up vertical range of $\#\#\# 12 \mu \text{m}$ at the lowest magnification, down to a range of ### 30 nm at the highest magnification. Since at this high magnification, vibration, acoustic noise and thermal drift may seriously affect measurement results, our instrument is placed on a massive table with inner air tubes for vibration isolation, in a room with air temperature control. In addition, the instrument itself is equipped with an antivibration base platform and is placed in a insulating box.

Talystep 1 has been calibrated by means of two displacement piezo-capacitive transducers (DPT-10 from Queensgate) which , in turns, have been calibrated using a heterodyne interferometer, namely by sampling the displacements of the transducer at steps of ###/4 in order to minimize the non-linearity error of the interferometer. By correcting the observed non-linearity of the transducer, the resulting expanded uncertainty of the transducer displacements is thus estimated as $0,7nm + 1 \cdot 10^{-4} \times d/nm$.

By driving the DPT with a low-frequency square-wave AC signal we produced corresponding vertical displacements of the Talystep pick-up in contact with an optical flat mirror glued to the moving part of the transducer. In this way, the pick-up vertical displacements resulted in a recorded profile having a rectangular shape and a definite step height.

The instruments is not calibrated for the lateral displacements of the tip when scanning the sample surface.

All the measurements on the circulating standards have been taken with a stylus tip having a pyramidal shape with angles at the vertex from 90° to 120°, truncated to nominal radii of 0,2 x 2,5 μ m. The stylus is mounted so that the larger dimension of the tip is perpendicular to the direction of pick-up traverse movements. The xy stage of the instrument has been used for levelling and positioning the sample.

The measurements have been taken at a room temperature of (20 ± 0.3) °C.

The instrument works with the RTH Talystep PC software 0,01 SP, which does not read the format of the circulating data files. In addition, not all the required roughness parameters are available with the above-mentioned software.

Laboratory:IMGC - Istituto di Metrologia "G. Colonnetti"

Date:May 15, 2002...... Signature:......Gian Bartolo Picotto

2/5

Step height standard with a nominal height of 200 nm:

identification A2 depth-setting standard s/n EN 806 / PTB 99 073 groove R1

Equation used:

$$d = d_o \cdot f_c \cdot f_{st}$$

d = 283 nm

quantity	estimate	uncertainty	probability	sensitivity	uncertainty	degrees of
$X_{ m i}$	x _i	$u(x_i)$	distribution	coefficient	contribution	freedom
				c _i	$u_{\rm i}(d)$ / nm	v_i
Uncertai	nty f_{st}	0,0012	N	$d_o \cdot f_c$	0,35	10
of the Dl	PT			-		
Instrumen transduc	er					
t repeatabi	lity f_c	0,0025	N	$d_o \cdot f_{st}$	0,71	32
calibration				-		
Profile evaluation	d_o	2,5 nm	N	1	2,5	50

For the type of probability distribution please use: N = normal; R = rectangular; T = triangular; U = U-shaped.

Combined standard uncertainty:	$u_c(d) = 2,6 \text{ nm}$	
Effective degree of freedom:	$v_{\rm eff}(d) = 60$	
Expanded uncertainty:	$U(d) = 5,5 \mathrm{nm}$	with a coverage factor k=2

Laboratory:IMGC - Istituto di Metrologia "G. Colonnetti"..... Date:May 15, 2002...... Signature:......Gian Bartolo Picotto.....

Step height standard with a nominal height of 1500 nm:

identification A2 depth-setting standard s/n EN 806 / PTB 99 073 groove R3

Equation used:

$$d = d_o \cdot f_c \cdot f_{st}$$

d = 1367 nm

estimate	uncertainty	probability	sensitivity	uncertainty	degrees of
xi	$u(x_i)$	distribution	coefficient	contribution	freedom
			c _i	$u_{\rm i}(d)$ / nm	v_{i}
f_{st}	0,00028	Ν	$d_o \cdot f_c$	0,38	10
f_c	0,002	N	$d_o \cdot f_{st}$	2,7	32
_					
d_o	2,5 nm	N	1	2,5	50
	estimate x_i f_{st} f_c d_o	estimate x_i uncertainty $u(x_i)$ f_{st} 0,00028 f_c 0,002 d_o 2,5 nm	estimate x_i uncertainty $u(x_i)$ probability distribution f_{st} 0,00028N f_c 0,002N d_o 2,5 nmN	estimate x_i uncertainty $u(x_i)$ probability distributionsensitivity coefficient c_i f_{st} 0,00028N $d_o f_c$ f_c 0,002N $d_o :f_{st}$ d_o 2,5 nmN1	estimate x_i uncertainty $u(x_i)$ probability distributionsensitivity coefficient c_i uncertainty contribution $u_i(d) / nm$ f_{st} 0,00028N $d_o \cdot f_c$ 0,38 f_c 0,002N $d_o \cdot f_{st}$ 2,7 d_o 2,5 nmN12,5

For the type of probability distribution please use: N = normal; R = rectangular; T = triangular; U = U-shaped.

Combined standard uncertainty:	$u_c(d) = 3,7 \text{ nm}$	
Effective degree of freedom:	$v_{\rm eff}(d) = 76$	
Expanded uncertainty:	U(d) = 8 nm	with a coverage factor k=2

Laboratory:IMGC - Istituto di Metrologia "G. Colonnetti"..... Date:May 15, 2002...... Signature:......Gian Bartolo Picotto.....

Step height standard with a nominal height of 8000 nm:

identification A2 depth-setting standard s/n EN 806 / PTB 99 073 groove R6

Equation used:

$$d = d_o \cdot f_c \cdot f_{st}$$

d = 8357 nm

qu	antity	estimate	uncertainty	probability	sensitivity	uncertainty	degrees of
	$X_{ m i}$	xi	$u(x_i)$	distribution	coefficient	contribution	freedom
					c _i	$u_{\rm i}(d)$ / nm	v_i
	Uncertainty	f_{st}	0,00015	Ν	$d_o \cdot f_c$	1,2	10
	of the DPT						
Instrumen	transducer						
t	repeatability	f_c	0,0015	N	$d_o \cdot f_{st}$	12,5	32
calibration Profile	evaluation	d_o	5 nm	N	1	5	50

For the type of probability distribution please use: N = normal; R = rectangular; T = triangular; U = U-shaped.

Combined standard uncertainty:	$u_c(d) = 13,5 \text{ nm}$	
Effective degree of freedom:	$v_{\rm eff}(d) = 44$	
Expanded uncertainty:	U(d) = 28 nm	with a coverage factor k=2

Laboratory:IMGC - Istituto di Metrologia "G. Colonnetti"..... Date:May 15, 2002...... Signature:......Gian Bartolo Picotto.....

5/5

Appendix B1

Reports of IPQ

Instituto Português da **O**ualidade

Measurement Report

EUROMET SUPPLEMENTARY COMPARISON

SURFACE TEXTURE

Project No. 600

By: Mrs. Fernanda Saraiva Mrs. Sílvia Gentil Ms. Maria João Santos

August – November 2002

INTRODUCTION

The EUROMET Project No. 600, Comparison of Surface Texture Measurements, is a supplementary comparison in the field of Length under in the scope of the framework of the Mutual Recognition Arrangement (MRA) of the Metre Convention.

The intercomparison addresses the subject "Measurements on Surface Roughness Standards" and it aims to compare the measurements on roughness standards of type B, C and D, as well on the depth setting standard (type A), as described in the ISO 5436-1, with a stylus instrument.

The measurements started at PTB (one of the pilot labs) in Spring 2001. IPQ received the standards in August 2002 and completed the measurements in September and sent the standards to the last participating laboratory (SMU).

1. Measuring Instruments

Stylus Instrument – Perthometer S8P, Mahr Drive Unit - PRK Pick-up RFHTB-50

1.1. Software

Software Perthometer version 1.1.

- Note: With this version of Perthometer Software we weren't able to:
 - evaluate de D parameter (depth of the groove as described in ISO 5436-1) because, even after the transference of data to Excel spreadsheet and Microcal Origin 5.0, the values obtained were incoherent with the expected ones.
 - select the λs filter and the sampling spacing, although we verified that the other required conditions mentioned in each datasheet were in accordance to ISO 3274, item 4.4
 - test the software by using the input data from the 3 files for software check (Datasheet 5)

2. Kind of Operation

Moving stylus.

3. Conditions of Data Collection

- Vertical measuring range: 62,5 µm
- Stylus tip radius: 2 μm;
- Measuring force: 0,4 mN

4. Conditions of Evaluation

The conditions required in each datasheet were followed, except what concerns the software restrictions (mentioned above).

5. Characterisation of Instrument Noise and Deviation of Ideal Behaviour

- Background Noise: we used the mean value obtained from five measurements of R-parameters (R-profile) performed over an optical flat
- Straightness Deviation: to evaluate the influences due to deviations from straightness we used an optical flat and measured it five times at the same point to evaluate Wt (waviness parameter). This deviation was only used in the calculation of the depth-setting standard.

6. Environment Characterisation

Laboratory environment with a gradient temperature of 0,03 °C. All the standards were measured at a reference temperature between 20,02 °C and 20,05 °C.

7. Uncertainty Budget

The uncertainty budget was calculated following a Working Instructions Document from PTB regarding Surface Texture Analysis.

7.1 Uncertainty of Measurement for the Total Height of Profile, Pt

In this item is presented the detailed calculation of the uncertainty for the Pt parameter.

7.1.1. Input Quantities and their Contribution to the Uncertainty Budget:

Reference Standard

According to the calibration certificate, the uncertainty of the reference standard (depth-setting standard calibrated by PTB) is $U_n = 40$ nm, at k=2.

$$u^{2}(Pt_{n}) = \frac{U_{n}^{2}}{4} = \frac{40^{2}}{4} = 400 \ nm^{2}$$

Difference Measuring Point

Regarding the deviation of trace positioning (a_y) and the gradient in the direction of the groove $\left(G = \frac{\partial P_t}{\partial y}\right)$ it as been considered $a_y = 100 \,\mu\text{m}$ and $G = 40 \,\text{nm/mm}$.

$$u^{2}(Pt_{my}) = \frac{a_{y}^{2} \times G^{2}}{3} = \frac{\left[\left(100 \times 10^{3}\right)^{2} \times \left(\frac{40}{10^{6}}\right)\right]^{2}}{3} = 5,33 \ nm^{2}$$

Repeatability

For the repeatability evaluated from five measurements it was obtained a standard deviation of 10 nm.

$$u^{2}(b) = \frac{s^{2}(Pt_{m})}{m} = s^{2}(\overline{Pt_{m}}) = 10^{2} = 100 \ nm^{2}$$

Topography (Depth Standard EN 806)

R1:
$$u^2(z_e) = s^2(Pt) = 10^2 = 100 \ nm^2$$

- **R3:** $u^2(z_e) = s^2(Pt) = 20^2 = 400 \ nm^2$
- **R6:** $u^2(z_e) = s^2(Pt) = 20^2 = 400 \ nm^2$
- Straightness Deviation of Device

$$u^{2}(z_{ref}) = \frac{Wt_{0}^{2}}{12} = \frac{(140)^{2}}{12} = 1633,33 \ nm^{2}$$

Background Noise

$$u^{2}(z_{0}) = \frac{(\overline{Rz_{0}})^{2}}{12} = \frac{100^{2}}{12} = 833.33 \ nm^{2}$$

7.1.2 Uncertainty of Points of Overall Profile:

$$u^{2}(z_{g}) = u^{2}(Pt_{n}) + u^{2}(Pt_{ny}) + u^{2}(b) + u^{2}(z_{e}) + u^{2}(z_{ref}) + u^{2}(z_{0})$$

$$u^{2}(z_{g}) = \frac{U_{n}^{2}}{4} + \frac{a_{y}^{2} \times G^{2}}{3} + \frac{s^{2}(Pt_{m})}{m} + s^{2}(Pt) + \frac{Wt_{0}^{2}}{12} + \frac{Rz_{0}^{2}}{12}$$

Draft A – Appendix B14 - Reports of IPQ

R1:
$$u^2(z_g) = 400 + 5,33 + 100 + 100 + 1633,33 + 833,33 = 3071,99 \ nm^2$$

 $u(z_g) = 55,42 \ nm$

R3:
$$u^2(z_g) = 400 + 5,33 + 100 + 400 + 1633,33 + 833,33 = 3371,99 \ nm^2$$

 $u(z_g) = 58,07 \ nm$

R6:
$$u^2(z_g) = 400 + 5,33 + 100 + 400 + 1633,33 + 833,33 = 3371,99 \ nm^2$$

 $u(z_g) = 58,07 \ nm$

Unknown Systematic Deviations

 ${u_v}^2(\mbox{Pt})$ - unknown systematic deviations, this input was evaluated by rectangular distribution (Type B).

7.1.3 Uncertainty of Measurement:

$$u^{2}(Pt) = u^{2}(z_{g}) + \left(\frac{u(Pt_{n}) \times Pt_{m}}{Pt_{n}}\right)^{2} + u_{v}^{2}(Pt)$$

- Pt_n known from the calibration certificate of the depth-setting standard (reference standard)
- Pt_m parameter Pt measured by us (reference standard)

R1:
$$u^{2}(Pt) = (55,42)^{2} + \left[\frac{20 \times (9,16 \times 10^{3})}{(9,11 \times 10^{3})}\right]^{2} + 75 = 3550,78 \, nm^{2} \Rightarrow u(Pt) = 59,59 \, nm$$

R3:
$$u^{2}(Pt) = (58,07)^{2} + \left[\frac{20 \times (9,16 \times 10^{3})}{(9,11 \times 10^{3})}\right]^{2} + 1408 = 5184,53 \text{ nm}^{2} \Rightarrow u(Pt) = 72,00 \text{ nm}^{2}$$

R6:
$$u^2(Pt) = (58,07)^2 + \left[\frac{20 \times (9,16 \times 10^3)}{(9,11 \times 10^3)}\right]^2 + 75 = 3851,53 \ nm^2 \Rightarrow u(Pt) = 62,06 \ nm$$

With the coverage factor k=2 the resulting expanded uncertainty of measurement is:

$$U(Pt) = u(Pt) \times 2$$

	R 1	R3	R6	
U (Pt)	119,18 nm	144,00 nm	124,12 nm	

7.2 Uncertainty of Measurement for Surface Parameters

7.2.1. Input quantities and their contribution to the uncertainty budget:

Reference standard (Depth Setting Standard)

The uncertainty of measurement (U_n) for the total height of profile Pt_n of the reference standard is stated in the calibration certificate with the coverage factor k=2.

$$u^2(Pt_n) = \frac{1}{4} \times U_n^2$$

Statistic on Surface

 $s^{2}(R_{x})$, this input quantity was evaluated from the standard deviation of the R-parameters (R_a, R_z, R_{z1max}, R_k, R_{pk}, R_{vk}), determined by 12 measurements.

Residual Noise of the Reference Guide of the Stylus Instrument

 $\frac{Rx_0^2}{12}$, this input quantity was evaluated from the standard deviation of the Rparameters (R_a, R_z, R_{z1max}, R_k, R_{pk}, R_{vk}) measured in an optical flat.

Unknown Systematic Deviations

 $u_v^2(R_x)$ - unknown systematic deviations, this input was evaluated using a rectangular distribution (Type B).

7.2.2. Expanded Uncertainty

For the calculation of Expanded Uncertainty with the coverage factor k=2, we used the following approximation:

$$U(R_x) \leq 2 \times \sqrt{\left(\frac{1}{4} \times Un^2\right) + s^2(R_x) + \frac{Rx_0^2}{12} + u_v^2(R_x)}$$

NOTES:

- Due to insufficient knowledge of the calculation procedure for the uncertainty budget of the parameters Mr1, Mr2, A1 and A2, we do not present the associated uncertainties.
- The optical flat used was not a reference one. It was only used to get values for Wt_0 and R_{a0} , R_{z0} , R_{z1max0} , R_{k0} , R_{pk0} , R_{vk0} parameters.
- Regarding the RS_m parameter evaluated for the standards P114A, PGN10 and PGN3, we believe the values presented in the table "Results and Measurement Conditions" (see Annex) are not representative of the mean width of the profile elements because, for each standard, this parameter got only two values (see table below), where one of them seems to be caused by the presence of defects in the samples (that's why it was obtained a high standard deviation).

Standard	$\mathbf{RS}_{\mathbf{m}}\left(\mathbf{\mu m} ight)$		
P114A	50,00	48,08	
PGN10	201,60	198,41	
PGN3	121,21	117,60	

Step height standard with a nominal height of 9100 nmIdentification:Setting master PEN 10-1 (Mahr-Perthen)

Equation used:
$$u^2(Pt) = u^2(z_g) + \left(\frac{u(Pt_n) \times Pt_m}{Pt_n}\right)^2 + u_v^2(Pt)$$

$$U(Pt) = u(Pt) \times 2$$

Quantity X_i	Estimate x _i	Uncertainty $u(x_i)$	Probability distribution	Sensitivity coefficient c _i	Uncertainty contribution $u_i(h)$	Degrees of freedom <i>v</i> _i
Reference standard	40 nm	20 nm	Ν	1	20 nm	50
Difference measuring point	$\begin{array}{l} a_y = 100 \; \mu m \\ G = 40 \; nm/mm \end{array}$	2,31 nm	R	1	2,31 nm	50
Repeatability	10 nm	10 nm	Ν	1	10 nm	4
Topography	20 nm	20 nm	Ν	1	20 nm	4
Straightness deviation of device	140 nm	40,41 nm	R	1	40,41 nm	50
Background noise	100 nm	28,87 nm	R	1	28,87 nm	50
Unknown deviations	65 nm	37,53 nm	R	1	37,53 nm	50
Uncertainty of total height of profile	u (Pt) = 20 nm	20,11 nm			20,11 nm	50

For the type of probability distribution please use: N = normal; R = rectangular; T = triangular; U = U-shaped.

Combined standard uncertainty:	$u_c(Pt) = 72,00 \text{ nm}$
Effective degree of freedom:	$v_{\rm eff}(Pt) = 158,30$
Expanded uncertainty:	U(Pt) = 144,00 nm with a coverage factor k=2

Laboratory: INSTITUTO PORTUGUÊS DA QUALIDADE

Date: 2002-11-27

Signature:....

Comment from IPQ

At page 18/33 we try to answer at your comments about our reported values concerning the Pt and D parameters. With our measuring system we can not measure without the use of one lc filter. Like you say in the report, the use of this filter would strongly influence the profile of the depth setting standard and looking for the position of ours results on the tables of the appendix D1 (results of Pt parameter) we can see that IPQ values are always bigger than the mean. So, perhaps, with the impossibility to remove the lc filter, we are introducing a systematic error. Is not possible, for us, at this moment made a new revaluation of the values, because we do not know what will be the better solution (software or mathematical analyse) to treat the values.

This was the first time that we measure and evaluate this type of standards (Depth setting standards) so this comparison was very important for studying the proceeding of measurement and evaluation of the values.
Appendix B1

Reports of METAS

A3 – MEASUREMENT REPORT

Description of the measurement methods and instruments used at METAS

For the surface texture measurements we used a Form Talysurf FTS 120L series instrument made by Rank Taylor Hobson Company. Profile analysis according to standards finally occured with the software package Ultra Version 6 and were verified by an additional evaluation using an own METAS software.

The Form Talysurf has a precise reference plane. The scanning arm deflection is detected by a laser interferometer while the lateral position is measured by a glass scale. For the measurements a stylus with an arm length of 60 mm is used. We also used a stylus with an arm length of 20 mm to obtain an additional validation of our results. The results of the mostly independent measurements with the short stylus were well within the given uncertainties. The diamond tips of both scanning arm lengths have a nominal tip radius of 2 μ m and a nominal tip angle of 90°. These values were verified by AFM measurements and resulted in a radius of 2.7 μ m and a tip angle of 90.5° for the long arm stylus and 2.0 μ m and 96° for the short arm stylus. These shape differences of the stylus tips had only a minor influence on the results because the measurement standards have almost no amplitude in the very small wavelength range. The calibration of the stylu arm and 10 mm for the 20 mm stylus arm. The values given in the report are those obtained by the long stylus. The static measurement force was 0.72 μ N. Data points were taken every 0.25 μ m.

All results were evaluated according to the required international standards.

The softgauge files could not be imported directly into the Ultra software. In our opinion the data in the soft gauge files is not exactly arranged according to the standard ISO 5436-2. After an offline conversion considering also the scaling factors, the files could be imported but the result was still not very satisfying probably because the data spacing is different from native Ultra files. Therefore the softgauge files were evaluated with an independent LabView program made by ourselves at METAS. This software is also used to evaluate the profiles for the regular calibration work performed with our FTS profiler. Using native FTS Ultra files our own program showed only minor differences to the Ultra evaluation. The uncertainty budget contains also a contribution due to this software performance.

The groove depths of the depth setting standard (type A2) were evaluated according to ISO 5436-1 (1999), i.e. a segment of a circle was fitted to the groove. This evaluation was made using a METAS Igor macro.

The uncertainty budget contains five main influence quantities: Repeatability and uniformity of standards, noise measured on an optical flat, static calibration of the FTS stylus, transfer function of the instrument (dynamic behaviour and filtering), reference surface flatness for groove depth, temperature deviation and finally a contribution of the evaluation software. The dynamic transfer function of the instrument was determined using a piezo actuator with a capacitive displacement sensor placed below the tip. The largest contributions to the total uncertainty were the transfer function of the instrument, the uniformity of the standards and additionally for the groove depths (type A2) the flatness of the reference plane (see also section A4, "uncertainty of measurement").

Laboratory: Marco Bieri at METAS

Depth setting standard A2 (EN 806) with a nominal depth of 200 nm: identification R1 (groove number)

Equation used:

$$Pt = \sum c_i \cdot x_i$$

Pt = 321 nm

quantity	estimate	uncertainty	probability	sensitivity	uncertainty	degrees of
$X_{ m i}$	xi	$u(x_i)$	distribution	coefficient	contribution	freedom
				ci	u _i (h)/nm	Vi
	321	7.603	Ν	1	7.603	5
repeatabilit						
У						
uniformity of						
standard (nm	0	1.00E-04	Ν	321	3.21E-02	100
calibration						
(rel.) static						
Noise (nm)	0	2	Ν	1	2.00E+00	100
Reference	0	10	R	1	5.774	100
flatness						
(nm)						
Temp. Dev.	0	0.5	R	1.00E-05	0	100
(K) [–]						
Software	0	1.00E-03	Ν	321	0.32	100

For the type of probability distribution please use: N = normal; R = rectangular; T = triangular; U = U-shaped.

Combined standard uncertainty (nm): $u_c(h) = 9.76$

Effective degree of freedom: $v_{\rm eff}(h) = 13$

Expanded uncertainty (nm):

U(h) = 20

with a coverage factor k=2

Laboratory: Marco Bieri at METAS

Depth setting standard A2 (EN 806) with a nominal depth of 200 nm: identification R1 (groove number)

Equation used:

$$D = \sum c_i \cdot x_i$$

D = 304 nm

quantity	octimata	uncertainty	probability	consitivity	uncortainty	degrees of
quantity	estimate	uncertainty	probability	sclisitivity	uncertainty	ucgrees of
X _i	Xi	$u(x_i)$	distribution	coefficient	contribution	freedom
				c _i	u _i (h)/nm	v_{i}
	304	5.814	Ν	1	5.814	5
repeatabilit						
У						
uniformity of						
standard (nm	0	1.00E-04	Ν	304	3.04E-02	100
calibration						
(rel.) static						
Noise (nm)	0	2	Ν	1	2.00E+00	100
Reference	0	10	R	1	5.774	100
flatness						
(nm)						
Temp. Dev.	0	0.5	R	1.00E-05	0	100
(K)						
Software	0	1.00E-03	Ν	304	0.30	100

For the type of probability distribution please use: N = normal; R = rectangular; T = triangular; U = U-shaped.

Combined standard uncertainty (nm): $u_c(h) = 8.44$

Effective degree of freedom: $v_{eff}(h) = 21$

Expanded uncertainty (nm):

U(h) = 17

with a coverage factor k=2

Laboratory: Marco Bieri at METAS

Depth setting standard A2 (EN 806) with a nominal depth of 1500 nm: identification R3 (groove number)

Equation used:

$$Pt = \sum c_i \cdot x_i$$

Pt = 1408 nm

quantity	estimate	uncertainty	probability	sensitivity	uncertainty	degrees of
$X_{ m i}$	Xi	$u(x_i)$	distribution	coefficient	contribution	freedom
				c _i	u _i (h)/nm	v_{i}
	1408	4.025	Ν	1	4.025	5
repeatabilit						
У						
uniformity of						
standard (nn	0	1.00E-04	Ν	1408	1.41E-01	100
calibration						
(rel.) static						
Noise (nm)	0	2	Ν	1	2.00E+00	100
Reference	0	10	R	1	5.774	100
flatness						
(nm)						
Temp. Dev.	0	0.5	R	1.00E-05	0	100
(K) [–]						
Software	0	1.00E-03	Ν	1408	1.41	100

For the type of probability distribution please use: N = normal; R = rectangular; T = triangular; U = U-shaped.

Combined standard uncertainty (nm): $u_c(h) = 7.46$

Effective degree of freedom: $v_{eff}(h) = 48$

Expanded uncertainty (nm):

U(h) = 15

with a coverage factor k=2

Laboratory: Marco Bieri at METAS

Date: 03.06.2002 Signature:

5/38

Depth setting standard A2 (EN 806) with a nominal depth of 1500 nm: identification R3 (groove number)

Equation used:

$$D = \sum c_i \cdot x_i$$

D = 1383 nm

quantity	estimate	uncertainty	probability	sensitivity	uncertainty	degrees of
$X_{ m i}$	x _i	$u(x_{\rm i})$	distribution	coefficient	contribution	freedom
				ci	u _i (h)/nm	v_{i}
	1383	1.342	Ν	1	1.342	5
repeatabilit						
У						
uniformity of						
standard (nm	0	1.00E-04	Ν	1383	1.38E-01	100
calibration						
(rel.) static						
Noise (nm)	0	2	Ν	1	2.00E+00	100
Reference	0	10	R	1	5.774	100
flatness						
(nm)						
Temp. Dev.	0	0.5	R	1.00E-05	0	100
(K)						
Software	0	1.00E-03	Ν	1383	1.38	100

For the type of probability distribution please use: N = normal; R = rectangular; T = triangular; U = U-shaped.

Combined standard uncertainty (nm): $u_c(h) = 6.41$

Effective degree of freedom: $v_{eff}(h) = 141$

Expanded uncertainty (nm):

U(h) = 13

with a coverage factor k=2

Laboratory: Marco Bieri at METAS

Depth setting standard A2 (EN 806) with a nominal depth of 8000 nm: identification R6 (groove number)

Equation used:

$$Pt = \sum c_i \cdot x_i$$

Pt = 8369 nm

quantity	estimate	uncertainty	probability	sensitivity	uncertainty	degrees of
	x _i	$u(x_i)$	distribution	coefficient	contribution	freedom
				c _i	u _i (h)/nm	Vi
	8369	5.367	Ν	1	5.367	5
repeatabilit						
У						
uniformity of	q					
standard (nm	0	1.00E-04	Ν	8369	8.37E-01	100
calibration						
(rel.) static						
Noise (nm)	0	2	Ν	1	2.00E+00	100
Reference	0	10	R	1	5.774	100
flatness						
(nm)						
Temp. Dev.	0	0.5	R	1.00E-05	0	100
(K) [–]						
Software	0	1.00E-03	Ν	8369	8.37	100

For the type of probability distribution please use: N = normal; R = rectangular; T = triangular; U = U-shaped.

Combined standard uncertainty (nm): $u_c(h) = 11.70$

Effective degree of freedom: $v_{\rm eff}(h) = 83$

Expanded uncertainty (nm):

U(h) = 24

with a coverage factor k=2

Laboratory: Marco Bieri at METAS

Depth setting standard A2 (EN 806) with a nominal depth of 8000 nm: identification R6 (groove number)

Equation used:

$$D = \sum c_i \cdot x_i$$

D = 8347 nm

quantity	estimate	uncertainty	probability	sensitivity	uncertainty	degrees of
X_{i}	Xi	$u(x_i)$	distribution	coefficient	contribution	freedom
1	1			Ci	<i>u</i> _i (h)/nm	Vi
	8347	0.894	N	1	0.894	5
repeatabilit						
У						
uniformity of						
standard (nm	0	1.00E-04	Ν	8347	8.35E-01	100
calibration						
(rel.) static						
Noise (nm)	0	2	Ν	1	2.00E+00	100
Reference	0	10	R	1	5.774	100
flatness						
(nm)						
Temp. Dev.	0	0.5	R	1.00E-05	0	100
(K)						
Software	0	1.00E-03	Ν	8347	8.35	100

For the type of probability distribution please use: N = normal; R = rectangular; T = triangular; U = U-shaped.

Combined standard uncertainty (nm): $u_c(h) = 10.42$

Effective degree of freedom: $v_{\rm eff}(h) = 196$

Expanded uncertainty (nm):

U(h) = 21

with a coverage factor k=2

Laboratory: Marco Bieri at METAS

Geom. Standard Rub P114A/528-RS 5 Measurement of Ra with a scanning arm of 60 mm

Equation used:

$$R_a = \sum c_i \cdot x_i$$

 $R_a = 505 \text{ nm}$

quantity	estimate	uncertainty	probability	sensitivity	uncertainty	degrees of
Λ_1	λ_{1}	$u(x_i)$	distribution	coefficient c _i	$u_i(h)/nm$	V _i
repeatability uniformity standard (nm)	505	0.289	N	1	0.289	12
noise (nm)	0	2	R	1	1.155	100
z-calibration (rel.) static	0	1.00E-04	N	505	0.051	100
Temp. Dev. (K)	0	0.5	R	1.00E-05	0	100
Software and Evaluation	0	4.80E-03	N	505	2.424	100
Transfer- Characteristic, stylus tip	0	0.008	N	505	4.04	100

For the type of probability distribution please use: N = normal; R = rectangular; T = triangular; U = U-shaped.

Combined standard uncertainty (nn	n): $u_c(h) = 4.9$	
Effective degree of freedom:	$v_{\rm eff}$ (h) = 184	
Expanded uncertainty (nm):	U(h) = 10	with a coverage factor k=2

Laboratory: Marco Bieri at METAS

Geom. Standard Rub P114A/528-RS 5 Measurement of Rz with a scanning arm of 60 mm

Equation used:

$$R_z = \sum c_i \cdot x_i$$

 $R_z = 1610 \text{ nm}$

quantity	estimate	uncertainty	probability	sensitivity	uncertainty	degrees of
X _i	x_{i}	$u(x_i)$	distribution	coefficient	contribution	freedom
				c _i	<i>u</i> _i (h)/nm	v_{i}
repeatability uniformity standard (nm)	1610	1.732	N	1	1.732	12
noise (nm)	0	18	R	1	10.392	100
z-calibration (rel.) static	0	1.00E-04	Ν	1610	0.161	100
Temp. Dev. (K)	0	0.5	R	1.00E-05	0	100
Software and Evaluation	0	4.80E-03	Ν	1610	7.728	100
Transfer- Characteristic, stylus tip	0	0.02	N	1610	32.2	100

For the type of probability distribution please use: N = normal; R = rectangular; T = triangular; U = U-shaped.

Combined standard uncertainty (nm): $u_c(h) = 34.8$

Effective degree of freedom: $v_{\rm eff}(h) = 134$

Expanded uncertainty (nm): U(h) = 70 with a coverage factor k=2

Laboratory: Marco Bieri at METAS

Geom. Standard Rub P114A/528-RS 5 Measurement of RSm with a scanning arm of 60 mm

Equation used:

$$RSm = \sum c_i \cdot x_i$$

 $RSm = 49\ 465\ nm$

quantity X_i	estimate x _i	uncertainty $u(x_i)$	probability distribution	sensitivity coefficient	uncertainty contribution	degrees of freedom
Ĩ	Ĩ			c _i	<i>u</i> _i (h)/nm	v_{i}
	49465	82.272	Ν	1	82.272	12
repeatabilit						
У						
uniformity of						
stainel (nrh)nn	0	2	R	1	1.155	100
Х-	0	1.00E-04	N	49465	4.95E+00	100
calibration						
(rel.) static						
Temp. Dev.	0	0.5	R	1.00E-05	0	100
(K)						
Software	0	1.00E-04	N	49465	4.95E+00	100

For the type of probability distribution please use: N = normal; R = rectangular; T = triangular; U = U-shaped.

Combined standard uncertainty (nm): $u_c(h) = 82.6$

Effective degree of freedom: $v_{eff}(h) = 12$

Expanded uncertainty (nm): U(h) = 166

with a coverage factor k=2

Laboratory: Marco Bieri at METAS

Geom. Standard PTB 7070/PGN10 Measurement of Ra with a scanning arm of 60 mm

Equation used:

$$R_a = \sum c_i \cdot x_i$$

 $R_a = 2956 \text{ nm}$

quantity	estimate	uncertainty	probability	sensitivity	uncertainty	degrees of
$X_{ m i}$	x_{i}	$u(x_{\rm i})$	distribution	coefficient	contribution	freedom
				ci	<i>u</i> _i (h)/nm	v_{i}
repeatability uniformity	2955	2.887	N	1	2.887	12
standard (nm)						
noise (nm)	0	2	R	1	1.155	100
z-calibration (rel.) static	0	1.00E-04	Ν	2955	0.296	100
Temp. Dev. (K)	0	0.5	R	1.00E-05	0	100
Software and Evaluation	0	4.80E-03	Ν	2955	14.184	100
Transfer- Characteristic, stylus tip	0	0.008	N	2955	23.64	100

For the type of probability distribution please use: N = normal; R = rectangular; T = triangular; U = U-shaped.

Combined standard uncertainty (nm): $u_c(h) = 27.8$

Effective degree of freedom: $v_{\rm eff}(h) = 168$

Expanded uncertainty (nm): U(h) = 56 with a coverage factor k=2

Laboratory: Marco Bieri at METAS

Geom. Standard PTB 7070/PGN10 Measurement of Rz with a scanning arm of 60 mm

Equation used:

$$R_z = \sum c_i \cdot x_i$$

 $R_z = 9625 \text{ nm}$

quantity X_i	estimate	uncertainty $u(x_i)$	probability distribution	sensitivity coefficient	uncertainty contribution	degrees of freedom
1	1			c _i	u _i (h)/nm	v_{i}
repeatability uniformity standard (nm)	9625	8.660	N	1	8.660	12
noise (nm)	0	18	R	1	10.392	100
z-calibration (rel.) static	0	1.00E-04	N	9625	0.963	100
Temp. Dev. (K)	0	0.5	R	1.00E-05	0	100
Software and Evaluation	0	4.80E-03	Ν	9625	46.200	100
Transfer- Characteristic, stylus tip	0	0.02	N	9625	192.5	100

For the type of probability distribution please use: N = normal; R = rectangular; T = triangular; U = U-shaped.

Combined standard uncertainty (nm): $u_c(h) = 198.43$ Effective degree of freedom: $v_{eff}(h) = 113$

Expanded uncertainty (nm): U(h) = 397 with a coverage factor k=2

Laboratory: Marco Bieri at METAS

Geom. Standard PTB 7070/PGN10 Measurement of RSm with a scanning arm of 60 mm

Equation used:

$$RSm = \sum c_i \cdot x_i$$

 $RSm = 198\ 603\ nm$

quantity	estimate	uncertainty	probability	sensitivity	uncertainty	degrees of
$X_{ m i}$	xi	$u(x_i)$	distribution	coefficient	contribution	freedom
				ci	u _i (h)/nm	Vi
	198603	147.802	Ν	1	147.802	12
repeatabilit						
y						
uniformity of						
stoinel anch (nn	0	2	R	1	1.155	100
Х-	0	1.00E-04	Ν	198603	1.99E+01	100
calibration						
(rel.) static						
Temp. Dev.	0	0.5	R	1.00E-05	0	100
(K)						
Software	0	1.00E-04	Ν	198603	1.99E+01	100
and						
Evaluation						

For the type of probability distribution please use: N = normal; R = rectangular; T = triangular; U = U-shaped.

Combined standard uncertainty (nm): $u_c(h) = 150.45$

Effective degree of freedom: $v_{\rm eff}(h) = 13$

Expanded uncertainty (nm): U(h) = 301 with a coverage factor k=2

Laboratory: Marco Bieri at METAS

Geom. Standard PTB 8194/PGN3 Measurement of Ra with a scanning arm of 60 mm

Equation used:

$$R_a = \sum c_i \cdot x_i$$

 $R_a = 904 \text{ nm}$

quantity	estimate	uncertainty	probability	sensitivity	uncertainty	degrees of
$X_{ m i}$	Xi	$u(x_{\rm i})$	distribution	coefficient	contribution	freedom
				ci	<i>u</i> _i (h)/nm	v_{i}
repeatability						
uniformity of	904	2.309	Ν	1	2.309	12
standard (nm)						
noise (nm)	0	2	R	1	1.155	100
z-calibration	0	$1.00E_{-}04$	N	904	0.090	100
(rel.) static	U	1.0012-04	14	704	0.070	100
Temp. Dev.	0	0.5	P	1.00E-05	0	100
(K)	U	0.5	K	1.001-05	0	100
Software and	0	1 80E 02	N	004	4 220	100
Evaluation	0	4.00E-05	1	904	4.339	100
Transfer-						
Characteristic,	0	0.008	Ν	904	7.232	100
stylus tip						

For the type of probability distribution please use: N = normal; R = rectangular; T = triangular; U = U-shaped.

Combined standard uncertainty (nm): $u_c(h) = 8.8$

Effective degree of freedom: $v_{\rm eff}(h) = 182$

Expanded uncertainty (nm): U(h) = 18

with a coverage factor k=2

Laboratory: Marco Bieri at METAS

Geom. Standard PTB 8194/PGN3 Measurement of Rz with a scanning arm of 60 mm

Equation used:

$$R_z = \sum c_i \cdot x_i$$

 $R_z = 3\ 103\ \mathrm{nm}$

quantity	estimate	uncertainty	probability	sensitivity	uncertainty	degrees of
$X_{ m i}$	x _i	$u(x_i)$	distribution	coefficient	contribution	freedom
				ci	u _i (h)/nm	v_{i}
repeatability						
uniformity of	3103	15.877	Ν	1	15.877	12
standard (nm)						
noise (nm)	0	18	R	1	10.392	100
z-calibration	0	1 00E 04	N	3103	0.310	100
(rel.) static	0	1.0012-04	1	5105	0.310	100
Temp. Dev.	0	0.5	D	1 00E 05	0	100
(K)	0	0.5	К	1.00E-05	0	100
Software and	0	4 905 02	N	2102	14 904	100
Evaluation	0	4.80E-03	1	5105	14.894	100
Transfer-						
Characteristic,	0	0.02	Ν	3103	62.06	100
stylus tip						

For the type of probability distribution please use: N = normal; R = rectangular; T = triangular; U = U-shaped.

Combined standard uncertainty (nm): $u_c(h) = 66.58$ Effective degree of freedom: $v_{eff}(h) = 127$ Expanded uncertainty (nm): U(h) = 134 with a coverage factor k=2

Laboratory: Marco Bieri at METAS

Geom. Standard PTB 8194/PGN3 Measurement of RSm with a scanning arm of 60 mm

Equation used:

$$RSm = \sum c_i \cdot x_i$$

 $RSm = 119\ 095\ nm$

quantity	estimate	uncertainty	probability	sensitivity	uncertainty	degrees of
$X_{ m i}$	x_{i}	$u(x_i)$	distribution	coefficient	contribution	freedom
				ci	u _i (h)/nm	v_{i}
	119095	312.924	Ν	1	312.924	12
repeatabilit						
y						
uniformity of						
stoind anch (nn	0	2	R	1	1.155	100
Х-	0	1.00E-04	N	119095	1.19E+01	100
calibration						
(rel.) static						
Temp. Dev.	0	0.5	R	1.00E-05	0	100
(K)						
Software	0	1.00E-04	N	119095	1.19E+01	100
and						
Evaluation						

For the type of probability distribution please use: N = normal; R = rectangular; T = triangular; U = U-shaped.

Combined standard uncertainty (nm): $u_c(h) = 313.4$

Effective degree of freedom: $v_{\rm eff}(h) = 12$

Expanded uncertainty (nm): U(h) = 627 with a coverage factor k=2

Laboratory: Marco Bieri at METAS

Roughness Standard 629f Measurement of Ra with a scanning arm of 60 mm

Equation used:

$$R_a = \sum c_i \cdot x_i$$

 $R_a = 152 \text{ nm}$

quantity	estimate	uncertainty	probability	sensitivity	uncertainty	degrees of
Λ_{i}	λ_{i}	$u(x_i)$	distribution	coefficient c _i	$u_i(h)/nm$	v _i
repeatability uniformity standard (nm)	152	0.866	N	1	0.866	12
noise (nm)	0	2	R	1	1.155	100
z-calibration (rel.) static	0	1.00E-04	N	152	0.015	100
Temp. Dev. (K)	0	0.5	R	1.00E-05	0	100
Software and Evaluation	0	4.80E-03	Ν	152	0.730	100
Transfer- Characteristic, stylus tip	0	0.015	N	152	2.28	100

For the type of probability distribution please use: N = normal; R = rectangular; T = triangular; U = U-shaped.

Combined standard uncertainty (nm): $u_c(h) = 2.8$ Effective degree of freedom: $v_{eff}(h) = 181$ Expanded uncertainty (nm): U(h) = 6 with a coverage factor k=2

Laboratory: Marco Bieri at METAS

Roughness Standard 629f Measurement of Rz with a scanning arm of 60 mm

Equation used:

$$R_z = \sum c_i \cdot x_i$$

 $R_z = 1269 \text{ nm}$

quantity X_i	estimate x_i	uncertainty $u(x_i)$	probability distribution	sensitivity coefficient	uncertainty contribution	degrees of freedom
I	1			c _i	<i>u</i> _i (h)/nm	vi
repeatability uniformity standard (nm)	1269	13.568	N	1	13.568	12
noise (nm)	0	18	R	1	10.392	100
z-calibration (rel.) static	0	1.00E-04	N	1269	0.127	100
Temp. Dev. (K)	0	0.5	R	1.00E-05	0	100
Software and Evaluation	0	4.80E-03	Ν	1269	6.091	100
Transfer- Characteristic, stylus tip	0	0.03	N	1269	38.07	100

For the type of probability distribution please use: N = normal; R = rectangular; T = triangular; U = U-shaped.

Combined standard uncertainty (nm): $u_c(h) = 42.2$

Effective degree of freedom: $v_{\rm eff}(h) = 132$

Expanded uncertainty (nm): U(h) = 85

with a coverage factor k=2

Laboratory: Marco Bieri at METAS

Roughness Standard 629f Measurement of Rk with a scanning arm of 60 mm

Equation used:

$$Rk = \sum c_i \cdot x_i$$

Rk = 466 nm

quantity	ectimate	uncertainty	probability	concitivity	uncertainty	degrees of
quantity	Connate	uncertainty	probability	sclisitivity	uncertainty	ucgrees of
X_{i}	x_{i}	$u(x_i)$	distribution	coefficient	contribution	treedom
				c _i	u _i (h)/nm	v_{i}
repeatability	466	4.619	Ν	1	4.619	12
uniformity						
standard (nm)						
noise (nm)	0	2	R	1	1.155	100
z-calibration	0	1.00E-04	Ν	466	0.047	100
(rel.) static						
Temp. Dev.	0	0.5	R	1.00E-05	0	100
(K)						
Software and	0	4.80E-03	Ν	466	2.237	100
Evaluation						
Transfer-	0	0.015	N	466	6.99	100
Characteristi						
c,						

stylus tip

For the type of probability distribution please use: N = normal; R = rectangular; T = triangular; U = U-shaped.

Combined standard uncertainty (nm): $u_c(h) = 8.8$

Effective degree of freedom: $v_{\rm eff}(h) = 160$

Expanded uncertainty (nm):

U(h) = 18

with a coverage factor k=2

Laboratory: Marco Bieri at METAS

Roughness Standard 629f Measurement of Rpk with a scanning arm of 60 mm

Equation used:

$$Rpk = \sum c_i \cdot x_i$$

Rpk = 137 nm

quantity	estimate	uncertainty	probability	sensitivity	uncertainty	degrees of
$X_{ m i}$	Xi	$u(x_{\rm i})$	distribution	coefficient	contribution	freedom
				ci	<i>u</i> _i (h)/nm	v_{i}
repeatability	137	3.464	Ν	1	3.464	12
uniformity o						
standard (nm)						
noise (nm)	0	2	R	1	1.155	100
z-calibration (rel.) static	0	1.00E-04	N	137	0.014	100
Temp. Dev. (K)	0	0.5	R	1.00E-05	0	100
Software and Evaluation	0	4.80E-03	N	137	0.658	100
Transfer-	0	0.03	N	137	4.11	100
Characteristi c,						

stylus tip

For the type of probability distribution please use: N = normal; R = rectangular; T = triangular; U = U-shaped.

Combined standard uncertainty (nm): $u_c(h) = 5.54$

Effective degree of freedom: $v_{\rm eff}(h) = 63$

Expanded uncertainty (nm): U

U(h) = 12

with a coverage factor k=2

Laboratory: Marco Bieri at METAS

Roughness Standard 629f Measurement of Rvk with a scanning arm of 60mm

Equation used:

$$Rvk = \sum c_i \cdot x_i$$

Rvk = 294 nm

quantity	estimate	uncertainty	probability	sensitivity	uncertainty	degrees of
$X_{ m i}$	x _i	$u(x_i)$	distribution	coefficient	contribution	freedom
				ci	u _i (h)/nm	v_{i}
repeatability	294	6.640	Ν	1	6.640	12
uniformity						
standard (nm)						
noise (nm)	0	2	R	1	1.155	100
z-calibration	0	1.00E-04	Ν	294	0.029	100
(rel.) static						
Temp. Dev.	0	0.5	R	1.00E-05	0	100
(K)						
Software and	0	4.80E-03	Ν	294	1.411	100
Evaluation						
Transfer-	0	0.03	N	294	8.82	100
Characteristi						
с,						

stylus tip

For the type of probability distribution please use: N = normal; R = rectangular; T = triangular; U = U-shaped.

Combined standard uncertainty (nm): $u_c(h) = 11.19$

Effective degree of freedom: $v_{\rm eff}(h) = 70$

Expanded uncertainty (nm): U(h) = 23

with a coverage factor k=2

Laboratory: Marco Bieri at METAS

Roughness Standard 633g Measurement of Ra with a scanning arm of 60 mm

Equation used:

$$R_a = \sum c_i \cdot x_i$$

 $R_a = 1516 \text{ nm}$

quantity	estimate	uncertainty	probability	sensitivity	uncertainty	degrees of
$X_{ m i}$	Xi	$u(x_i)$	distribution	coefficient	contribution	freedom
				ci	<i>u</i> _i (h)/nm	v_{i}
repeatability						
uniformity	1516	0.866	Ν	1	0.866	12
standard (nm)						
noise (nm)	0	2	R	1	1.155	100
z-calibration	0	$1.00E_{-}04$	N	1516	0.152	100
(rel.) static	U	1.001-04	11	1510	0.132	100
Temp. Dev.	0	0.5	D	1 00E 05	0	100
(K)	0	0.5	К	1.00E-05	0	100
Software and	0	4 200 02	N	1516		100
Evaluation	0	4.80E-05	1	1310	1.211	100
Transfer-						
Characteristic,	0	0.015	Ν	1516	22.74	100
stylus tip						

For the type of probability distribution please use: N = normal; R = rectangular; T = triangular; U = U-shaped.

Combined standard uncertainty (nm): $u_c(h) = 23.9$

Effective degree of freedom: $v_{\rm eff}(h) = 121$

Expanded uncertainty (nm): U(h) = 48

with a coverage factor k=2

Laboratory: Marco Bieri at METAS

Roughness Standard 633g Measurement of Rz with a scanning arm of 60 mm

Equation used:

$$R_z = \sum c_i \cdot x_i$$

 $R_z = 7581 \text{ nm}$

quantity	estimate	uncertainty	probability	sensitivity	uncertainty	degrees of
$X_{ m i}$	Xi	$u(x_{\rm i})$	distribution	coefficient	contribution	freedom
				ci	<i>u</i> _i (h)/nm	v_{i}
repeatability						
uniformity	7581	54.271	Ν	1	54.271	12
standard (nm)						
noise (nm)	0	18	R	1	10.392	100
z-calibration	0	1 00F 04	N	7581	0.758	100
(rel.) static	0	1.0012-04	14	/301	0.758	100
Temp. Dev.	0	0.5	D	1 00E 05	0	100
(K)	0	0.5	K	1.001-05	0	100
Software and	0	4 905 02	N	7501	26.290	100
Evaluation	0	4.80E-05	1	/381	30.389	100
Transfer-						
Characteristic,	0	0.03	Ν	7581	227.43	100
stylus tip						

For the type of probability distribution please use: N = normal; R = rectangular; T = triangular; U = U-shaped.

Combined standard uncertainty (nm): $u_c(h) = 236.9$ Effective degree of freedom: $v_{eff}(h) = 114$

Expanded uncertainty (nm): U(h) = 474 with a coverage factor k=2

Laboratory: Marco Bieri at METAS

Roughness Standard 633g Measurement of Rk with a scanning arm of 60 mm

Equation used:

$$Rk = \sum c_i \cdot x_i$$

Rk = 4241 nm

quantity	estimate	uncertainty	probability	sensitivity	uncertainty	degrees of
$X_{ m i}$	Xi	$u(x_{\rm i})$	distribution	coefficient	contribution	freedom
				c _i	u _i (h)/nm	v_{i}
repeatability	4241	45.899	Ν	1	45.899	12
uniformity	d					
standard (nm)						
noise (nm)	0	2	R	1	1.155	100
z-calibration	0	1.00E-04	Ν	4241	0.424	100
(rel.) static						
Temp. Dev.	0	0.5	R	1.00E-05	0	100
(K)						
Software and	0	4.80E-03	Ν	4241	20.357	100
Evaluation						
Transfer-	0	0.015	Ν	4241	63.615	100
Characteristic,						
stylus tip						

For the type of probability distribution please use: N = normal; R = rectangular; T = triangular; U = U-shaped.

Combined standard uncertainty (nm): $u_c(h) = 81.1$

Effective degree of freedom: $v_{eff}(h) = 81$

Expanded uncertainty (nm): U(h) = 163

with a coverage factor k=2

Laboratory: Marco Bieri at METAS

Roughness Standard 633g Measurement of Rpk with a scanning arm of 60 mm

Equation used:

$$Rpk = \sum c_i \cdot x_i$$

Rpk = 875 nm

quantity	estimate	uncertainty	probability	sensitivity	uncertainty	degrees of
$X_{ m i}$	x_{i}	$u(x_i)$	distribution	coefficient	contribution	freedom
				ci	u _i (h)/nm	v_{i}
repeatability	875	41.569	Ν	1	41.569	12
uniformity	d					
standard (nm)						
noise (nm)	0	2	R	1	1.155	100
z-calibration	0	1.00E-04	Ν	875	0.088	100
(rel.) static						
Temp. Dev.	0	0.5	R	1.00E-05	0	100
(K)						
Software and	0	4.80E-03	Ν	875	4.200	100
Evaluation						
Transfer-	0	0.03	Ν	875	26.25	100
Characteristic,						
stylus tip						

For the type of probability distribution please use: N = normal; R = rectangular; T = triangular; U = U-shaped.

Combined standard uncertainty (nm): $u_c(h) = 49.36$

Effective degree of freedom: $v_{eff}(h) = 23$

Expanded uncertainty (nm): U(h) = 99

with a coverage factor k=2

Laboratory: Marco Bieri at METAS

Roughness Standard 633g Measurement of Rvk with a scanning arm of 60 mm

Equation used:

$$Rvk = \sum c_i \cdot x_i$$

Rvk = 2569 nm

quantity	estimate	uncertainty	probability	sensitivity	uncertainty	degrees of
$X_{ m i}$	xi	$u(x_i)$	distribution	coefficient	contribution	freedom
				Ci	u _i (h)/nm	v_{i}
repeatability	2569	93.531	Ν	1	93.531	12
uniformity (
standard (nm)						
noise (nm)	0	2	R	1	1.155	100
z-calibration	0	1.00E-04	N	2569	0.257	100
(rel.) static						
Temp. Dev.	0	0.5	R	1.00E-05	0	100
(K)						
Software and	0	4.80E-03	Ν	2569	12.331	100
Evaluation						
Transfer-	0	0.03	Ν	2569	77.07	100
Characteristi						
c,						

stylus tip

For the type of probability distribution please use: N = normal; R = rectangular; T = triangular; U = U-shaped.

Combined standard uncertainty (nm): $u_c(h) = 121.8$

Effective degree of freedom: $v_{\rm eff}(h) = 33$

Expanded uncertainty (nm): U(h) = 244 with a coverage factor k=2

Laboratory: Marco Bieri at METAS

Date: 03.06.2002 Signature:

A4 - Uncertainty of measurement

Roughness Standard 686sg Measurement of Ra with a scanning arm of 60 mm

Equation used:

$$R_a = \sum c_i \cdot x_i$$

 $R_a = 2358 \text{ nm}$

quantity	estimate	uncertainty	probability	sensitivity	uncertainty	degrees of
$X_{ m i}$	Xi	$u(x_i)$	distribution	coefficient	contribution	freedom
				ci	u _i (h)/nm	v_{i}
repeatability						
uniformity of	2358	6.351	Ν	1	6.351	12
standard (nm)						
noise (nm)	0	2	R	1	1.155	100
z-calibration	0	1 00E 04	N	2258	0.236	100
(rel.) static	0	1.0012-04	1	2338	0.230	100
Temp. Dev.	0	0.5	D	1 00F 05	0	100
(K)	U	0.5	K	1.001-05	0	100
Software and	0	4 905 02	N	2250	11 210	100
Evaluation	0	4.80E-05	1	2558	11.518	100
Transfer-						
Characteristic,	0	0.015	Ν	2358	35.37	100
stylus tip						

For the type of probability distribution please use: N = normal; R = rectangular; T = triangular; U = U-shaped.

Combined standard uncertainty (nm): $u_c(h) = 37.7$

Effective degree of freedom: $v_{\rm eff}(h) = 127$

Expanded uncertainty (nm): U(h) = 76 with a coverage factor k=2

Laboratory: Marco Bieri at METAS

Roughness Standard 686sg Measurement of Rz with a scanning arm of 60 mm

Equation used:

$$R_z = \sum c_i \cdot x_i$$

 $R_z = 14\ 451\ \mathrm{nm}$

quantity	estimate	uncertainty	probability	sensitivity	uncertainty	degrees of
$X_{ m i}$	xi	$u(x_i)$	distribution	coefficient	contribution	freedom
				ci	u _i (h)/nm	v_{i}
repeatability						
uniformity of	14451	85.737	Ν	1	85.737	12
standard (nm)						
noise (nm)	0	18	R	1	10.392	100
z-calibration	0	1 00E 04	N	14451	1 445	100
(rel.) static	0	1.0012-04	19	14431	1.445	100
Temp. Dev.	0	0.5	D	1 00E 05	0	100
(K)	0	0.5	K	1.0012-03	0	100
Software and	0	4 80E 02	N	14451	60.265	100
Evaluation	0	4.80E-05	1	14431	09.303	100
Transfer-						
Characteristic,	0	0.03	Ν	14451	433.53	100
stylus tip						

For the type of probability distribution please use: N = normal; R = rectangular; T = triangular; U = U-shaped.

Combined standard uncertainty (nm): $u_c(h) = 447.5$

Effective degree of freedom: $v_{\rm eff}(h) = 112$

Expanded uncertainty (nm): U(h) = 895 with a coverage factor k=2

Laboratory: Marco Bieri at METAS

Roughness Standard 686sg Measurement of Rk with a scanning arm of 60 mm

Equation used:

$$Rk = \sum c_i \cdot x_i$$

Rk = 8036 nm

quantity	estimate	uncertainty	probability	sensitivity	uncertainty	degrees of
$X_{ m i}$	Xi	$u(x_i)$	distribution	coefficient	contribution	freedom
				ci	u _i (h)/nm	v_{i}
repeatability	8036	53.694	Ν	1	53.694	12
uniformity o						
standard (nm)						
noise (nm)	0	2	R	1	1.155	100
z-calibration	0	1.00E-04	Ν	8036	0.804	100
(rel.) static						
Temp. Dev.	0	0.5	R	1.00E-05	0	100
(K)						
Software and	0	4.80E-03	Ν	8036	38.573	100
Evaluation						
Transfer-	0	0.015	N	8036	120.54	100
Characteristi						

c, stylus tip

For the type of probability distribution please use: N = normal; R = rectangular; T = triangular; U = U-shaped.

Combined standard uncertainty (nm): $u_c(h) = 137.5$

Effective degree of freedom: $v_{eff}(h) = 126$

Expanded uncertainty (nm): U(h) = 275 with a coverage factor k=2

Laboratory: Marco Bieri at METAS

Date: 03.06.2002 Signature:

July 31st, 2003

Roughness Standard 686sg Measurement of Rpk with a scanning arm of 60 mm

Equation used:

$$Rpk = \sum c_i \cdot x_i$$

Rpk = 1256 nm

quantity	estimate	uncertainty	probability	sensitivity	uncertainty	degrees of
$X_{ m i}$	Xi	$u(x_i)$	distribution	coefficient	contribution	freedom
				c _i	u _i (h)/nm	v_{i}
repeatability	1256	15.011	Ν	1	15.011	12
uniformity of						
standard (nm)						
noise (nm)	0	2	R	1	1.155	100
z-calibration	0	1.00E-04	N	1256	0.126	100
(rel.) static						
Temp. Dev.	0	0.5	R	1.00E-05	0	100
(K)						
Software and	0	4.80E-03	Ν	1256	6.029	100
Evaluation						
Transfer-	0	0.03	Ν	1256	37.68	100
Characteristi						
c,						

stylus tip

For the type of probability distribution please use: N = normal; R = rectangular; T = triangular; U = U-shaped.

Combined standard uncertainty (nm): $u_c(h) = 41.02$

Effective degree of freedom: $v_{\rm eff}(h) = 116$

Expanded uncertainty (nm):

U(h) = 83 with a coverage factor k=2

Laboratory: Marco Bieri at METAS

Date: 03.06.2002 Signature:

A4 - Uncertainty of measurement

Roughness Standard 686sg Measurement of Rvk with a scanning arm of 60mm

Equation used:

$$Rvk = \sum c_i \cdot x_i$$

Rvk = 3016 nm

quantity	estimate	uncertainty	probability	sensitivity	uncertainty	degrees of
$X_{ m i}$	x _i	$u(x_i)$	distribution	coefficient	contribution	freedom
				ci	u _i (h)/nm	v_{i}
repeatability	3016	101.614	N	1	101.614	12
uniformity	q					
standard (nm)						
noise (nm)	0	2	R	1	1.155	100
z-calibration	0	1.00E-04	N	3016	0.302	100
(rel.) static						
Temp. Dev.	0	0.5	R	1.00E-05	0	100
(K)						
Software and	0	4.80E-03	Ν	3016	14.477	100
Evaluation						
Transfer-	0	0.03	N	3016	90.48	100
Characteristi						
c,						

stylus tip

For the type of probability distribution please use: N = normal; R = rectangular; T = triangular; U = U-shaped.

Combined standard uncertainty (nm): $u_c(h) = 136.8$

Effective degree of freedom: $v_{\rm eff}(h) = 37$

Expanded uncertainty (nm): U(h) = 274 with a coverage factor k=2

Laboratory: Marco Bieri at METAS

Date: 03.06.2002 Signature:

A4 - Uncertainty of measurement

Roughness Standard SFRN 150/1006 Measurement of Ra with a scanning arm of 60 mm

Equation used:

$$R_a = \sum c_i \cdot x_i$$

 $R_a = 25 \text{ nm}$

quantity	estimate	uncertainty	probability	sensitivity	uncertainty	degrees of
$X_{ m i}$	Xi	$u(x_i)$	distribution	coefficient	contribution	freedom
				ci	u _i (h)/nm	v_{i}
repeatability						
uniformity	25	0.289	Ν	1	0.289	12
standard (nm)						
noise (nm)	0	2	R	1	1.155	100
z-calibration	0	1 00E 04	N	25	0.002	100
(rel.) static	0	1.00E-04	1	23	0.005	100
Temp. Dev.	0	0.5	D	1 00E 05	0	100
(K)	0	0.5	К	1.00E-03	0	100
Software and	0	4 905 02	N	25	0.120	100
Evaluation	0	4.80E-03	IN	25	0.120	100
Transfer-						
Characteristic,	0	0.015	Ν	25	0.375	100
stylus tip						

For the type of probability distribution please use: N = normal; R = rectangular; T = triangular; U = U-shaped.

Combined standard uncertainty (nm): $u_c(h) = 1.25$

Effective degree of freedom: $v_{\rm eff}(h) = 133$

Expanded uncertainty (nm): U(h) = 2.5

with a coverage factor k=2

Laboratory: Marco Bieri at METAS

Roughness Standard SFRN 150/1006 Measurement of Rz with a scanning arm of 60 mm

Equation used:

$$R_z = \sum c_i \cdot x_i$$

 $R_z = 146 \text{ nm}$

quantity	estimate	uncertainty	probability	sensitivity	uncertainty	degrees of
$X_{ m i}$	x_{i}	$u(x_i)$	distribution	coefficient	contribution	freedom
				c _i	u _i (h)/nm	v_i
repeatability	146	1.732	Ν	1	1.732	12
uniformity of	d					
standard (nm)						
noise (nm)	0	18	R	1	10.392	100
z-calibration	0	1.00E-04	N	146	0.015	100
(rel.) static						
Temp. Dev.	0	0.5	R	1.00E-05	0	100
(K)						
Software and	0	4.80E-03	Ν	146	0.701	100
Evaluation						
Transfer-	0	0.03	N	146	4.38	100
Characteristic,						
stylus tip						

For the type of probability distribution please use: N = normal; R = rectangular; T = triangular; U = U-shaped.

Combined standard uncertainty (nm): $u_c(h) = 11.43$

Effective degree of freedom: $v_{\rm eff}(h) = 141$

Expanded uncertainty (nm): U(h) = 23 with a coverage factor k=2

Laboratory: Marco Bieri at METAS

Roughness Standard SFRN 150/1006 Measurement of Rk with a scanning arm of 60 mm

Equation used:

$$Rk = \sum c_i \cdot x_i$$

Rk = 76 nm

quantity	estimate	uncertainty	probability	sensitivity	uncertainty	degrees of
$X_{ m i}$	x_{i}	$u(x_i)$	distribution	coefficient	contribution	freedom
				ci	u _i (h)/nm	v_{i}
repeatability	76	1.732	Ν	1	1.732	12
uniformity (d					
standard (nm)						
noise (nm)	0	2	R	1	1.155	100
z-calibration	0	1.00E-04	N	76	0.008	100
(rel.) static						
Temp. Dev.	0	0.5	R	1.00E-05	0	100
(K)						
Software and	0	4.80E-03	Ν	76	0.365	100
Evaluation						
Transfer-	0	0.015	Ν	76	1.14	100
Characteristi						
с,						

stylus tip

For the type of probability distribution please use: N = normal; R = rectangular; T = triangular; U = U-shaped.

Combined standard uncertainty (nm): $u_c(h) = 2.4$

Effective degree of freedom: $v_{\text{eff}}(h) = 42$

Expanded uncertainty (nm): U(h) = 5

(1) = +2

with a coverage factor k=2

Laboratory: Marco Bieri at METAS

Date: 03.06.2002 Signature:

A4 - Uncertainty of measurement

Roughness Standard SFRN 150/1006 Measurement of Rpk with a scanning arm of 60 mm

Equation used:

$$Rpk = \sum c_i \cdot x_i$$

Rpk = 30 nm

quantity	estimate	uncertainty	probability	sensitivity	uncertainty	degrees of
$X_{ m i}$	x _i	$u(x_i)$	distribution	coefficient	contribution	freedom
				Ci	u _i (h)/nm	v_{i}
repeatability	30	0.866	Ν	1	0.866	12
uniformity of	d					
standard (nm)						
noise (nm)	0	2	R	1	1.155	100
z-calibration	0	1.00E-04	N	30	0.003	100
(rel.) static						
Temp. Dev.	0	0.5	R	1.00E-05	0	100
(K)						
Software and	0	4.80E-03	Ν	30	0.144	100
Evaluation						
Transfer-	0	0.03	Ν	30	0.9	100
Characteristi						
с,						

stylus tip

For the type of probability distribution please use: N = normal; R = rectangular; T = triangular; U = U-shaped.

Combined standard uncertainty (nm): $u_c(h) = 1.71$

Effective degree of freedom:	$v_{\rm eff}(h) = 119$
------------------------------	------------------------

Expanded uncertainty (nm): U(h) = 3.5

with a coverage factor k=2

Laboratory: Marco Bieri at METAS
Date: 03.06.2002 Signature:

A4 - Uncertainty of measurement

Roughness Standard SFRN 150/1006 Measurement of Rvk with a scanning arm of 60 mm

Equation used:

$$Rvk = \sum c_i \cdot x_i$$

Rvk = 30 nm

quantity	estimate	uncertainty	probability	sensitivity	uncertainty	degrees of
$X_{ m i}$	x_{i}	$u(x_i)$	distribution	coefficient	contribution	freedom
				Ci	u _i (h)/nm	v_i
repeatability	30	2.021	Ν	1	2.021	12
uniformity of	d					
standard (nm)						
noise (nm)	0	2	R	1	1.155	100
z-calibration	0	1.00E-04	Ν	30	0.003	100
(rel.) static						
Temp. Dev.	0	0.5	R	1.00E-05	0	100
(K)						
Software and	0	4.80E-03	Ν	30	0.144	100
Evaluation						
Transfer-	0	0.03	N	30	0.9	100
Characteristic,						
stylus tip						

For the type of probability distribution please use: N = normal; R = rectangular; T = triangular; U = U-shaped.

Combined standard uncertainty (nm): $u_c(h) = 2.50$

Effective degree of freedom: $v_{\rm eff}(h) = 28$

Expanded uncertainty (nm): U(h) = 5

with a coverage factor k=2

Laboratory: Marco Bieri at METAS

Date: 03.06.2002 Signature:

Comment from METAS

To our surprise in a few cases there occurred larger deviations (which even resulted in the failure of the En-criteria) of the following parameters: Pt and D for the R1 and R3 groove of the depth setting standard EN 806 and the RSm values for the roughness standards, type C. As indicated in the measurement report A3, METAS used styli with 60 mm and 20 mm arm length for the measurements. Since the difference of the two styli was well within the given uncertainty range and the fact that the stylus with 60 mm arm length is used for most calibration services, the results given in the report were all from the 60 mm stylus. Unfortunately we found out, that measurements with this stylus contained more noise than the ones obtained with the 20 mm stylus. We underestimated the contribution of noise (which is more significant for small groove depths and maybe not the same everyday) in the uncertainty assessment. On the other hand we would like to indicate the results obtained with the 20 mm stylus would have agreed well with the reference value: EN 806:

R1: Pt = (292 ± 19) nm; D = (288 ± 19) nm R2: Pt = (1375 ± 40) nm; D = (1370 ± 40) nm

Our values of the RSm parameters in the report were all computed by the software package Ultra Version 6 except for the RSm value of the data file 7080.SMD where the evaluation was done using our own METAS software (LabView program).

The RSm value for the data file 7080 shows no significant deviation from the reference value (PTB). Evaluating the measured RSm parameters for the roughness standard 7070 / PGN 10 with the METAS software (instead of using UltraVersion 6) leeds to values with much smaller deviations from the reference value. It seems therefore, that Ultra Version 6 does not calculate RSm parameters correctly in some cases while it does sometimes in other cases (see also the strange grouping of values in fig. 5).

RSm values computed with METAS software:

7070 / PGN 10:	$RSm = (199'987 \pm 70) nm$
8194 PGN 3:	$RSm = (119'955 \pm 52) nm$
P114A:	$RSm = (50'044 \pm 28) nm$

Shortly after METAS had made the measurements for the comparison we began to use only values calculated with our own software for certificates.

The implementation of the RSm value seems to be a general problem, as e. g. discussed in: "Ambiguities in the definition of spacing parameters for surface-texture characterization", Richard K Leach and Peter M Harris, Meas. Sci. Technol. 13 (2002) 1924–1930.

Appendix B1

Reports of MIKES

Measurement uncertainty of surface texture Sivu:	1/2 Version: Date:	KMP 09 0.3 14.6.02 BAH

Calculation of measurement uncertainty of surface texture of a steel specimen, using the instrument Taylor Hobson Talysurf 2 (inductive, 2µm tip radius). The calculations are done according to GUM and partly EA-4/02 and also partly according to suggestion by NPL/Leach presented in Euromet Length Workshop 2001.

The measurement model for the surface roughness parameter is:

$$R_x = \frac{1}{k} \sum_{1}^{k} F_{Rx}(Z_{m,i})$$

where profile Z_m is:

$$Z_{\textit{m,i}} = C Z_{\textit{p}} + Z_{\textit{ref}} + Z_{\textit{pl}} + Z_{\textit{tip}}$$

where:

Z_m	profile;
Z _p	indicated profile;
С	calibration of vertical displacement;
$\mathbf{Z}_{\mathrm{ref}}$	slideway profile;
Z_{pl}	plastic deformation error;
Z _{tip}	effect of tip geometry;

The calculation is done for three cases:

- Case A: Rt is 0.2µm, Ra 0.1µm and measurement length 2 mm
- Case B: Rt is 2µm, Ra 1µm and measurement length 5 mm
- Case C: Rt is 10µm, Ra 5µm and measurement length 12.5 mm

C When measuring a 500 μm step made by two gauge blocks the result is in average about 42 nm to large. For a 0.2 μm (case A) step the same relative error makes about 0.17 nm. For cases B and C we get respectively the standard uncertainties 1.7 nm and 8.5 nm

This uncertainty is combined with a standard deviation result $\frac{10nm}{\sqrt{3}} = 6nm$ (representing

repeatability of the instrument) from measurements of a A2 type depth setting standard with grooves, and the result is roughly 6 nm for cases A and B and 11 nm for case C.

 Z_{ref} When measuring an optical flat the peak to peak result is typically about 30 nm when the length is 2mm. A triangular distribution is assumed and the standard uncertainty for straightness of the profile slideway is 30/12 = 9 nm. For cases B and C we get respectively the standard uncertainties 12 nm and 14 nm

- $Z_{pl} \qquad \mbox{According to NPL/Leach suggestion a 0,75mN measuring force and 2\mu m tip radius the deformation is 20 nm on metal. A similar result is also given by Hertz formula steel-steel contact MIKES report J12). The standard uncertainty for fluctuations in the deformation is approximated to <math display="inline">\pm 10\%$ of average deformation.
- Z_{tip} It is assumed that the characteristic wavelength is much larger than the 2 μ m tip radius. Therefore the effect of tip geometry is minor.
- SEOM Standard deviation of mean for 12 measurements, the following calculations are done for the value 8 nm

quantity	Estimate		standard	d uncertainty	Distribution	Sensitivity	Uncertainty contrib	Degree of freedo
Zp		nm						
Zm		nm		nm	Normal	1		
С	1	nm	6	nm	Normal	1	6,00	4
Z _{ref}	0	nm	9	nm	Triangular	1	9,00	6
SEOM	0	nm	8	nm	Normal	1	8,00	11
Z _{pl}	20	nm	2	nm	Normal	1	2,00	4
							13,60	20
	-				Expanded unce	ertainty (k=2.0)	27.20	nm

Table 1. Measurement uncertainty for the profile case A.

Table 2. Measurement uncertainty for the profile case B.

quantity	Estimate		standard	uncertainty	Distribution	Sensitivity		Uncertainty contrib	Degree of freedo
Z _p		nm							
Z _m		nm		nm	Normal	1			
С	1	nm	6	nm	Normal	1		6,00	4
Z _{ref}	0	nm	12	nm	Triangular	1		12,00	6
SEOM	0	nm	8	nm	Normal	1		8,00	11
Z_{pl}	20	nm	2	nm	Normal	1		2,00	4
								15,75	15
					Expanded und	certainty (k=2.0))	31,50	nm

Table 3. Measurement uncertainty for the profile case C.

quantity	Estimate		standard	uncertainty	Distribution	Sensitivity		Uncertainty contrib	Degree of freedom
Z _p		nm							
Z _m		nm		nm	Normal	1			
С	1	nm	11	nm	Normal	1		11,00	4
Z _{ref}	0	nm	14	nm	Triangular	1		14,00	6
SEOM	0	nm	8	nm	Normal	1		8,00	11
Z_{pl}	20	nm	2	nm	Normal	1		2,00	4
								19,62	15
	-				Expanded un	certainty (k=2.0))	39,24	nm

Appendix B1

Reports of NMi-VSL

Euromet project 600 Final report NMi VSL

Date: 25-04-2003

Richard Koops

Description of the measuring instrument 3	
Type of instrument	3
Environment characterisation	3
Calibration of the instrument	3
Characterising the guiding mechanism	4
Characterising noise	4
Data analysis	4
Notes on the analysis of the measurement results of the depth setting	
standard of type A2. 5	
Notes on the analysis of the softgauges 6	
Notes on the analysis of the files "1001.smd" and "505.smd"	. 6
Notes on the analysis of the file "7080.smd"	. 6
<u>Uncertainty of the measurements</u> 7	
Results and measurement conditions 21	

Description of the measuring instrument

Type of instrument

All measurements were performed with a Form Talysurf-120L (FTS) that has been updated in January 2003 to operate with the acquisition and analysis software package Ultra version 4.3.14. The instrument operates with a moving stylus. The stylus movements in the Z (=vertical) direction are measured by a laser interferometer, the stylus movements in the X (=horizontal) direction are measured using a line scale. The resolution is 1 nm in the Z direction and 0,25 μ m in the X direction. The measurement uncertainty in both directions is determined as described below.

Environment characterization

All measurements were performed in a laboratory with temperature and humidity control yielding a temperature of (20 + - 0.5) °C and a relative humidity of (50 + - 5) %RH. No special precautions for dust control have been taken since the normal environmental operating conditions result a sufficiently clean conditions. The construction of the instrument and the mechanical support provide sufficient noise protection for normal operation of the instrument. The residuals due to the electronics and environmental noise were determined as described below and incorporated in the measurement uncertainty. Measurements that were influenced by excessive noise (i.e. slamming doors) were excluded and redone.

Calibration of the instrument

- Stylus radius

The stylus tip radius was checked by scanning the edge of a razor blade. By manually fitting a circle to the data the tip radius was determined to be $(1, 2 + 0, 5) \mu m$.

- Probing force

The probing force was calibrated using a calibrated force balance. The force was determined to be (0,55 + 0,03) mN.

- Z-axis

The calibration of the Z axis of the system was performed using a two step process. In step one a calibrated radius standard was used to determine the corrections of the arcuate movement of the probe. These corrections are stored as polynomial coefficients within the acquisition and analysis software. Secondly, a set of calibrated step height and depth setting standards was used to check the linearity and to calibrate the Z direction. The datasets obtained with the FTS of these calibrated standards had to be analyzed off-line using a specially developed analysis tool. Based on these results we decided to use a calibration factor of 1 and add the deviations from 1 to the measurement uncertainty for all parameters that depend on the Z coordinate

- X-axis

The calibration of the X axis was performed using a calibrated line scale. Also here we add the deviation of the X-axis position from the true value to the measurement uncertainty for all parameters that depend on the X coordinate.

- Scanning speed

The scanning speed was calibrated by determining the time to scan a 100 mm line scale. The scanning speed was $(0,495 \pm 0,004)$ mm/s.

- Sample alignment

The angular misalignment in the X direction of the samples with respect to the probe direction was determined by estimating the maximum change in position of the probe with respect to the sample edges, yielding 0,5 mm misalignment over 10 mm sample length. Assuming a rectangular distribution this results in a length dependent uncertainty contribution for the X coordinates of $1-\cos[0.5/(10*2*\operatorname{sqrt}(3))] = 1e-4.1$.

Characterizing the guiding mechanism

The influence of the guiding mechanism of the FTS was evaluated by scanning an optical flat on different positions using the same part of the guiding mechanism. By averaging 24 different data sets the characteristics of the guiding mechanism were extracted. This dataset was then used to evaluate the values of all relevant parameters for the comparison and these values were used as uncertainty contributions due to the guiding mechanism.

Characterizing noise

Measurement noise (i.e. electronic and environmental) was evaluated by repeated scanning of an optical flat on the same position using the same part of the guiding mechanism of the FTS. The difference between the data sets excludes the influence of the guiding mechanism and the optical flat leaving only the instrumental noise. This dataset was then used to evaluated the values of all relevant parameters for the comparison and these values were used as uncertainty contributions due to instrumental noise.

Data analysis

Most analysis could be performed by Ultra software. For the analysis of the depth setting standard data and the softgauges additional tools were developed in order to extract the desired parameters. Also some tools had to be developed to subtract and average profile data sets and to process the stylus radius data.

Notes on the analysis of the measurement results of the depth setting standard of type A2.

Since our Form Talysurf Ultra software can not analyze the measurement results on the depth setting standard according to ISO 5436-1:1998 to obtain d, the measured data sets were analyzed off-line with a specially developed software tool. The interpretation of the measurement data sets was based on the description provided by Taylor Hobson of the structure of the exported ASCII file generated by the Form Talysurf software. The appropriate scaling factors from the ASCII file header were used to calculate the X and Z values in units of length. Our analysis tool allows the determination of the width W of the groove either automatically or by hand. In practice the determination by hand was considered more suitable especially in the case of the most shallow groove R1 where measurement noise was significant. After the determination of the width W of each groove the appropriate intervals W/3 at the bottom of the groove and on the upper level are used to fit a least squares mean line. Finally the distance d is determined as the largest distance between the circle circumference and the line. The uncertainty in d is calculated from the residuals of the fit and the degrees of freedom.

Notes on the analysis of the softgauges

Since our Form Talysurf software was not able to read the file format of the softgauges provided in this comparison a semi-automated conversion tool was developed. The major difference between the softgauge files and the Form Talysurf files is the presence of both X and Z data in the original softgauge files while the Form Talysurf files only contain the Z data and the value for the X spacing in the raw data files. Additionally there were many small differences between the header structures, as illustrated below, that required conversion before the softgauges could be analyzed. The conversion was based on the information provided in the datasheet D5 of the technical report and the description of the Form Talysurf ASCII format file structure provided by the operator manual from Taylor Hobson.

First the header of the softgauge files was analyzed providing the header length, the number of points, the units and scaling factors. Our tool then stripped the X coordinates from the original files leaving only the Z values. A dummy header with the correct structure for the Form Talysurf analysis software, the remaining Z values and appropriate file termination characters were then written to a new profile file. Finally, the number of points, the units and scaling factors and the X spacing were manually changed to the correct values taken from the header of the original softgauge files. The X spacing was calculated from the difference between the second and first X coordinate in the original files for each softgauge. As a result the X coordinates used in our analysis differ slightly form the values provided by the original softgauges in the files "1001.smd" and "7080.smd"; for these two files we use multiples of 1.500086e-004 mm for the X coordinate. Since the differences between our X values and the X values of the original softgauges remain in the sub nm range we consider the effect of the conversion on the analysis results negligible.

ISO 5436 - 2000 1001 PRF 0 PTB_2d_k CX A 11666 mm 1.0e0 D CZ A 11666 nm 1.0e0 D ______ DATE 05/17/01

DATE 05/17/01 TIME 14:22:10 LAST_CALIBRATION 05/17/01 14:46:18 PROBING_SYSTEM nanostep contacting 2.000000e+000 um 9.000000e+001 SPEED 5.000000e-002 PROFILE_FILTER none Ls 8.000000e-007 Lc 8.000000e-007 1 2 ref_tr 0.000000e+000 PRF CX M 1.166600e+004 MM 1.000000e+000 D CZ M 1.166600e+004 MM 1.000000e+000 D EOR STYLUS_RADIUS 0.00000e+000 MM SPACING CX 1.500086e-004 MAP 1.000000e+000 CZ CZ 1.000000e+000 1.000000e+000 MAP 2.000000e+000 CZ CX 1.000000e+000 0.000000e+000 EOR 6.354600e+001 6.292300e+001 6.416900e+001 ...

0.000000e+000 6.354600e+001 1.500086e-004 6.292300e+001 3.000171e-004 6.416900e+001

...

Original softgauge file "1001.smd"

Converted to Form Talysurf ASCII format

Notes on the analysis of the files "1001.smd" and "505.smd"

The roughness and Rk analysis was performed on 5 cutoff lengths with filter settings Ls = 0,0025 mm and Lc = 0,25 mm for "1001.smd" and with filter settings Ls = 0,0025 mm and Lc = 0,8 mm for "505.smd". Since the data tracks were 6 points short for the determination of the Rk parameters we added 3 points to the beginning and end of each track by repeating the begin and end values of the tracks. Since these values are not used in the final analysis but are only used to be able to filter the tracks the addition of these points has no influence on the parameter values.

Notes on the analysis of the file "7080.smd"

The analysis was performed on 1 cutoff length of 0,8 mm according to the ISO tables for Ra and Rz with filter settings Ls = 0,0025 mm and Lc = 0,8 mm. There was insuficient track length for the 5 cutoff analysis and the determination of the Rk parameters.

Uncertainty of the measurements

The uncertainty analysis was based on experimental data and on data taken from literature. The only parameter we could not measure was the effect of the plastic deformation of the specimen surfaces as a result of the probing tip. The uncertainty due to plastic deformation was therefore taken from [1].

The general equation for the determination of a parameters P was:

P = C(Pm + Pref + Pnoise + Ppl)

with

with		
Р	:	the parameter to be determined
С	:	the calibration factor for the Z and X direction. We have set these factors to 1 and added the deviation from 1 to the uncertainty.
Pm	:	the value of the parameter as generated by the instrument. The standard deviation was used as uncertainty in this value.
Pref	:	the influence of the guiding mechanism of the instrument. We do not correct for the influence of the guiding mechanism but add the influence to the measurement uncertainty. We do this by calculating the parameter value from a profile that represents the guiding mechanism.
Pnoise	:	the influence of noise (both instrumental and environmental). As with Pref, the influence of noise is added to the measurement uncertainty by calculating the parameter value from a profile that represents the noise only.
Ppl	:	the plastic deformation of the specimen surface as a result of the probing tip. This value was taken from [1].
_		

Depending on the specific parameter, uncertainty contributions due to instrumental resolution and specimen alignment were taken into account where necessary. Specifically we estimated the uncertainty in R_{Sm} by incorporating the calibration uncertainty for the X-axis and X-alignment for both the start value and end value of the X-region that was used to calculate R_{Sm} . The uncertainty in the M_R parameters was calculated using two uncertainty contributions. First the standard deviation of the values generated by the instrument and secondly the uncertainty in R_k using the following reasoning. We assume that the ordinate axis of the Abbott-Firestone curve can be normalized to 100% using Rmax. We then have percentages on both axis. We further assume a slope of 1 of the curve at the region defined by R_k . Finally we estimate the uncertainty in M_{R1} and M_{R2} due to R_k by half the normalized uncertainty in R_k . Since the uncertainty in R_k includes all other uncertainty sources they are also incorporated in the uncertainty of M_{R1} and M_{R2} this way.

The following pages contain the detailed uncertainty statements for all parameters that were determined in this comparison. Concerning the degrees of freedom we inserted a, more or less arbitrary, value of 1000 in cases where the degree was infinite.

[1] Richard Leach ,"Uncertainties when using a stylus instrument: a simplified approach", Euromet Length uncertainty workshop, 2001

	Quantity Xi	Estimate xi		uncertainty u(xi)		distribution	sensitivity coefficient c		uncertainty contribution ui()		degrees of freedom <i>v</i> i
	C Ptm dnoise dref dZalign dpl dZresolutio	1 332 0 0 0 0	nm nm nm nm	0,003 6,7 8,7 4,2 0,0 5,8	nm nm nm nm	N N R R R R	331,74 1 1 331,74 331,74 1	nm nm	1,1 6,7 8,7 4,2 0,0 5,8	nm nm nm nm nm nm	10 39 29 1000 1000
	uzresolutio			0,5			Uc		13,1	nm	100
							U(k=2)		26	nm	
							veff:			45	
Groove number R1	, d (ISO 54	36:1998)									
	Quantity Xi	Estimate xi		uncertainty u(xi)		distribution	sensitivity coefficient c		uncertainty contribution		degrees of freedom <i>v</i> i
	C	1		0,003		N	293	nm	1,0	nm	10
	dm dnoise	293 0	nm nm	9 4,0	nm nm	N N	1		9,0 4,0	nm nm	3
	dref dZalign	0	nm	1,8	nm	N R	293	nm	1,8	nm nm	2
	dpl dZresolutio	0	nm nm	5,8	nm nm	R	1		5,8	nm nm	100
							Uc		11,6	nm	
							U(k=2)		23	nm	
							veff:			25	
Groove number R3	, Pt (ISO 42	287:1997)									
	Quantity Xi	Estimate xi		uncertainty u(xi)		distribution	sensitivity coefficient c		uncertainty contribution ui()		degrees of freedom <i>v</i> i
	C	1396	nm	0,003	nm	N	1396	nm	4,7	nm nm	1
	dnoise dref	0	nm nm	0,0	nm				8.7	nm	3
	dZalign			4.2	nm	R	1		4.2	nm	2
	dpl	0	nm	8,7 4,2 0,0 5,8	nm nm	N R R	1 1396 1	nm	4,2 0,0 5,8	nm nm nm	2: 100 100
	dpl dZresolutio	0	nm nm	8,7 4,2 0,0 5,8 0,3	nm nm nm	N R R R	1 1396 1 1	nm	4,2 0,0 5,8 0,3	nm nm nm nm	2: 100 100 100
	dpl dZresolutio	0	nm nm	8,7 4,2 0,0 5,8 0,3	nm nm nm	N R R R	1 1396 1 1 Uc	nm	4,2 0,0 5,8 0,3 13,3	nm nm nm nm	2: 100 100 100
	dpl dZresolutic		nm	8,7 4,2 0,0 5,8 0,3	nm nm nm	N R R R	1 1396 1 Uc U(k=2)	nm	4,2 0,0 5,8 0,3 13,3 27	nm nm nm nm nm	2: 1001 1001
	dpl dZresolutic		nm	8,7 4,2 0,0 5,8 0,3	nm nm	N R R R	1 1396 1 Uc U(k=2) veff:	nm	4,2 0,0 5,8 0,3 13,3 27	nm nm nm nm nm 75	2: 100 100 100
	dpl dZresolutic		nm	8,7 4,2 0,0 5,8 0,3	nm nm	N R R R R	1 1396 1 1 Uc U(k=2) νeff:	nm	4,2 0,0 5,8 0,3 13,3 27	nm nm nm nm nm	2: 100 100 100
Graove number R3	dpl dZresolutic	0 0 0 3 6:1998) Estimate		8,7 4,2 0,0 5,8 0,3	nm nm	N R R R R R	1 1396 1 1 Uc U(k=2) veff:		4,2 0,0 5,8 0,3 13,3 27	nm nm nm nm nm 75	2 100 1000
Groove number R3	dpl dZresolutic , d (ISO 543 Quantity Xi	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		8,7 4,2 0,0 5,8 0,3 0,3 uncertainty u(xi)		N N R	1 1396 1 1 Uc U(k=2) veff: sensitivity coefficient c		4,2 0,0 5,8 0,3 13,3 27 uncertainty contribution ui()	nm nm nm nm nm 75	2 100 100 100 100 degrees of freedom vi
Groove number R3	dpl dZresolutic , d (ISO 543) Quantity Xi	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		8,7 4,2 0,0 5,8 0,3 0,3 uncertainty u(xi) 0,003		N R R R R distribution	1 1396 1 1 Uc U(k=2) veff: sensitivity coefficient c	nm	4,2 0,0 5,8 0,3 13,3 27 uncertainty contribution ui0 4,6	nm nm nm nm nm nm 75	2 100 100 100 100 degrees of freedom vi
Groove number R3	dpl dZresolutic , d (ISO 541 Quantity Xi C C dm dmoise	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	nm nm 	8,7 4,2 0,0 5,8 0,3 0,3 0,0 3 0,0 0,0 0 10 4,0	nm nm nm 	N R R R R distribution	1 1396 1 1 Uc U(k=2) veff: sensitivity coefficient c 1371 1	nm	uncertainty contribution ui() 4,6 13,3 27 27 4,6 10,0 4,0 4,0	nm nm nm nm nm nm nm 75	2 10C 10C 10C 10C 10C
Groove number R3	dpl dZresolutic , d (ISO 54: Quantity Xi C dm dmoise dref dZalign	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	nm nm 	8,7 4,2 0,0 5,8 0,3 0,3 0,0 0,0 0,003 10 4,0 1,8 0,0,0	nm nm nm nm nm nm nm	N N R R R distribution	1 1 1 1 1 1 1 1 1 1 1 1 1 1	nm	4,2 0,0 5,8 0,3 13,3 27 27 27 27 27 27 27 27 27 27 27 27 27	nm nm nm nm nm nm nm 75	2 100 100 100 100 100 100 100 100 100
Groove number R3	dpl dZresolutic dZresolutic d d d d d d d d z e solutic d d d d a d a d d d d a d a d d a d a	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	nm nm 	8,7 4,2 0,0 5,8 0,3 0,3 0,3 0,0 0,0 0,0 0,0 0,0 0,0 0,0	nm nm nm nm nm nm nm	N R R R distribution N N N R R R	1 1 1 1 1 1 1 1 1 1 1 1 1 1	nm	uncertainty contribution ui() 4,2 0,0 5,8 0,3 13,3 27 27 27 27 27 27 27 27 27 27 27 27 27	nm nm nm nm nm nm 75 75	2 100 100 100 100 100 100 100 100 100 10
Groove number R3	dpl dZresolutic dZresolutic dzesolutic duantity Xi duantity Xi dref dzalign dpl dZresolutio	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	nm nm 	8,7 4,2 0,0 5,8 0,3 0,3 0,0 10 4,0 1,8 0,0 5,8 0,3	nm nm nm nm nm nm nm nm	N N R R R distribution N N N R R R R	1 1396 1 1 1 Uc U(k=2) U(k=2) Veff: sensitivity coefficient c 1371 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	nm	4,2 0,0 5,8 0,3 13,3 27 27 27 27 27 27 27 27 27 27 27 27 27	nm nm nm nm nm nm 75 75 75 75	2: 100(100(100) 100(100(100(100(100(
Groove number R3	dpl dZresolutic dZresolutic dZresolutic duantity Xi dref dZalign dpl dZresolutic	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	nm nm 	8,7 4,2 0,0 5,8 0,3 0,3 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0	nm nm nm nm nm nm nm nm	N R R R distribution N N N R R R R	1 1 1 1 1 1 1 1 1 1 1 1 1 1	nm	4,2 0,0 5,8 0,3 13,3 27 27 27 27 27 27 27 27 27 27 27 27 27	nm nm nm nm nm nm 75 75 75 75 75 75 75 75 75 75 75 75 75	2: 1000 1000 1000 1000 1000 1000 1000 10
Groove number R3	dpl dZresolutic dZresolutic dzesolutic duantity Xi dref dZalign dziesolutic	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	nm nm nm nm nm nm nm	8,7 4,2 0,0 5,8 0,3 0,3 0,0 10 10 4,0,0 1,8 0,0 3,8 0,3 0,3	nm nm nm nm nm nm nm nm	N R R R distribution N N N R R R	1 1 1 1 1 1 1 1 1 1 1 1 1 1	nm	uncertainty contribution ui() 4,2 0,0 5,8 0,3 13,3 27 27 27 27 27 27 27 27 27 27 27 27 27	nm nm nm nm nm nm 75 75 75 75 75 75 75 75 75 75 75 75 75	2: 100(100() 100() 100() 100() 100() 100() 100()

Groove number R6	, Pt (ISO 42	87:1997)									
	Quantity Xi	Estimate xi		uncertainty u(xi)		distribution	sensitivity coefficient c		uncertainty contribution ui0		degrees of freedom <i>v</i> i
	С	1		0,003		N	8367,92	nm	27,9	nm	1
	Ptm	8368	nm	7,4	nm	N	1		7,4	nm	
	dnoise	0	nm	8,7	nm	N	1		8,7	nm	3
	dref	0	nm	4,2	nm	R	1		4,2	nm	2
	dZalign	0		0,0		R	8367,92	nm	0,0	nm	100
	dpl	0	nm	5,8	nm	R	1		5,8	nm	100
	dZresolutio	0	nm	0,3	nm	R	1		0,3	nm	100
							Uc		31,0	nm	
							U(k=2)		62	nm	
										40	
							vett:			19	
			_		_						
Canada number DC	1 (150 543	00.4000									
Groove number Ro	, u (130-54.	JU. 1990j									
	Quantity	Ectimate		uncortainty	-	dictribution	concitivity		uncortainty		dogroop of
	Xi	xi		uncertainty u(xi)		distribution	coefficient c		contribution ui()		freedom vi
	U	1		0,003		N	8349	nm	27,8	nm	1
	dm	1 8349	nm	0,003 10	nm	N N	8349 1	nm	27,8 10,0	nm nm	1
	dm dnoise	1 8349 0	nm nm	0,003 10 4,0	nm nm	N N	8349 1 1	nm	27,8 10,0 4,0	nm nm nm	1
	dm dnoise dref	1 8349 0 0	nm nm nm	0,003 10 4,0 1,8	nm nm nm	N N N N	8349 1 1 1	nm	27,8 10,0 4,0 1,8	nm nm nm nm	3
	C dm dnoise dref dZalign	1 8349 0 0 0	nm nm nm	0,003 10 4,0 1,8 0,0	nm nm nm	N N N R	8349 1 1 1 8349	nm	27,8 10,0 4,0 1,8 0,0	nm nm nm nm nm	1 3 2 100
	C dm dnoise dref dZalign dpl	1 8349 0 0 0 0	nm nm nm	0,003 10 4,0 1,8 0,0 5,8	nm nm nm	N N N R R	8349 1 1 1 8349 1	nm nm	27,8 10,0 4,0 1,8 0,0 5,8	nm nm nm nm nm nm	1 3 2 100 100
	C dm dnoise dref dZalign dpl dZresolutio	1 8349 0 0 0 0 0	nm nm nm nm nm	0,003 10 4,0 1,8 0,0 5,8 0,3	nm nm nm nm	N N N R R R	8349 1 1 8349 1 8349 1	nm	27,8 10,0 4,0 1,8 0,0 5,8 0,3	nm nm nm nm nm nm nm	1 3 2 100 100 100
	C dm dnoise dref dZalign dpl dZresolutio	1 8349 0 0 0 0	nm nm nm nm	0,003 10 4,0 1,8 0,0 5,8 0,3	nm nm nm nm	N N R R R	8349 1 1 8349 1 1	nm	27,8 10,0 4,0 1,8 0,0 5,8 0,3	nm nm nm nm nm nm	1 3 2 100 100 100
	C dm dnoise dref dZalign dpl dZresolutio	1 8349 0 0 0 0 0	nm nm nm nm	0,003 10 4,0 1,8 0,0 5,8 0,3	nm nm nm nm	N N N R R R	8349 1 1 8349 1 1 Uc	nm	27,8 10,0 4,0 1,8 0,0 5,8 0,3 30,5	nm nm nm nm nm nm	1 3 2 100 100 100
	dm dnoise dref dZalign dpl dZresolutio	1 8349 0 0 0 0	nm nm nm nm	0,003 10 4,0 1,8 0,0 5,8 0,3	nm nm nm nm	N N R R R	8349 1 1 1 8349 1 1 Uc	nm	27,8 10,0 4,0 1,8 0,0 5,8 0,3 30,5	nm nm nm nm nm nm nm	1 3 2 100 100 100
	dm dnoise dref dZalign dpl dZresolutio	1 8349 0 0 0 0 0	nm nm nm nm	0,003 10 4,0 1,8 0,0 5,8 0,3	nm nm nm nm	N N N R R R	8349 1 1 1 8349 1 1 Uc U(k=2)	nm	27,8 10,0 4,0 1,8 0,0 5,8 0,3 30,5 61	nm nm nm nm nm nm nm	1 3 2 100 100 100
	dm dnoise dref dZalign dpl dZresolutio	1 8349 0 0 0 0 0	nm nm nm nm	0,003 10 4,0 1,8 0,0 5,8 0,3	nm nm nm nm	N N N R R R	8349 1 1 8349 1 1 Uc U(k=2)	nm	27,8 10,0 4,0 1,8 0,0 5,8 0,3 30,5 61	nm nm nm nm nm nm nm	1 3 22 1000 1001 1001
	dm dnoise dref dZalign dpl dZresolutio	1 8349 0 0 0 0 0	nm nm nm nm nm	0,003 10 4,0 1,8 0,0 5,8 0,3	nm nm nm nm	N N R R R	8349 1 1 8349 1 1 1 Uc U(k=2) νeff:	nm	27.8 10,0 4,0 1,8 0,0 5,8 0,3 30,5 61	nm nm nm nm nm nm nm nm 18	1 3 2 100 100 100

D114A

	Quantity Xi	Estimate xi		uncertainty u(xi)		distribution	sensitivity coefficient c		uncertainty contribution ui()		degrees of freedom <i>v</i> i
	C	1		0.003		N	504	nm	17	nm	13
	Ra(meas)	504	nm	1,7	nm	N	1		1,7	nm	59
	dnoise	0	nm	4,0	nm	N	1		4,0	nm	124
	dref dZelian	0	nm	1,3	nm	N	1		1,3	nm	124
	dzalign dol	0	nm	58	nm	R	504	rirri	58	nm	1000
	dZresolutic	0	nm	0,3	nm	R	1		0,3	nm	1000
									•		
							Uc:		7,5	nm	
							U(k=2):	_	15	nm	
							uoff			000	
							ven.			022	
Specimen P114A	, measurant l	Rz									
	Quantity	Estimate		uncertainty		distribution	sensitivity		uncertainty		degrees of
	Xi	xi		uíxi)		distribution	coefficient		contribution		freedom vi
							С		ui()		
	С	1		0,003		N	1592	nm	5,3	nm	13
	Rz(meas)	1592	nm	4,8	nm	N	1		4,8	nm	59
	dnoise	0	nm	26,0	nm	N	1		26,0	nm	124
	dret dZelian	0	nm	9,3	nm	N	1/200		9,3	nm	124
	dzalign dpl	0	000	5.8	nm	R	1592	nm	0,0	nm	1000
	dZresolutic	0	nm	0.3	nm	R	1		0.3	nm	1000
	dzicooldiic			0,0					0,0		1000
							Uc:		29,1	nm	
							114 0		50		
							U(K=2)		58	nm	
							veff:			188	
								-			
Specimen P114A	, measurant l	Rmax									
Specimen P114A	, measurant l	Rmax									
Specimen P114A	<mark>, measurant l</mark> Quantity	Rmax Estimate		uncertainty		distribution	sensitivity		uncertainty		degrees of
Specimen P114A	, measurant f Quantity Xi	Rmax Estimate xi		uncertainty u(xi)		distribution	sensitivity coefficient		uncertainty contribution		degrees of freedom <i>v</i> i
Specimen P114A	<mark>, measurant l</mark> Quantity Xi	Rmax Estimate xi		uncertainty u(xi)		distribution	sensitivity coefficient c		uncertainty contribution ui()		degrees of freedom <i>v</i> i
Specimen P114A	, measurant I Quantity Xi	Rmax Estimate xi		uncertainty u(xi)		distribution	sensitivity coefficient c		uncertainty contribution ui()		degrees of freedom vi
Specimen P114A	, measurant I Quantity Xi C Pmax/mes	Rmax Estimate xi 1504		uncertainty u(xi) 0,003 8 7		distribution	sensitivity coefficient c 1604	nm	uncertainty contribution ui() 5,3	nm	degrees of freedom vi 13
Specimen P114A	, measurant I Quantity Xi C Rmax(mea duoise	Rmax Estimate xi 1 1604	nm	uncertainty u(xi) 0,003 8,7 30 3	nm	distribution N N	sensitivity coefficient c 1604 1	nm	uncertainty contribution ui() 5,3 8,7 30,3	nm nm	degrees of freedom vi 13 11 124
Specimen P114A	, me asurant in Quantity Xi C Rmax(mea dnoise droise	Rmax Estimate xi 1 1604 0 0	nm nm nm	uncertainty u(xi) 0,003 8,7 30,3 11.4	nm nm	distribution N N N N	sensitivity coefficient c 1604 1 1	nm	uncertainty contribution ui() 5,3 8,7 30,3 11,4	nm nm nm	degrees of freedom vi 13 11 124 124
Specimen P114A	, measurant I Quantity Xi C Rmax(mea droise dref dZalign	Rmax Estimate xi 1 1604 0 0 0	nm nm nm	uncertainty u(xi) 0,003 8,7 30,3 11,4 0,0	nm nm nm	distribution N N N N R	sensitivity coefficient c 1604 1 1 1 1 1604	nm	uncertainty contribution ui() 5,3 8,7 30,3 11,4 0,0	nm nm nm nm nm	degrees of freedom vi 13 11 124 124 1000
Specimen P114A	, measurant Quantity Xi C Rmax(mea dnoise drof dZalign dpl	Rmax Estimate xi 1 1604 0 0 0 0	nm nm nm nm	uncertainty u(xi) 0,003 8,7 30,3 11,4 0,0 5,8	nm nm nm	distribution N N N N R R	sensitivity coefficient c 1604 1 1 1 1 1604 1	nm	uncertainty contribution ui() 5,3 8,7 30,3 11,4 0,0 5,8	nm nm nm nm nm nm	degrees of freedom <i>v</i> i 13 11 124 124 1000 1000
Specimen P114A	Guantity Xi C Rmax(mes droise dref dZalign dpl dZresolutic	Rmax Estimate xi 1604 0 0 0 0 0 0 0 0	nm nm nm nm nm	uncertainty u(xi) 0,003 8,7 30,3 11,4 0,0 5,8 0,3	nm nm nm nm	distribution N N N R R R R	sensitivity coefficient c 1604 1 1 1 1 1604 1 1 1604 1 1 1 1 1 1 1 1	nm	uncertainty contribution ui() 5,3 8,7 30,3 11,4 0,0 5,8 0,3	nm nm nm nm nm nm nm	degrees of freedom νi 13 11 124 124 1200 1000
Specimen P114A	, measurant I Quantity Xi C Rmax(mee dnoise droise dref dZalign dpl dZresolutic	Rmax Estimate xi 1 1604 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	nm nm nm nm nm	uncertainty u(xi) 0,003 8,7 30,3 11,4 0,0 5,8 0,3	nm nm nm nm	distribution N N N R R R R	sensitivity coefficient c 1604 1 1 1 1604 1 1 1 0 1	nm	uncertainty contribution ui() 5,3 8,7 30,3 11,4 0,0 5,8 0,3	nm nm nm nm nm nm	degrees of freedom <i>v</i> i 13 11 124 124 124 1000 1000 1000
Specimen P114A	, measurant I Quantity Xi C Rmax(mee dnoise drof dZalign dpl dZresolutic	Rmax Estimate xi 1 1604 0 0 0 0 0 0	nm nm nm nm nm	uncertainty u(xi) 0,003 8,7 30,3 11,4 0,0 5,8 0,3	nm nm nm nm	distribution N N N R R R	sensitivity coefficient c 1604 1 1 1604 1 1 1 0 0 2 1 1 1 1 1 0 2 2 1 1 1 1 1 1	nm	uncertainty contribution ui() 5,3 8,7 30,3 11,4 0,0 5,8 0,3 34,5	nm nm nm nm nm nm nm	degrees of freedom <i>v</i> i 13 11 124 124 124 1000 1000
Specimen P114A	, measurant I Quantity Xi C Rmax(mee dnoise drof dZalign dpl dZresolutic	Rmax Estimate xi 1 1604 0 0 0 0 0 0 0	nm nm nm nm nm	uncertainty u(xi) 0,003 8,7 30,3 11,4 0,0 5,8 0,3	nm nm nm nm	distribution N N N R R R	sensitivity coefficient c 1604 1 1 1604 1 1 1604 1 1 0 0 2 0 2 2 0 1 2 0 2 0 2 0 2 0 1 0 0 4 1 0 0 4 1 0 1 0 0 4 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 1 0 1	nm	uncertainty contribution ui() 5,3 8,7 30,3 11,4 0,0 5,8 0,3 34,5 69	nm nm nm nm nm nm nm	degrees of freedom <i>v</i> i 13 11 124 124 124 1000 1000
Specimen P114A	, measurant I Quantity Xi C Rmax(mee dnoise dref dZalign dpl dZresolutic	Rmax Estimate xi 1604 0 0 0 0 0 0	nm nm nm nm nm	uncertainty u(xi) 0,003 8,7 30,3 11,4 0,0 5,8 0,3	nm nm nm nm	distribution N N N R R R	sensitivity coefficient c 1604 1 1 1604 1 1 0 0 0 0 (k=2)	nm	uncertainty contribution ui() 5,3 8,7 30,3 11,4 0,0 5,8 0,3 34,5 69	nm nm nm nm nm nm nm nm nm	degrees of freedom <i>v</i> i 13 11 124 124 1000 1000
Specimen P114A	, measurant I Quantity Xi C Rmax(mee dnoise dref dZalign dpl dZresolutic	Rmax Estimate xi 11604 0 0 0 0 0 0	nm nm nm nm nm	uncertainty u(xi) 0,003 8,7 30,3 11,4 0,0 5,8 0,3	nm nm nm nm	distribution N N N R R R	sensitivity coefficient c 1604 1 1 1604 1 1 002 1 0 0 0 0	nm	uncertainty contribution ui() 5,3 8,7 30,3 31,1,4 0,0 5,8 0,3 34,5 69	nm nm nm nm nm nm nm nm nm 187	degrees of freedom <i>v</i> i 13 11 124 124 1000 1000
Specimen P114A	, measurant I Quantity Xi C Rmax(mee dnoise dref dZalign dpl dZresolutic	Rmax Estimate xi 11604 0 0 0 0 0 0	nm nm nm nm nm	uncertainty u(xi) 0,003 8,7 30,3 11,4 0,0 5,8 0,3	nm nm nm	distribution N N R R R R	sensitivity coefficient c 1604 1 1 1604 1 1 002 2 0 0 (k=2) 2 2 0 0 2 2 0 1 2 2 0 1 2 2 1 2 2 1 2 2 2 2	nm	uncertainty contribution ui() 5,3 8,7 30,3 31,1,4 0,0 5,8 0,3 34,5 69	nm nm nm nm nm nm nm nm 187	degrees of freedom <i>v</i> i 13 11 124 124 1000 1000
Specimen P114A	, measurant I Quantity Xi C Rmax(mee dnoise dref dZalign dpl dZresolutic	Rmax Estimate xi 11604 0 0 0 0 0 0	nm nm nm nm nm	uncertainty u(xi) 0,003 8,7 30,3 11,4 0,0 5,8 0,3	nm nm nm nm	distribution N N N R R R R	sensitivity coefficient c 1604 1 1 1604 1 1 1604 1 1 0 0 (k=2) 22 eff.	nm	uncertainty contribution ui() 5,3 8,7 30,3 11,4 0,0 5,8 0,3 34,5 69	nm nm nm nm nm nm nm 187	degrees of freedom <i>v</i> i 13 11 124 124 1000 1000
Specimen P114A	, measurant I Quantity Xi C Rmax(mea dnoise dref dZalign dpl dZresolutic	Rmax Estimate xi 11604 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8 5 m	nm nm nm nm nm	uncertainty u(xi) 0,003 8,7 30,3 11,4 0,0 5,8 0,3	nm nm nm nm	distribution N N N R R R R	sensitivity coefficient c 1604 1 1 1604 1 1 0 0 0 (k=2) 22 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0	nm	uncertainty contribution ui() 5,3 8,7 30,3 11,4 0,0 5,8 0,3 34,5 69	nm nm nm nm nm nm nm nm 187	degrees of freedom <i>v</i> i 13 11 124 124 1000 1000
Specimen P114A	, measurant I Quantity Xi C Rmax(mea dref dZalign dpl dZresolutic	Rmax Estimate xi 1 1604 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	nm nm nm nm nm	uncertainty u(xi) 0,003 8,7 30,3 11,4 0,0 5,8 0,3		distribution N N N R R R R	sensitivity coefficient c 1604 1 1 1 1604 1 1 0 0 (k=2) 2 2 eff:		uncertainty contribution ui() 5,3 8,7 30,3 11,4 0,0 5,8 0,3 34,5 69	nm nm nm nm nm nm nm nm 187	degrees of freedom vi 13 11 124 124 1000 1000 1000
Specimen P114A	Guantity Xi C Rmax(mea droise dref dZalign dpl dZresolutic	Rmax Estimate xi 1 1604 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	nm nm nm nm nm	uncertainty u(xi) 0,003 8,7 30,3 11,4 0,0 5,8 0,3 0,3		distribution N N N R R R R	sensitivity coefficient c 1604 1 1 1604 1 1 0 C: U(k=2) veff:		uncertainty contribution ui() 5,3 8,7 30,3 11,4 0,0 5,8 0,3 11,4 0,0 5,8 0,3 34,5 69	nm nm nm nm nm nm 187	degrees of freedom <i>v</i> i 13 11 124 124 124 1200 1000 1000
Specimen P114A	, measurant I Quantity Xi C Rmax(mee droise dref dZalign dpl dZresolutic dZresolutic	Rmax Estimate xi 1 1604 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	nm nm nm nm nm	uncertainty u(xi) 0,003 8,7 30,3 11,4 0,0 5,8 0,3 0,3 0,3	nm nm nm nm	distribution N N N R R R R distribution distribution	sensitivity coefficient c 1604 1 1 1 1604 1 1 Uc: U(k=2) 2eff: sensitivity coefficient		uncertainty contribution ui() 5,3 8,7 30,3 11,4 0,0 5,8 0,3 34,5 69 0,3 34,5 69 0,3 0,4 0,4 0,4 0,4 0,4 0,4 0,4 0,4 0,4 0,4	nm nm nm nm nm nm 187	degrees of freedom <i>v</i> i 13 11 124 124 124 1200 1000 1000
Specimen P114A	, measurant I Quantity Xi C Rmax(mea droise dref dZalign dpl dZresolutic	Rmax Estimate xi 1604 0 0 0 0 0 0 0 0 0 0 8 8 8 8 8 8 8 8 8	nm nm nm nm nm	uncertainty u(xi) 0,003 8,7 30,3 11,4 0,0 5,8 0,3 0,3		distribution N N N R R R R	sensitivity coefficient c 1604 1 1 1 1604 1 1 1 0 0 (k=2) veff: veff: coefficient c		uncertainty contribution ui() 5,3 8,7 30,3 11,4 0,0 5,8 0,3 34,5 69 	nm nm nm nm nm nm nm nm 187	degrees of freedom vi 13 11 124 124 124 1000 1000 1000
Specimen P114A	, measurant I Quantity Xi C Rmax(mea droise drof dZalign dpl dZresolutic Z Quantity Xi	Rmax Estimate xi 1 1604 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	nm nm nm nm nm nm	uncertainty u(xi) 0,003 8,7 30,3 11,4 0,0 5,8 0,3 0,3 0,3	nm nm nm nm	distribution N N R R R G Gistribution	sensitivity coefficient c 1604 1 1 1604 1 1 1004 1 1 0 0 (k=2) 2 2 eff: sensitivity coefficient c 1		uncertainty contribution ui() 5,3 8,7 30,3 11,4 0,0 5,8 0,3 34,5 69 0 0 34,5 69 0 0 3 34,5 0 9 0 0 3 34,5 0 0 3 34,5 0 0 3 34,5 0 0 3 34,5 0 0 3 34,5 0 3 34,5 0 3 34,5 0 3 34,5 0 3 34,5 0 3 34,5 0 3 34,5 0 3 34,5 0 3 34,5 0 3 34,5 0 3 34,5 0 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	nm nm nm nm nm nm nm 187	degrees of freedom <i>v</i> i 13 11 124 124 1000 1000 1000 1000
Specimen P114A	, measurant I Quantity Xi C Rmax(mea dref dZalign dpl dZresolutic dzresolutic U U U U U U U U U U U U U U U U U U U	Rmax Estimate xi 1 1604 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	nm nm nm nm nm nm nm nm nm nm	uncertainty u(xi) 0,003 8,7 30,3 11,4 0,0 5,8 0,3 0,3 0,3 0,3 0,3 0,3 0,3 0,3 0,3 0,3	nm nm nm nm nm nm	distribution N N R R R R distribution distribution R R R R R R R R R R R R R R R R R R R	sensitivity coefficient c 1604 1 1 1 1 1 004 1 1 1 004 1 1 004 1 1 004 1 1 004 1 1 004 1 1 004 1 1 004 1 1 004 1 1 004 1 1 004 1 1 004 1 1 1 004 1 1 1 004 1 1 1 004 1 1 1 004 1 1 1 1	nm nm nm nm nm nm nm	uncertainty contribution ui() 5,3 8,7 30,3 11,4 0,0 5,8 0,3 34,5 69 0,3 34,5 69 0,3 34,5 69 0,3 34,5 69 0,3 34,5 69 0,3 33,0 7 0,3 33,0 7 0,3 33,0 7 0,3 33,0 7 0,3 33,0 7 0,3 10,4 10,4 10,4 10,4 10,4 10,4 10,4 10,4	nm nm nm nm nm nm nm nm 187	degrees of freedom vi 13 11 124 124 1000 1000 1000 1000 1000
Specimen P114A	, measurant I Quantity Xi C Rmax(mee droise dref dZalign dZlaign dZresolutic dZresolutic dZresolutic dZresolutic dZresolutic dZresolutic dZresolutic dZresolutic dZresolutic	Rmax Estimate xi 1 1604 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	nm nm nm nm nm nm nm nm nm nm nm	uncertainty u(xi) 0,003 8,7 30,3 11,4 0,0 5,8 0,3 0,3 0,3 0,3 0,3 0,3 0,3 0,3 0,3 0,3	nm nm nm nm nm nm	distribution N N N R R R R G G G G G G G G G G G G G	sensitivity coefficient c 1604 1 1 1 1 1 0 0 2 2 2 2 2 2 2 2 2 2 2 2 2	nm nm nm	uncertainty contribution ui() 5,3 8,7 30,3 11,4 0,0 5,8 0,3 34,5 69 0 0 0 0 5,8 0,3 34,5 69 0 0 0 0 0 332,0 332,0 175,9	nm nm nm nm nm nm nm 187 187	degrees of freedom <i>v</i> i 13 11 124 124 124 1000 1000 1000 1000 1000
Specimen P114A	, measurant I Quantity Xi C Rmax(mea dnoise dref dZalign dpl dZalign dpl dZresolutic c , measurant I Quantity Xi dx1 dxn RSm(mea dXalign	Rmax Estimate xi 1604 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	nm nm nm nm nm nm nm nm nm nm nm nm nm n	uncertainty u(xi) 0,003 8,7 30,3 11,4 0,0 5,8 0,3 11,4 0,0 5,8 0,3 1,4 0,0 5,8 0,3 1,4 0,0 5,8 0,3 1,4 7,5 7 0,0 3,3 1,976 331,976 331,976 331,976 0,00	nm nm nm nm nm nm	distribution N N N R R R R R G G G G G G G G G G G G	sensitivity coefficient c 1604 1 1 1 1604 1 1 1 1604 1 1 Uc: U(k=2) veff: veff: c c 1 1 49805	nm	uncertainty contribution ui() 5,3 8,7 30,3 11,4 0,0 5,8 0,3 34,5 69 	nm nm nm nm nm nm nm 187	degrees of freedom vi 13 11 124 124 124 1000 1000 1000 1000
Specimen P114A	, measurant I Quantity Xi C Rmax(mea dnoise dref dZalign dpl dZresolutic dZresolutic Quantity Xi Quantity Xi Ath Ath Ath C Ath Ath C Ath Ath Ath Ath Ath Ath Ath Ath Ath Ath	Rmax Estimate xi 1 1604 0 0 0 0 0 0 0 0 0 0 0 0 0	nm nm nm nm nm nm nm nm nm nm nm nm nm	uncertainty u(xi) 0,003 8,7 30,3 11,4 0,0 5,8 0,3 0,3 0,3 0,3 0,0 0,0 175,9 0,0 0,72,2	nm nm nm nm nm nm nm nm	distribution N N N R R R R distribution distribution R R R R R R R R R R R R R R R R R R R	sensitivity coefficient c 1604 1 1 1 1604 1 1 1 002 20 20 20 20 20 20 20 20 20 20 20 20	nm	uncertainty contribution ui() 5,3 8,7 30,3 11,4 0,0 5,8 0,3 34,5 69 	nm nm nm nm nm nm nm nm 187 187	degrees of freedom vi 13 11 124 124 1000 1000 1000 1000 1000 100
Specimen P114A	, measurant I Quantity Xi C Rmax(mea dnoise dref dZalign dpl dZresolutic dzesolutic Quantity Xi dx1 dxn RSm(mea dXresolutic dXalign	Rmax Estimate xi 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0	nm	uncertainty u(xi) 0,003 8,7 30,3 11,4 0,0 5,8 0,3 0,3 0,3 0,3 0,3 0,3 0,3 0,3 0,3 0,3	nm nm nm nm nm nm nm nm nm	distribution N N R R R R distribution distribution R R R R R R R R R R R R R R R R R R R	sensitivity coefficient c 1604 1 1 1 1 1 004 1 1 004 1 005 0 007 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	nm nm nm nm nm nm	uncertainty contribution ui() 5,3 8,7 30,3 11,4 0,0 5,8 0,3 34,5 69 0,3 34,5 69 0,3 34,5 69 0,3 32,0 3	nm nm nm nm nm nm nm nm 187 187	degrees of freedom vi 13 11 124 124 124 1200 1000 1000 1000 1000
Specimen P114A	, measurant I Quantity Xi C Rmax(mee droise dref dZalign dZ dZresolutic dZ Quantity Xi Quantity Xi dx1 dxn RSm(mea dXalign dXresolutic dXalign dXresolutic	Rmax Estimate xi 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	nm nm nm nm nm nm nm nm nm nm nm nm nm n	uncertainty u(xi) 0,003 8,7 30,3 11,4 0,0 5,8 0,3 0,3 0,3 0,3 0,0 0,3 0,0 0,0 175,9 0,0 72,2 0,0 0,72,2	nm nm nm nm nm nm nm nm nm nm	distribution N N R R R R G G G G G G G G G G G G G G	sensitivity coefficient c 1604 1 1 1 1 1 004 1 1 1 004 1 1 2 2 eff: 2 2 eff: 2 2 eff: 2 2 eff: 1 1 1 2 2 9 1 2 2 9 1 6 0 4 9 805 1 1 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	nm nm nm nm nm nm	uncertainty contribution ui() 5,3 8,7 30,3 11,4 0,0 5,8 0,3 34,5 69 0 34,5 69 0 34,5 69 0 332,0 332,0 332,0 175,9 5,0 72,2 5,0 72,2	nm nm nm nm nm nm nm 187 187	degrees of freedom vi 13 11 124 124 124 124 1000 1000 1000 1000
Specimen P114A	, measurant I Quantity Xi C Rmax(mee droise dref dZalign dpl dZresolutic dZresolutic dZresolutic dXresolutic dXresolutic dXn RSm(mea dXalign dXresolutic dXalign dXresolutic	Rmax Estimate xi 1 1004 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	nm nm nm nm nm nm nm nm nm nm nm nm nm n	uncertainty u(xi) 0,003 8,7 30,3 11,4 0,0 5,8 0,3 0,3 0,3 0,3 0,3 0,3 0,3 0,3 0,3 0,3	nm nm nm nm nm nm nm nm nm	distribution N N R R R R R G G G G G G G G G G G G G	sensitivity coefficient c 1604 1 1 1 1 1 1 0 0 (k=2) 2 eff: 2 2 eff: 2 2 eff: 1 1 4 9805 1 1 4 9805 1 1		uncertainty contribution ui() 5,3 8,7 30,3 11,4 0,0 5,8 0,3 34,5 69 0,3 34,5 69 0,3 34,5 69 0,3 34,5 69 0,3 33,0 0,3 33,0 0,3 33,0 0,3 33,0 0,3 33,0 0,3 33,0 0,3 33,0 0,3 33,0 0,3 33,0 0,5 7,2,2 5,0 0,5 7,2,2 5,0 0,5 7,2,2 5,0 0,5 7,2,2 5,0 0,5 7,2,2 0,5 7,2,0 0,5 7,2,0 0,5 7,3 0,7 7,3 0,7 7,3 0,7 7,3 0,7 7,3 0,7 7,3 0,7 7,3 0,7 7,3 0,7 7,3 0,7 7,3 0,7 7,3 0,7 7,7 0,7 7,7 0,7 7,7 0,7 7,7 0,7 7,7 0,7 7,7 0,7 7,7 0,7 7,7 0,7 7,7 0,7 7,7 0,7 7,7 0,7 7,7 0,7 7,7 0,7 7,7 0,7 7,7 0,7 0	nm nm nm nm nm nm nm 187 187	degrees of freedom vi 13 11 124 124 124 1000 1000 1000 1000 1000
Specimen P114A	, measurant I Quantity Xi C Rmax(mee droise dreis dZalign dZl dZalign dZ dZalign dZ dZ dZ s u dZ dX s u dX t dx1 dx1 dx1 dx1 dx1 dX resolutic dXresolutic dXresolutic dXresolutic	Rmax Estimate xi 1 1604 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	nm nm nm nm nm nm nm nm nm nm nm nm nm	uncertainty u(xi) 0,003 8,7 30,3 11,4 0,0 5,8 0,3 0,3 0,3 0,3 0,3 0,3 0,3 0,3 0,3 0,3	nm nm nm nm nm nm nm nm nm	distribution N N R R R R R R G G G G G G G G G G G G	sensitivity coefficient c 1604 1 1 1 1 1 1 004 1 1 1 004 2 005 2 0 0 0 0	nm nm nm nm nm nm	uncertainty contribution ui() 5,3 8,7 30,3 11,4 0,0 5,8 0,3 34,5 69 0,3 34,5 69 0,3 32,0 332,0 332,0 332,0 332,0 332,0 332,0 0,72,2 5,0 0,72,0 0,72,0 0,72,0 0,72,0 0,72,0 0,72,0 0,73,0,73 0,73,0,73 0,73,0,73 0,73,0,73 0,73,0,73 0,73,0,73 0,73	nm nm nm nm nm nm nm 187 187 187	degrees of freedom vi 13 11 124 124 124 1000 1000 1000 1000 1000
Specimen P114A Specimen P114A Image: Specimen Image: Specimen Specimen P114A Image: Specimen Image: Specimen Image: Specimen P114A Image: Specimen Image: Specimen Image: Specimen Image: Specimen <	, measurant I Quantity Xi C Rmax(mee dnoise dref dZalign dpl dZalign dz Z Quantity Xi Quantity Xi dx1 dx1 dx1 dx1 dx1 dx1 dx1 dx1 dx1 dx1	Rmax Estimate xi 1604 0 0 0 0 0 0 0 0 0 0 0 0 0	nm nm nm nm nm nm nm nm nm nm nm nm nm n	uncertainty u(xi) 0,003 8,7 30,3 11,4 0,0 5,8 0,3 0,3 0,3 0,3 0,3 0,3 0,3 0,3 0,3 0,3	nm nm nm nm nm nm nm nm	distribution N N R R R R R R G G G G G G G G G G G G	sensitivity coefficient c 1604 1 1 1 1 1 004 1 1 1 004 1 005 0 007 0 007 0 007 0 007 0 007 0 007 0 007 0	nm	uncertainty contribution ui() 5,3 8,7 30,3 31,1,4 0,0 5,8 0,3 34,5 69 0,3 34,5 69 0,3 32,0 332,0 332,0 332,0 332,0 332,0 332,0 0,3 2,2 5,0 0,7 2,2 5,0 7,7 2,2 5,17 7 10,23	nm nm nm nm nm nm nm 187 187 187 187 187 187 187 187 187 187	degrees of freedom vi 13 11 124 124 124 1000 1000 1000 1000 1000
Specimen P114A Specimen P114A Image: Specimen Image: Specimen Specimen P114A Image: Specimen Image: Specimen Image: Image: Specimen Image: Specimen	, measurant I Quantity Xi C Rmax(mea droise droise dref dZalign dpl dZalign dpl dZresolutic dx1 dx1 dxn RSm(mea dXalign dXresolutic dXalign dXresolutic	Rmax Estimate xi 1604 0 0 0 0 0 0 0 0 0 0 0 0 0	nm nm nm nm nm nm nm nm nm nm nm nm nm n	uncertainty u(xi) 0,003 8,7 30,3 11,4 0,0 5,8 0,3 0,3 0,3 0,3 0,0 331,976 331,976 331,976 331,976 331,976 331,976 331,976	nm nm nm nm nm nm nm nm	distribution N N N R R R R R R R R R R R R R R R R	sensitivity coefficient c 1604 1 1 1 1604 1 1 1604 1 1 Uc: U(k=2) veff: veff: c eff: 1 49805 1 49805 1 49805	nm	uncertainty contribution ui() 5,3 8,7 30,3 11,4 0,0 5,8 0,3 34,5 69 	nm nm nm nm nm nm nm nm 187 187 187 187 187 187 187 187 187 187	degrees of freedom vi 13 11 124 124 124 1000 1000 1000 1000 1000

10/22

	Quantity Xi	Estimate xi		uncertainty u(xi)		distribution	sensitivity coefficient c		uncertainty contribution ui()		degrees of freedom <i>v</i> i
	С	1		0.003		N	2961	nm	9.9	nm	13
	Ra(meas)	2961	nm	12,6	nm	N	1		12,6	nm	59
	dnoise	0	nm	3,7	nm	N	1		3,7	nm	29
	dref	0	nm	1,8	nm	N	1		1,8	nm	29
	dzaiign dnl	0	nm	5.8	nm	R	2961	nm	5.8	nm	1000
	dZresolutic	0	nm	0.3	nm	R	1		0.3	nm	1000
									-1-		
							Uc:		17,5	nm	
							U(k=2)		35	nm	
							veff:			80	
					_						
Snecimen 7070	measurant Rz										
opecimen roro,	Quantity	Estimate		uncertainty		distribution	sensitivity		uncertainty		degrees of
	Xi	xi		u(xi)		distribution	coefficient c		contribution ui()		freedom vi
	С	1		0.003		N	9655	nm	32.2	nm	13
	Rz(meas)	9655	nm	43.6	nm	N	1		43.6	nm	59
	dnoise	0	nm	28,8	nm	N	1		28,8	nm	29
	dref	0	nm	14,4	nm	N	1		14,4	nm	29
	dZalign	0		0,0		R	9655	nm	0,0	nm	1000
	dpl	0	nm	5,8	nm	R	1		5,8	nm	1000
	dZresolutic	0	nm	0,3	nm	R	1		0,3	nm	1000
							Uc:		63,3	nm	
							U(k=2)		127	nm	
							uoff	_		05	
							ven.			55	
Specimen 7070,	measurant Rn	nax									
Specimen 7070, Specimen 70, Specimen 70,	C Rmax(mee dnoise droise dzalign dpl dZresolutic	nax Estimate xi 1 9823 0 0 0 0 0 0 0 0 0 0 0	nm nm nm nm nm nm	uncertainty u(xi) 0,003 56,1 31,8 20,8 0,0 5,8 0,3	nm nm nm nm	distribution N N N R R R	sensitivity coefficient c 9823 1 1 1 9823 1 1 1 Uc:	nm	uncertainty contribution ui() 32,8 56,1 31,8 20,8 0,0 5,8 0,3 75,5	nm nm nm nm nm nm nm	degrees of freedom <i>v</i> i 13 11 29 29 1000 1000 1000
Specimen 7070, Specimen 7070, Specim	C Quantity Xi C Rmax(mea dnoise dref dZalign dpl dZresolutic	nax Estimate xi 9823 0 0 0 0 0 0 0 0 0	nm nm nm nm nm	uncertainty u(xi) 0,003 56,1 31,8 20,8 0,0 5,8 0,3	nm nm nm nm	distribution N N N R R R R	sensitivity coefficient c 9823 1 1 9823 1 1 9823 1 1 0 0 2 2 0 0 (k=2)	nm	uncertainty contribution ui() 32,8 56,1 31,8 20,8 0,0 5,8 0,0 5,8 0,3 75,5 151	nm nm nm nm nm nm nm nm	degrees of freedom vi 13 11 29 20 1000 1000
Specimen 7070, Specimen 2070, 	C Quantity Xi C Rmax(mee dnoise dref dZalign dpl dZresolutic	nax Estimate xi 9823 0 0 0 0 0 0 0 0	nm nm nm nm	uncertainty u(xi) 56,1 31,8 20,8 0,0 5,8 0,3	nm nm nm nm	distribution N N N R R R	sensitivity coefficient c 9823 1 1 9823 1 1 9823 1 1 Uc: U(k=2) 226ff.	nm	uncertainty contribution ui() 32,8 56,1 31,8 20,8 0,0 5,8 0,3 75,5 151	nm nm nm nm nm nm nm nm 31	degrees of freedom vi 13 11 25 29 1000 1000
Specimen 7070, Specimen 7070, 	C Quantity Xi C Rmax(mee dnoise dref dZalign dpl dZresolutic	nax Estimate xi 0 0 0 0 0 0 0 0	nm nm nm nm nm	uncertainty u(xi) 0,003 56,1 31,8 20,8 0,0 5,8 0,3	nm nm nm nm	distribution N N R R R R	sensitivity coefficient c 9823 1 1 9823 1 1 9823 1 1 1 Uc: U(k=2) 22(k=2)	nm	uncertainty contribution ui() 32,8 56,1 31,8 20,8 0,0 5,8 0,3 75,5 151	nm nm nm nm nm nm nm nm 31	degrees of freedom <i>v</i> i 13 11 29 1000 1000
Specimen 7070, Specimen 7070, Specimen 7070,	measurant Rn Quantity Xi C Rmax(mea dnoise dref dZalign dpl dZresolutic	nax Estimate xi 9823 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	nm nm nm nm	uncertainty u(xi) 56,1 31,8 20,8 0,0 5,8 0,3	nm nm nm nm	distribution N N R R R R	sensitivity coefficient c 9823 1 1 9823 1 1 0 823 1 1 0 0 2 2 0 2 2 2 2 2 2 2 2 2 2 2 2 2	nm nm	uncertainty contribution ui() 32,8 56,1 31,8 20,8 0,0 5,8 0,3 75,5 151	nm nm nm nm nm nm nm 31	degrees of freedom vi 13 11 25 26 1000 1000
Specimen 7070, Specimen 7070, Specimen 7070, Specimen 7070,	C C Rmax(mea droise dref dZalign dpl dZresolutic measurant RS Quantity Xi	nax Estimate xi 1 9823 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	nm nm nm nm nm	uncertainty u(xi) 0,003 56,1 31,8 20,8 0,0 5,8 0,3 0,3	nm nm nm nm nm	distribution N N N R R R R R distribution distribution	sensitivity coefficient c 9823 1 1 9823 1 1 Uc: U(k=2) veff. sensitivity coefficient c		uncertainty contribution ui() 32,8 56,1 31,8 20,8 0,0 5,8 0,0 5,8 0,3 75,5 151 151	nm nm nm nm nm nm nm nm nm	degrees of freedom vi 13 11 29 29 1000 1000 1000
Specimen 7070, Specimen 7070, Specimen 7070, Specimen 7070,	measurant Rn Quantity Xi C Rmax(mea droise dref dZalign dpl dZresolutic	nax Estimate xi 9823 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	nm nm nm nm nm	uncertainty u(xi) 0,003 56,1 31,8 20,8 0,0 5,8 0,3 0,3 0,3	nm nm nm nm	distribution N N N R R R R G G G G G G G G G G G G G	sensitivity coefficient c 9823 1 1 9823 1 1 9823 1 1 1 9823 1 1 1 9823 1 1 2 9823 1 1 2 9823 1 1 2 9823 1 2 1 2 9 2 3 1 2 2 3 2 3 1 2 3 2 3 2 3 1 2 3 2 3		uncertainty contribution ui() 32,8 56,1 31,8 20,8 0,0 5,8 0,3 75,5 151 151 uncertainty contribution ui() 332,0	nm nm nm nm nm nm nm 31	degrees of freedom vi 13 11 25 25 1000 1000 1000 1000 1000
Specimen 7070, Specimen 7070, Specimen 7070, Specimen 7070,	measurant Rn Quantity Xi C Rmax(mec dnoise dref dZalign dpl dZresolutic dzresolutic Quantity Xi	nax Estimate xi 9823 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	nm nm nm nm nm nm nm	uncertainty u(xi) 0,003 56,1 31,8 20,8 0,0 5,8 0,3 0,3 0,3 0,3 0,3 0,3 0,3 0,3 0,3 0,3	nm nm nm nm nm	distribution N N R R R R distribution distribution R R R R R R R R R R R R R R R R R R R	sensitivity coefficient c 9823 1 1 1 9823 1 1 1 9823 1 1 1 0 Uc: U(k=2) 2 2 eff: c c 1 1 1		uncertainty contribution ui() 32,8 56,1 31,8 20,8 0,0 5,8 0,3 75,5 151 151 uncertainty contribution ui() 332,0 332,0 332,0	nm nm nm nm nm nm nm nm 31	degrees of freedom vi 13 11 29 29 1000 1000 1000 1000
Specimen 7070, Specimen 7070, Specimen 7070, Specimen 7070, Specimen 7070,	Measurant Rn Quantity Xi C Rmax(mee dnoise dref dZalign dpl dZresolutic dZresolutic dzresolutic Quantity Xi dx1 dxn RSm(meai	nax Estimate xi 9823 00 00 00 00 00 00 00 00 00 00 00 00 00	nm nm nm nm nm nm nm nm nm nm	uncertainty u(xi) 0,003 56,1 31,8 20,8 0,0 5,8 0,0 5,8 0,0 5,8 0,0 5,8 0,0 5,8 0,0 5,8 0,0 5,8 0,0 5,1 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0	nm nm nm nm nm	distribution N N R R R R distribution R R R R N N N N N N N N N N N N N N N	sensitivity coefficient c 9823 1 1 1 9823 1 1 1 Uc: U(k=2) Veff: sensitivity coefficient c 1 1 1		uncertainty contribution ui() 32,8 56,1 31,8 20,8 0,0 5,8 0,0 5,8 0,0 5,8 0,0 5,8 0,0 5,8 0,0 5,8 0,0 5,8 0,0 5,8 0,0 5,8 0,0 1,5 1,5 1,5 1,5 1,5 1,5 1,5 1,5 1,5 1,5	nm nm nm nm nm nm nm nm 31	degrees of freedom vi 13 11 25 26 1000 1000 1000 1000 1000 1000 1000 1
Specimen 7070, Specimen 7070, Specimen 7070, Specimen 7070, Specimen 7070,	Cuantity Xi C Rmax(mea dnoise dref dZalign dpl dZresolutic dzresolutic c c c c dzesolutic dzresolutic dz dz dz dz dz dz dz dz dz dz dz dz dz	nax Estimate xi 9823 0 0 0 0 0 0 0 0 0 0 0 0 0	nm nm nm nm nm nm nm nm nm nm nm nm nm	uncertainty u(xi) 0,003 56,1 31,8 20,8 0,0 5,8 0,3 0,3 0,3 0,3 0,3 0,3 0,3 0,3 0,3 0,3	nm nm nm nm nm nm nm nm nm nm	distribution N N R R R R G G G G G G G G G G G G G G	sensitivity coefficient c 9823 1 1 1 9823 1 1 1 9823 1 1 1 9823 1 1 1 9823 1 1 1 9823 1 1 1 9823 1 1 1 9823 1 1 1 9 823 1 1 1 1 9 823 1 1 1 1 9 823 1 1 1 1 9 823 1 1 1 1 9 823 1 1 1 1 9 823 1 1 1 1 9 823 1 1 1 1 9 823 1 1 1 1 9 823 1 1 1 1 9 823 1 1 1 1 9 823 1 1 1 1 9 823 1 1 1 1 9 823 1 1 1 1 9 823 1 1 1 1 9 823 1 1 1 1 1 9 823 1 1 1 1 1 9 823 1 1 1 1 1 9 823 1 1 1 1 1 9 823 1 1 1 1 1 1 1 9 823 1 1 1 1 1 1 1 9 823 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	nm nm nm	uncertainty contribution ui() 32,8 56,1 31,8 20,8 0,0 5,8 0,3 75,5 151 151 	nm nm nm nm nm nm nm 31	degrees of freedom vi 13 11 25 29 1000 1000 1000 1000 1000 1000 1000 1
Specimen 7070, 5 5 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	measurant Rn Quantity Xi C Rmax(mea droise dref dZalign dpl dZresolutic dZresolutic Quantity Xi Quantity Xi dx1 dxn RSm(mea: dXalign dXresolutic	nax Estimate xi 1 9823 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	nm nm nm nm nm nm nm nm nm nm nm nm	uncertainty u(xi) 0,003 56,1 31,8 20,8 0,0 5,8 0,3 0,3 0,3 0,3 0,3 0,3 0,3 0,3 0,3 0,3	nm nm nm nm nm nm nm nm nm nm	distribution N N N R R R R R distribution distribution R R R R R R R R R R R R R R R R R R R	sensitivity coefficient c 9823 1 1 9823 1 1 9823 1 1 1 9823 1 1 1 9823 1 1 1 9823 1 1 1 9823 1 1 1 9823 1 1 1 9823 1 1 1 9 9823 1 1 1 1 9 823 1 1 1 1 9 823 1 1 1 1 1 9 823 1 1 1 1 1 9 823 1 1 1 1 1 9 823 1 1 1 1 1 9 823 1 1 1 1 1 9 823 1 1 1 1 9 823 1 1 1 1 1 9 823 1 1 1 1 1 9 823 1 1 1 1 1 9 823 1 1 1 1 1 9 823 1 1 1 1 1 1 1 9 823 1 1 1 1 1 9 823 1 1 1 1 1 9 823 1 1 1 1 1 9 823 1 1 1 1 1 9 823 1 1 1 1 1 9 823 1 1 1 1 1 9 823 1 1 1 1 9 823 1 1 1 1 9 823 1 1 1 1 9 823 1 1 1 1 9 823 1 1 1 1 1 9 823 1 1 1 1 1 1 9 823 1 1 1 1 1 1 9 823 1 1 1 1 1 1 1 1 9 8 2 3 1 1 1 1 1 9 8 2 3 1 1 1 1 1 1 9 8 2 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	nm nm inm inm inm	uncertainty contribution ui() 32,8 56,1 31,8 20,8 0,0 5,8 0,0 5,8 0,3 75,5 151 151 151 151 151 151 151 151 151	nm nm nm nm nm nm nm 31	degrees of freedom vi 13 11 25 29 1000 1000 1000 1000 1000 1000 1000 1
Specimen 7070, Specimen 7070, Specimen 7070, Specimen 7070, Specimen 7070, Specimen 7070,	Measurant Rn Quantity Xi C Rmax(mea dref dzalign dpl dZresolutic dzresolutic C Quantity Xi dx1 dxn RSm(mea dXresolutic dxalign	nax Estimate xi 9823 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	nm nm nm nm nm nm nm nm nm nm nm	uncertainty u(xi) 0,003 56,1 31,8 20,8 0,0 5,8 0,3 0,3 0,3 0,3 0,3 0,3 0,3 0,3 0,3 0,3	nm nm nm nm nm nm nm nm nm nm	distribution N N N R R R R I Gistribution Gistribution R R R R R R R R R R R R R R R R R R R	sensitivity coefficient c 9823 1 1 1 9823 1 1 1 9823 1 1 0 (k=2) 2 2 (k=2) 2 2 4 5 5 5 6 6 7 1 1 1 9937 7 1 1 9937 7		uncertainty contribution ui() 32,8 56,1 31,8 20,8 0,0 5,8 0,3 75,5 151 151 151 0 0 0 0 332,0 332,0 332,0 332,0 332,0 0 332,0 24,2 20,0 72,2 20,0	nm nm nm nm nm nm nm nm 31	degrees of freedom vi 13 11 25 29 1000 1000 1000 1000 1000 1000 1000 1
Specimen 7070, Specimen 7070, 	me asur ant Rn Quantity Xi C Rmax(mea droise dref dZalign dpl dZresolutic dZresolutic Quantity Xi dx1 dxn RSm(mea dXalign dXresolutic dXalign dXresolutic dXalign	nax Estimate xi 9823 0 0 0 0 0 0 0 0 0 0 0 0 0	nm nm nm nm nm nm nm nm nm nm nm nm nm	uncertainty u(xi) 0,003 56,1 31,8 20,8 0,0 5,8 0,0 5,8 0,0 5,8 0,0 5,8 0,0 5,8 0,0 5,8 0,0 5,8 0,0 0,5 8 0,0 0,0 5,8 0,0 0,0 5,8 0,0 0,0 5,8 1,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0	nm nm nm nm nm nm nm nm nm nm	distribution N N N R R R R R G G G G G G G G G G G G	sensitivity coefficient c 9823 1 1 1 9823 1 1 1 Uc: U(k=2) veff: c efficient c 1 1 199937 1 199937 1	nm nm nm nm nm	uncertainty contribution ui() 32,8 66,1 31,8 20,8 0,0 5,8 0,0 5,8 0,0 5,8 0,0 5,8 0,0 5,8 0,0 5,8 0,0 5,8 0,0 5,8 0,0 5,8 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0	nm nm nm nm nm nm nm 31	degrees of freedom vi 13 11 22 28 1000 1000 1000 1000 1000 1000
Specimen 7070, Specimen 7070, 	measurant Rn Quantity Xi C Rmax(mea droise dref dZalign dpl dZresolutic dZresolutic Quantity Xi dx1 dxn RSm(mea dXalign dXresolutic dXalign dXresolutic	nax Estimate xi 9823 0 0 0 0 0 0 0 0 0 0 0 0 0	nm nm nm nm nm nm nm nm nm nm nm nm nm	uncertainty u(xi) 0,003 56,1 31,8 20,8 0,0 5,8 0,0 5,8 0,3 0,3 0,3 0,3 0,3 0,3 0,3 0,3 0,3 0,3	nm nm nm nm nm nm nm nm nm nm	distribution N N N R R R R R G G G G G G G G G G G G	sensitivity coefficient c 9823 1 1 1 9823 1 1 1 Uc: U(k=2) veff: c u(k=2) veff: c 1 1 1 99937 1 199937 1 199937 1	nm nm nm nm nm nm	uncertainty contribution ui() 32,8 66,1 31,8 20,8 0,0 58 0,0 58 0,0 31 75,5 151 151 151 151 151 151 151 151 151	nm nm nm nm nm nm nm 31	degrees of freedom vi 13 11 25 26 1000 1000 1000 1000 1000 1000 1000 1
Specimen 7070, Specimen 7070, Image: Specimen Image: Specimen Image: Specimen Image: Specimen Specimen 7070, Image: Specimen Image: Specimen Image: Specimen 7070, Image: Specimen Image: Specimen Image: Sp	measurant Rn Quantity Xi C Rmax(mee dnoise dref dZalign dpl dZresolutic dZresolutic Quantity Xi Quantity Xi dx1 dxn RSm(mea dXalign dXresolutic dXalign dXresolutic	nax Estimate xi 9823 0 0 0 0 0 0 0 0 0 0 0 0 0	nm nm nm nm nm nm nm nm nm nm nm nm nm n	uncertainty u(xi) 0,003 56,1 31,8 20,8 0,0 5,8 0,0 5,8 0,0 5,8 0,0 5,8 0,0 5,8 0,0 5,8 0,0 5,8 0,0 5,8 0,0 5,8 0,0 0,0 5,8 0,0 0,0 5,8 0,0 0,0 5,8 0,0 0,0 5,8 1,0 0,0 0,0 5,8 1,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0	nm nm nm nm nm nm nm nm nm nm	distribution N N R R R R R G G G G G G G G G G G G G	sensitivity coefficient c 9823 1 1 1 9823 1 1 1 Uc: U(k=2) ν eff: c efficient c 1 1 199937 1 199937 1 199937 1	nm nm nm nm nm	uncertainty contribution ui() 32,8 66,1 31,8 20,8 0,0 5,8 0,0 5,8 0,0 75,5 151 151 151 151 151 151 151 151 151	nm nm nm nm nm nm nm 31	degrees of freedom vi 13 17 22 28 1000 1000 1000 1000 1000 1000 100
Specimen 7070, Specimen 70, Specimen 70,	Me asurant Rn Quantity Xi C Rmax(mea dref dZalign dpl dZresolutic dZresolutic Quantity Xi dx1 dxn RSm(mea dXalign dXresolutic dXalign dXresolutic dXalign dXresolutic	nax Estimate xi 9823 00 00 00 00 00 00 00 00 00 00 00 199937 00 00 00 00 00 00 00 00 00 00 00 00 00	nm nm nm nm nm nm nm nm nm nm nm nm nm	uncertainty u(xi) 0,003 56,1 31,8 20,8 0,0 5,8 0,0 5,8 0,3 0,3 0,3 0,3 0,3 0,3 0,3 0,3 0,3 0,3	nm nm nm nm nm nm nm nm nm nm	distribution N N N R R R R R G G G G G G G G G G G G	sensitivity coefficient c 9823 1 1 1 9823 1 1 Uc: U(k=2) veff: c u(k=2) 1 1 99937 1 1 99937 1 199937 1 Uc: U(k=2)	nm nm nm nm nm nm	uncertainty contribution ui() 32,8 66,1 31,8 20,8 0,0 5,8 0,0 5,8 0,0 75,5 151 151 151 151 151 151 151 151 151	nm nm nm nm nm nm nm nm nm nm nm nm nm n	degrees of freedom vi 13 11 25 28 1000 1000 1000 1000 1000 1000 1000 1

	Quantity Xi	Estimate xi		uncertainty u(xi)		distribution	sensitivity coefficient c		uncertainty contribution ui()		degrees of freedom <i>v</i> i
	C Do(mooo)	1		0,003		N	904	nm	3,0	nm	13
	dnoise	304 N	nm	4.0	nm	N	1		4.0	nm	39
	dref	0	nm	1,6	nm	N	1		1,6	nm	39
	dZalign	0		0,0		R	904	nm	0,0	nm	1000
	dpl	0	nm	5,8	nm	R	1		5,8	nm	1000
	dZresolutio	0	nm	0,3	nm	R	1		0,3	nm	1000
							Uc:		10,2	nm	
							U(k=2)		20	nm	
							veff:			236	
					_						
Specimen 8194.	measurant Rz	,									
	Quantity Xi	Estimate xi		uncertainty u(xi)		distribution	sensitivity coefficient c		uncertainty contribution ui()		degrees of freedom <i>v</i> i
	C	1		0.003		N	3097	nm	10.3	nm	13
	R7(meas)	3097	nm	52.7	nm	N	3097	nm	52.7	nm	13 50
	dnoise	0	nm	30.1	nm	N	1		30.1	nm	39
	dref	0	nm	12.7	nm	N	1		12.7	nm	39
	dZalign	0		0,0		R	3097	nm	0,0	nm	1000
	dpl	0	nm	5,8	nm	R	1		5,8	nm	1000
	dZresolutio	0	nm	0,3	nm	R	1		0,3	nm	1000
							Uc:		63,1	nm	
									400		
							U(k=2)		126	nm	
							uoff	_		102	
							ven.			103	
Specimen 8194,	measurant Rr	nax									
	Quantity	Estimate xi		uncertainty		distribution	sensitivity		uncertainty		degrees of freedom vi
		~		u(xi)			coenicient		ui()		ILEEGOIN DI
				u(xi)			coenicient		ui()		incedoint pr
	C	1		u(xi)		N	c 3118	nm	ui() 10,4	nm	13
	C Rmax(mea	1 3118	nm	u(xi) 0,003 56,3	nm	N N	20000000000000000000000000000000000000	nm	ui() 10,4 56,3	nm nm	13 11
	C Rmax(mea dnoise	1 3118 0	nm	u(xi) 0,003 56,3 34,5	nm nm	N N N	3118	nm	ui() 10,4 56,3 34,5	nm nm nm	13 11 39
	C Rmax(mea dnoise dref	1 3118 0	nm nm nm	u(xi) 0,003 56,3 34,5 16,8	nm nm nm	N N N	3118 3118 1 1	nm	ui) 10,4 56,3 34,5 16,8	nm nm nm nm	13 11 39 39
	C Rmax(mea dnoise dref dZalign	1 3118 0 0	nm nm nm	u(xi) 0,003 56,3 34,5 16,8 0,0	nm nm nm	N N N R	3118 3118 1 1 1 3118	nm nm	ui() 10,4 56,3 34,5 16,8 0,0	nm nm nm nm nm	13 11 39 39 1000
	C Rmax(mea dnoise dref dZalign dpl dpl	1 3118 0 0 0 0	nm nm nm nm	u(xi) 0,003 56,3 34,5 16,8 0,0 5,8	nm nm nm nm	N N N R R	c 3118 3118 1 1 1 3118 3118	nm	ui) 10,4 56,3 34,5 16,8 0,0 5,8	nm nm nm nm nm nm	13 11 39 1000 1000
	C C Rmax(mes dnoise dref dZalign dpl dZresolutio	1 3118 0 0 0 0 0	nm nm nm nm nm	u(xi) 0,003 56,3 34,5 16,8 0,0 5,8 0,3	nm nm nm nm	N N N R R R	c 3118 1 1 1 3118 1 3118 1 1	nm	ui() 10,4 56,3 34,5 16,8 0,0 5,8 0,3	nm nm nm nm nm nm nm	13 11 39 1000 1000 1000
	C Rmax(mea droise dref dZalign dpl dZresolutic	1 3118 0 0 0 0	nm nm nm nm nm	u(xi) 0,003 56,3 34,5 16,8 0,0 5,8 0,3	nm nm nm nm	N N N R R R	c 3118 1 1 1 3118 1 1 Uc:	nm	ui() 10,4 56,3 34,5 16,8 0,0 5,8 0,3 69,1	nm nm nm nm nm nm nm	13 11 39 30 1000 1000
	C Rmax(mee dnoise drof dZalign dpl dZresolutic	1 3118 0 0 0 0	nm nm nm nm	u(xi) 0,003 56,3 34,5 16,8 0,0 5,8 0,3	nm nm nm nm	N N N R R R	c 3118 1 1 3118 1 3118 1 1 Uc:	nm	ui() 10,4 56,3 34,5 16,8 0,0 5,8 0,3 69,1 138	nm nm nm nm nm nm nm	13 11 39 39 1000 1000
	C Rmax(mea dnoise dref dZalign dpl dZresolutic	1 3118 0 0 0 0 0	nm nm nm nm nm	u(xi) 0,003 56,3 34,5 16,8 0,0 5,8 0,3	nm nm nm nm	N N N R R R	Coencient c 3118 1 1 3118 1 Uc: U(k=2) veff:	nm	ui) 10,4 56,3 34,5 16,8 0,0 5,8 0,3 69,1 138	nm nm nm nm nm nm nm nm	13 11 38 30 1000 1000
	C Rmax(mea dnoise dref dZalign dpl dZresolutic	1 3118 0 0 0 0 0	nm nm nm nm nm	u(xi) 0,003 56,3 34,5 16,8 0,0 5,8 0,3	nm nm nm nm	N N N R R R	Coencient c 3118 1 1 1 3118 1 1 1 Uc: U(k=2) 22eff:	nm	ui) 10,4 56,3 34,5 16,8 0,0 5,8 0,3 69,1 138	nm nm nm nm nm nm nm 24	13 11 39 30 1000 1000
Specimen 8194,	C Rmax(mea dnoise dref dZalign dZresolutic	1 3118 0 0 0 0 0	nm nm nm nm	u(xi) 0,003 56,3 34,5 16,8 0,0 5,8 0,3	nm nm nm nm	N N N R R R	Coencient c 3118 1 1 1 3118 1 1 Uc: U(k=2) Veff:	nm nm	ui) 10,4 56,3 34,5 16,8 0,0 5,8 0,3 69,1 138	nm nm nm nm nm nm nm 24	13 11 39 1000 1000
Specimen 8194,	C C Rmax(mea droise dref dZalign dpl dZresolutic	11 3118 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	nm nm nm nm nm	u(xi) 0,003 56,3 34,5 16,8 0,0 5,8 0,3		N N N R R R	Coencient c 3118 1 1 1 3118 1 Uc: U(k=2) veff.		ui) 10,4 56,3 34,5 16,8 0,0 5,8 0,3 69,1 138	nm nm nm nm nm nm nm nm 24	13 11 38 30 1000 1000
Specimen 8194,	C Rmax(mea dnoise dref dZalign dpl dZresolutic measurant RS Quantity Xi	1 3118 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	nm nm nm nm	u(xi) 0,003 56,3 34,5 16,8 0,0 5,8 0,3		N N N R R R R distribution	Coencient c 3118 1 1 1 1 1 1 Uc: U(k=2) veff: c		ui() 10,4 56,3 34,5 16,8 0,0 5,8 0,3 69,1 138 138	nm nm nm nm nm nm nm 24	degrees of freedom vi
Specimen 8194,	C Rmax(mea dnoise dref dZalign dZresolutic dZresolutic measurant RS Quantity Xi	1 3118 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	nm nm nm nm nm	u(xi) 0,003 56,3 34,5 16,8 0,0 5,8 0,3 0,3	nm nm nm nm	N N N R R R R distribution	Coencient c 3118 1 1 1 3118 1 Uc: U(k=2) veff: sensitivity coefficient c 1	nm nm nm	ui() 10,4 56,3 34,5 16,8 0,0 5,8 0,3 69,1 138 0,0 138 0,1 138 0,0 5,8 0,3 138 0,1 138 0,1 138 0,1 138 0,1 138 138 138	nm nm nm nm nm nm 24	degrees of freedom vi
Specimen 8194,	C Rmax(mea dnoise dref dZalign dpl dZresolutic measurant RS Quantity Xi	5m Estimate xi	nm nm nm nm nm nm	u(xi) 0,003 56,3 34,5 16,8 0,0 5,8 0,3 0,3 0,3 0,3	nm nm nm nm nm	N N N R R R R 	coefficient c 3118 11 1 1 1 1 1 1 Uc: U(k=2) veff: c c 1 1		uncertainty contribution 10,4 56,3 34,5 16,8 0,0 5,8 0,3 69,1 138 138	nm nm nm nm nm nm nm nm 24	13 11 39 30 1000 1000 1000
Specimen 8194,	C Rmax(mea droise dref dZalign dJ dZresolutic dZresolutic u u u u a dz a u u a u a u a u a u a u a u a u a u	Sm Estimate xi 00000000000000000000000000000000000	nm nm nm nm nm nm nm nm nm	u(xi) 0,003 56,3 34,5 16,8 0,0 5,8 0,3 0,3 0,3 0,3 0,3 0,3 1,37 0,3 1,976 331,976 1137,7	nm nm nm nm nm	N N N R R R R C C C C C C C C C C C C C	Coencient c 3118 1 1 1 1 1 1 1 1 Uc: U(k=2) veff: c 1 1 1 1 1 1 1 1 1 1 1 1 1	- mm - mm - mm - mm - mm - mm - mm - mm	uncertainty contribution ui) 10,4 56,3 34,5 16,8 0,0 5,8 0,3 69,1 138 138 0,0 5,8 0,3 0,3 69,1 138 0,0 5,8 0,3 0,3 138 0,0 0,0 5,8 0,3 138 0,0 0,0 5,8 0,0 138 0,0 0,0 5,8 10,4 10,4 10,4 10,4 10,4 10,4 10,4 10,4	nm nm nm nm nm nm nm nm 24	13 11 39 30 1000 1000 1000 1000 1000 100
Specimen 8194,	C Rmax(mea dnoise dref dZalign dpl dZresolutic dZresolutic dZresolutic dzresol	Sm Estimate xi 00 00 00 00 00 00 00 00 00 00 00 00 00	nm nm nm nm nm nm nm nm nm nm nm	u(xi) 0,003 56,3 34,5 16,8 0,0 5,8 0,3 0,3 0,3 0,3 0,3 0,3 0,3 0,3	nm nm nm nm nm nm nm nm	N N N R R R R R C C C C C C C C C C C C	Coencient c 3118 1 1 1 1 1 1 1 1 1 1 1 1 1	nm nm nm 	uncertainty contribution ui) 10,4 56,3 34,5 16,8 0,0 5,8 0,3 69,1 138 138 0,0 5,8 0,3 138 0,0 0,0 5,8 0,3 138 0,0 0,0 1332,0 332,0 332,0 1137,7 11,9	nm nm nm nm nm nm nm nm 24 24 nm nm nm nm nm nm	degrees of freedom vi 1000 1000 1000 1000 1000 1000 1000 10
Specimen 8194,	C Rmax(mea dnoise dref dZalign dpl dZresolutic u u u u u u u u u u u u u u u u u u	Sm Estimate xi 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	nm nm nm nm nm nm nm nm nm nm	u(xi) 0,003 56,3 34,5 16,8 0,0 5,8 0,3 0,3 0,3 0,3 0,3 0,3 0,3 0,3 0,3 0,3	nm nm nm nm nm nm nm nm nm	N N N R R R R C C C C C C C C C C C C C	Coencient C 3118 1 1 1 1 1 1 Uc: U(k=2) Veff: Veff: 1 1 1 1 1 1 1 1 1 1 1 1 1		uncertainty contribution ui) 10,4 56,3 34,5 16,8 0,0 5,8 0,3 69,1 138 	nm nm nm nm nm nm nm nm 24	degrees of freedom <i>v</i> i 11 33 30 1000 1000 1000 1000 1000 1000
Specimen 8194,	C C Rmax(mea droise dref dZalign dpl dZresolutio measurant RS Quantity Xi dx1 dxn RSm(measurant dXalign	5m 5m 5m 5m 5m 5m 5m 5m 5m 5m	nm nm nm nm nm nm nm nm nm nm nm	u(xi) 0,003 56,3 34,5 16,8 0,0 5,8 0,3 0,3 0,3 0,3 0,3 0,3 0,3 0,3	nm nm nm nm nm nm nm nm	distribution R R R R R R R R R R R R R R R R R R R	Coentricent c 3118 1 1 1 1 1 1 1 1 1 1 1 1 1	nm nm inm inm inm inm inm	uncertainty contribution ui) 10,4 56,3 34,5 16,8 0,0 5,8 0,3 69,1 138 0,0 5,8 0,3 0,3 138 0,0 5,8 0,3 0,3 0,3 138 0,0 0,0 5,8 0,3 0,3 138 0,0 0,0 5,8 0,0 0,0 5,8 0,0 0,0 5,8 0,0 0,0 5,8 0,0 0,0 5,8 0,0 0,0 5,8 0,0 0,0 5,8 0,0 0,0 5,8 0,0 0,0 5,8 0,0 0,0 5,8 0,0 0,0 5,8 0,0 0,0 5,8 0,0 0,0 5,8 0,0 0,0 5,8 0,0 0,0 5,8 0,0 0,0 5,8 0,0 0,0 5,8 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0	nm nm nm nm nm nm nm nm 24	degrees of freedom vi 1000 1000 1000 1000 1000 1000 1000 10
Specimen 8194,	C Rmax(mea droise dref dZalign dpl dZresolutic dZresolutic dZresolutic dXalign dXn RSm(mea dXalign dXresolutic dXalign dXresolutic	5m Estimate xi 0 0 0 0 0 0 0 0 0 0 0 0 0	nm nm nm nm nm nm nm nm nm nm nm	u(xi) 0,003 56,3 34,5 16,8 0,0 5,8 0,3 0,3 0,3 0,3 0,3 0,3 0,3 0,3	nm nm nm nm nm nm nm nm nm nm	N N N R R R R R I I I I I I I I I I I I	Coentricent	nm nm inm inm inm inm	uncertainty contribution ui) 10,4 56,3 34,5 16,8 0,0 5,8 0,3 69,1 138 	nm nm nm nm nm nm nm 24 24 24 24 24 24 24 24 24 24 24 24 24	degrees of freedom vi 1000 1000 1000 1000 1000 1000 1000 10
Specimen 8194,	C C Rmax(mea dnoise dref dZalign dpl dZresolutic measurant RS Quantity Xi dx1 dxn RSm(mea dXalign dXresolutic	5m Estimate xi 0 0 0 0 0 0 0 0 0 0 0 0 0	nm nm nm nm nm nm nm nm nm nm nm	u(xi) 0,003 56,3 34,5 16,8 0,0 5,8 0,3 0,3 0,3 0,3 0,3 0,3 0,3 0,3	nm nm nm nm nm nm nm nm nm	distribution R R R R R R R R R R R R R R R R R R R	Coencient C 3118 1 1 1 1 1 1 1 1 Uc: U(k=2) veff. U(k=2) veff. 2 veff. 1 1 118927 1 118927 1 Uc: Uc: U(k=2) Veff. 1 1 1 1 1 1 1 1 1 1 1 1 1	nm nm nm nm nm nm	uncertainty contribution 10,4 56,3 34,5 16,8 0,0 5,8 0,3 69,1 138 0,0 5,8 0,3 0,3 138 0,0 0,1 332,0 332,0 332,0 1137,7 11,9 72,2 11,9 72,2 1235,1	nm nm nm nm nm nm nm 24	degrees of freedom vi 1000 1000 1000 1000 1000 1000 1000 10
Specimen 8194,	C Rmax(mea dnoise dref dZalign dJ dZresolutic dZresolutic dZresolutic dXalign dXresolutic dXalign dXresolutic dXalign dXresolutic	Sm Estimate xi 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	nm nm nm nm nm nm nm nm nm nm nm nm	u(xi) 0,003 56,3 34,5 16,8 0,0 5,8 0,3 0,3 0,3 0,3 0,3 0,3 1,37,7 331,976 331,976 1137,7 0,0 72,2 0,0 72,2	nm nm nm nm nm nm nm nm nm nm	N N N R R R R I I I I I I I I I I I I I	Coencient c 3118 1 1 1 1 1 1 1 1 1 1 1 1 1		uncertainty contribution ui) 10,4 56,3 34,5 16,8 0,0 5,8 0,3 69,1 138 138 0,0 0 138 0,3 138 0,0 0,0 138 0,0 138 0,0 0,0 137 0,0 137,0 12,0 137,0 12,0 137,0 12,0 137,0 12,0 137,0 137,0 12,0 137,0 12,0 137,0 12,0 137,0 12,0 137,0 12,0 137,0 12,0 137,0 12,0 137,0 12,0 137,0 12,0 12,0 12,0 12,0 12,0 12,0 12,0 12	nm nm nm nm nm nm nm nm 24 24 24 24 24 24 24 24 24 24 24 24 24	degrees of freedom vi 1000 1000 1000 1000 1000 1000 1000 10
Specimen 8194,	C Rmax(mea droise dref dZalign dpl dZresolutic dZresolutic measurant RS Quantity Xi dx1 dxn RSm(mea dXalign dXresolutic dXalign dXresolutic	Sm Estimate xi 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	nm nm nm nm nm nm nm nm nm nm nm	u(xi) 0,003 56,3 34,5 16,8 0,0 5,8 0,3 0,3 0,3 0,3 0,3 0,3 1137,7 0,0 72,2 0,0,0 72,2 0,0,0 72,2 0,0 0,0 0,0 0,0 0,0 0,0 0,0	nm nm nm nm nm nm nm nm nm nm	N N N R R R R C C C C C C C C C C C C C	Coentricent c 3118 1 1 1 1 1 1 1 1 1 1 1 1 1		uncertainty contribution ui) 10,4 56,3 34,5 16,8 0,0 5,8 0,3 69,1 138 	nm nm nm nm nm nm nm nm 24 24 24 24 24 24 24 24 24 24	degrees of freedom vi 1000 1000 1000 1000 1000 1000 1000 10

degrees of										.	
freedom vi		uncertainty contribution ui()		sensitivity coefficient c	distribution	4	uncertainty u(xi)		Estimate xi	Quantity Xi	
		7.0		0054			0.000				
13	nm nm	23.6	nm	2351	N	13 6 nr	23.6	nm	2351	C Ra(meas)	
29	nm	3,7		1	N	,7 nr	3,7	nm	0	dnoise	
29	nm	1,8		1	N	,8 nr	1,8	nm	0	dref dZelian	
1000	nm	5,8	nm	2351	R	,0 ,8 nr	5,8	nm	0	dpl	
1000	nm	0,3		1	R	,3 nr	0,3	nm	0	dZresoluti	
-	nm	25.8		Uc:		_					
	nm	52		U(k=2)		_					
-		81		veff:		_					
_											
									Rz	g, measurant	Specimen 686sg, m
degrees of freedom vi		uncertainty contribution ui()		sensitivity coefficient c	distribution	4	uncertainty u(xi)		Estimate xi	Quantity Xi	
15	nm	47.9		1/1220	N	13	0.003		1	_	
- 13	nm	47,8	11111	14330	N	,9 nr	271.9	nm	14330	Rz(meas)	
29	nm	28,8		1	N	8 nr	28,8	nm	0	dnoise	
29	nm	14,4	nm	1/1220	R	,4 nr	14,4	nm	0	dref dZalian	
1000	nm	5,8	11111	14000	R	,0 ,8 nr	5,8	nm	0	dpl	
1000	nm	0,3		1	R	,3 nr	0,3	nm	0	dZresoluti	
	nm	278,0		Uc:		_					
_											
_	nm	556		U(k=2)							
		64		veff:							
dogroop -f											Engelman 606og m
13 11 11 25 25 1000 1000 1000	nm nm nm nm nm nm nm	uncertainty contribution ui() 51,9 35,7 31,8 20,8 0,0 5,8 0,3 73,8 73,8 148 40	nm	sensitivity coefficient c 15567 1 1 15567 1 1 1 5567 1 1 1 0 (k=2) veff:	distribution N N N R R R R R R	/ / /7 nr /8 nr /8 nr /0 /8 nr /0 /8 nr /0 /0 /0 /0 /0 /0 /0 /0 /0 /0	uncertainty u(xi) 35,7 31,8 20,8 0,0 5,8 0,0 5,8	nm nm nm nm	Imax Estimate xi 1 15567 0 0 0 0	C Rmax(me dnoise dref dZalign dpl dZresoluti	
degrees of freedom vi 11 22 29 1000 1000 1000	nm nm nm nm nm nm nm	uncertainty contribution ui() 51,9 35,7 31,8 20,8 0,0 5,8 0,0 73,8 73,8 148 40 40	nm	sensitivity coefficient c 15567 1 1 15567 1 1 15567 1 1 0 (k=2) veff: sensitivity coefficient c	distribution	y 13 7 nr 8 nr 8 nr 0 8 nr 3 nr 3 nr 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	uncertainty u(xi) 0,003 35,7 31,8 20,8 0,0 5,8 0,0 5,8 0,3 0,3 0,3	nm nm nm nm nm nm	tmax Estimate xi 15567 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	g, measurant Quantity Xi C C Rmax(me dnoise dref dZalign dpl dZresoluti dZresoluti	Specimen 686sg, m
degrees of freedom vi 11 22 29 1000 1000 1000	nm nm nm nm nm nm nm nm nm nm	uncertainty contribution ui() 51,9 35,7 31,8 20,8 0,0 5,8 0,0 73,8 73,8 148 40 40 40 40 40 40 40 40 40 40 40 40 40	nm	sensitivity coefficient c 15567 1 1 15567 1 1 5567 1 1 0(k=2) veff: c sensitivity coefficient c 8075 1	distribution N N N R R R R R distribution distribution	y 7 13 7 8 8 13 8 13 13 13 13 13 13 13 13 13 13	uncertainty u(xi) 0,003 35,7 31,8 20,8 0,0 5,8 0,3 0,5,8 0,3 0,5,8 0,3 0,0 3 0,03 143,3 143,3 142,5	nm nm nm nm nm nm 	Imax Estimate xi 1 15567 0 1 8075	g, measurant Quantity Xi C Rmax(me droise dref dZalign dpl dZresoluti dZresoluti g, measurant Quantity Xi	Specimen 686sg, m
degrees of freedom vi 11 22 29 1000 1000 1000 1000 1000 1000	nm nm nm nm nm nm nm nm nm nm nm nm nm n	uncertainty contribution ui() 51,9 35,7 31,8 20,8 0,0 5,8 0,0 73,8 73,8 73,8 148 40 40 40 40 40 40 40 40 40 40 40 40 40	nm	sensitivity coefficient c 15567 1 1 15567 1 1 15567 1 1 0 (k=2) veff: c sensitivity coefficient c 8075 1 1 1	distribution N N N N R R R R R distribution distribution N N N N N N N N N N N N N N N N N N N	y 3 7 8 8 7 8 8 7 8 8 7 3 7 13 13 13 13 13 13 13 14 14 15 15 17 17 17 17 17 17 17 17 17 17	uncertainty u(xi) 0,003 35,7 31,8 20,8 0,0 5,8 0,0 5,8 0,3 0,5 8 0,0 5,8 0,0 0,03 1,4 3,3 14,3,3 12,5 6,3	nm nm nm nm nm nm nm nm nm nm nm	Imax Estimate xi 1 15567 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 8075 0 0	g, measurant Quantity Xi C Rmax(me droise dref dZalign dpl dZresoluti dZresoluti g, measurant Quantity Xi C C Rk((meas) dnoise droise	Specimen 686sg, m
degrees of freedom vi 11 22 25 1000 1000 1000 1000 1000 1000	nm nm nm nm nm nm nm nm nm nm nm nm nm n	uncertainty contribution ui() 51,9 35,7 31,8 20,8 0,0 5,8 0,3 73,8 73,8 73,8 40 40 40 40 40 40 40 40 40 40 40 40 40	nm	sensitivity coefficient c 15567 1 1 15567 1 1 15567 U(k=2) veff: veff: c efficient c 8075 1 1 1 8075	distribution N N N N R R R R R distribution distribution N N N N N N N N N N N N N N N N N N N	/ / / / / / / / / / / / / /	uncertainty u(xi) 0,003 35,7 31,8 20,8 0,0 5,8 0,3 0,5,8 0,3 0,3 0,5,8 0,3 0,0 0,003 143,3 143,3 12,5 6,3 0,0,0	nm nm nm nm nm nm nm nm nm nm nm nm	Imax Estimate xi 1 15667 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 8075 0 0 0	g, measurant Quantity Xi C Rmax(me droise dref dZalign dpl dZresoluti dZresoluti Quantity Xi C C Rk(meas) droise dref dZalign	Specimen 686sg, m
degrees of freedom vi 11 22 25 1000 1000 1000 1000 1000 1000	nm nm nm nm nm nm nm nm nm nm nm nm nm n	uncertainty contribution ui() 51,9 35,7 31,8 20,8 0,0 5,8 0,0 73,8 73,8 73,8 73,8 40 40 5,8 40 40 20,9 143,3 12,5 6,3 143,3 12,5 6,3 0,0 5,8 8,0,0 143,3 12,5 6,3 0,0 0,5 8,8 0,0 0,0 143,3 12,5 7,5 7,5 7,3 1,8 7,7 7,3 1,8 7,7 7,3 1,8 7,7 7,3 1,8 7,7 7,3 1,8 7,7 7,3 1,8 7,7 7,3 1,8 7,7 7,3 1,8 7,7 7,3 1,8 7,7 7,3 1,8 7,7 7,3 1,8 7,7 7,3 1,8 7,7 7,3 1,8 7,7 7,3 1,8 7,7 7,7 7,8 7,7 7,8 7,7 7,8 7,7 7,8 7,7 7,8 7,7 7,8 7,7 7,8 7,7 7,8 7,7 7,8 7,7 7,8 7,7 7,8 7,7 7,8 7,7 7,8 7,7 7,8 7,7 7,8 7,7 7,8 7,7 7,8 7,7 7,7	nm	sensitivity coefficient c 15567 1 1 15567 1 1 5567 1 1 0 (k=2) veff: c 8075 1 1 8075 1 1 8075 1 1	distribution N N N N R R R R distribution distribution N R R N N N N N N N N N N N N N R	y 13 13 13 13 13 13 13 13 14 13 14 13 14 14 15 17 17 17 17 17 17 17 17 17 17	uncertainty u(xi) 0,003 35,7 31,8 20,8 0,0 5,8 0,0 5,8 0,3 0,3 0,0 0,0 0,003 143,3 12,5 6,3 0,0 6,8 8,0,0 0,003	nm nm nm nm nm nm nm nm nm nm nm nm nm n	Imax Estimate xi 1 15667 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 8075 0 0 0	g, measurant Quantity Xi C Rmax(me droise dref dZalign dpl dZresoluti dZresoluti Quantity Xi C C Rk(meas) droise dref dZalign dpl dZresoluti	Specimen 686sg, m
degrees of freedom vi 11 22 29 1000 1000 1000 1000 1000 1000	nm nm nm nm nm nm nm nm nm nm nm nm nm n	uncertainty contribution ui() 51,9 35,7 31,8 20,8 0,0 5,8 0,0 73,8 73,8 148 40 40 40 40 26,9 143,3 12,5 6,3 0,0 5,8 0,0 3	nm	sensitivity coefficient c 15567 1 1 15567 1 1 5567 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	distribution N N N R R R R R distribution distribution N N N N N N N N N N N N R R R R R R R	/ / / / / / / / / / / / / /	uncertainty u(xi) 0,003 35,7 31,8 20,8 0,0 5,8 0,3 0,5 8 0,3 0,3 0,0 0,003 143,3 143,3 12,5 6,3 0,0 0,5 8 0,3	nm nm nm nm nm nm nm nm nm nm nm nm nm	Imax Estimate xi 1 15567 0	g, measurant Quantity Xi C Rmax(me droise dref dZalign dpl dZresoluti dZresoluti Quantity Xi C C Rk((meas) dnoise droise dref dZalign dpl dZresoluti	Specimen 686sg, m
degrees of freedom vi 11 22 25 1000 1000 1000 1000 1000 1000	nm nm nm nm nm nm nm nm nm nm nm nm nm n	uncertainty contribution ui() 51,9 35,7 31,8 20,8 0,0 5,8 0,0 73,8 73,8 148 40 40 40 26,9 143,3 12,5 6,3 0,0,0 5,8 0,3 146,6	nm	sensitivity coefficient c 15567 1 1 1 15567 1 1 10 Uc: U(k=2) veff: veff: c 8075 1 1 1 1 8075 1 1 1 1 0 075	distribution N N N R R R R H H H H H H H H H H H H H	/ / / / / / / / / / / / / /	uncertainty u(xi) 0,003 35,7 31,8 20,8 0,0 5,8 0,3 0,0 0 uncertainty u(xi) 0,003 143,3 143,3 143,3 143,3 0,0 0,0 3,12,5 6,3 0,3 0,0 3,12,5 12,5 12,5 12,5 12,5 12,5 12,5 12,5	nm nm nm nm nm nm nm nm nm nm nm nm	Imax Estimate xi 1 15567 0	g, measurant Quantity Xi C C Rmax(me droise dref dZalign dpl dZresoluti Quantity Xi C C Rk(meas) droise dref dZalign dpl dZresoluti	Specimen 686sg, m
degrees of freedom vi 12 11 22 25 1000 1000 1000 1000 1000 10	nm nm nm nm nm nm nm nm nm nm nm nm nm n	uncertainty contribution uiù 35,7 31,8 20,8 0,0 5,8 0,3 73,8 73,8 148 40 40 40 26,9 143,3 12,5 6,3 0,0 5,8 0,3 144,6,6 293		sensitivity coefficient c 15567 1 1 15567 1 1 15567 1 1 Uc: Veff: Veff: veff: sensitivity coefficient c 8075 1 1 1 1 8075 1 1 1 1 U(k=2) V(k=2) Vefficient U(k=2) Vefficient C	distribution N N N R R R R G G G G G G G G G G G G G	/ / / / / / / / / / / / / /	uncertainty u(xi) 0,003 35,7 31,8 20,8 0,0 5,8 0,3 0,0 5,8 0,3 0,0 0 143,3 143,3 12,5 6,3 0,0 0,5,8 0,3 0,3 0,0 0,0 0,003	nm nm nm nm nm nm nm nm nm nm nm nm nm n	Imax Estimate xi 1 15567 0	g, measurant Quantity Xi C C Rmax(me droise dref dZalign dpl dZresoluti G Quantity Xi C C Rk(meas) dnoise dref dZalign dziresoluti dZalign dziresoluti	Specimen 686sg, m
degrees of freedom vi 13 11 25 22 1000 1000 1000 1000 1000 1000	nm nm nm nm nm nm nm nm nm nm nm nm nm n	uncertainty contribution ui() 51,9 35,7 31,8 20,8 0,0 5,8 0,0 73,8 73,8 148 40 40 20 9 143,3 142,5 6,3 0,0 5,8 0,3 146,6 293 142,5 6,3 0,1 225,9 143,3 145,6 3,0,0 5,8 0,3 146,6 12,1 12,1 12,1 12,1 12,1 12,1 12,1 1	nm	sensitivity coefficient c 15567 1 1 1 5567 1 1 15567 1 1 0(k=2) 2 2 6 075 1 1 1 1 8075 1 1 1 8075 1 1 1 1 8075 1 1 2 8075 1 1 2 8075 1 2 8075 1 2 8075 1 1 2 8075 1 1 2 8075 1 1 1 1 1 1 5 8075 1 1 1 1 1 5 8075 1 1 1 1 5 8075 1 1 1 1 5 8075 1 1 1 1 5 8075 1 1 1 5 8075 1 1 1 1 5 8075 1 1 1 5 8075 1 1 1 5 8075 1 1 1 5 8075 1 1 1 5 8075 1 1 1 5 8075 1 1 1 5 8075 1 1 1 1 5 8075 1 1 1 5 8075 1 1 1 5 8075 1 1 1 5 8075 1 1 1 5 8075 1 1 1 1 5 8075 1 1 1 1 5 8075 1 1 1 1 1 1 5 8075 1 1 1 1 1 1 5 8075 1 1 1 1 1 1 1 1 5 1 1 1 1 1 5 1 1 1 1	distribution N N N R R R distribution distribution R R N N N N N N N N N N N N N N N N R	y 3 7 8 8 7 8 8 7 8 7 8 7 8 7 8 7 7 8 7 7 7 7 7 7 7 7 7 7 7 7 7	uncertainty u(xi) 0,003 35,7 31,8 20,8 0,0 5,8 0,3 0,5 8 0,3 0,0 5,8 0,3 143,3 12,5 6,3 0,003 143,3 12,5 6,3 0,3	nm nm nm nm nm nm nm nm nm nm nm nm nm n	Imax Estimate xi 1 15567 0	g, measurant Quantity Xi C C Rmax(me droise dref dZalign dpl dZresoluti dZresoluti Quantity Xi C C Rk(meas) dnoise dref dZalign dzresoluti	Specimen 686sg, m

	Quantity Xi	Estimate xi		uncertainty u(xi)		distribution	sensitivity coefficient c		uncertainty contribution ui()		degrees of freedom vi
	C Rpk(meas dnoise dref dZalign	1 1276 0 0 0	nm nm nm	0,003 65,7 4,2 1,9 0,0	nm nm nm	N N N R	1276 1 1 1 1276 1	nm	4,3 65,7 4,2 1,9 0,0	nm nm nm nm nm	13 11 29 29 1000
	dZresoluti	0	nm	0,3	nm	R	1		0,3	nm	1000
							Uc:		66,2	nm	
							U(k=2)		132	nm	
							veff:		11		
Specimen 686sg,	Quantity Xi	₹vk Estimate xi		uncertainty u(xi)		distribution	sensitivity coefficient c		uncertainty contribution ui()		degrees of freedom <i>v</i> i
	C Rvk(meas) dnoise	1 ; 3121 0	nm nm	0,003 89,3 4,6	nm nm	N N N	3121 1 1	nm	10,4 89,3 4,6	nm nm nm	13 11 29
	dZalign dpl	0	nm	0,0	nm	R	3121	nm	0,0	nm	1000
	dZresoluti	0	nm	0,3	nm	R	1		0,3	nm	1000
							Uc:		90,3	nm	
							U(k=2)		181	nm	
							veff:		11		
Specimen 686sg,	measurant I	Mr1									
	Xi	⊨stimate xi		uncertainty u(xi)		distribution	sensitivity coefficient c		uncertainty contribution ui()		degrees of freedom vi
	RMr1(mea dRk	Estimate xi 7	%	uncertainty u(xi) 0,6 0,5	%	distribution N N	sensitivity coefficient c 1 1		uncertainty contribution ui() 0,6 0,5	%	degrees of freedom vi 11
	RMr1(mea dRk	Estimate xi 7 0	%	uncertainty u(xi) 0,6 0,5	%	distribution	sensitivity coefficient c 1 1		uncertainty contribution ui() 0,6 0,5	%	degrees of freedom vi 11 12
	RMr1 (mea dRk	Estimate xi 0 7	%	uncertainty u(xi) 0,6 0,5	%	distribution N N	sensitivity coefficient c 1 1 1 Uc:		uncertainty contribution ui() 0,6 0,5 0,5	%	degrees of freedom vi 11 12
	RMr1(mea dRk	Listimate xi	%	uncertainty u(xi) 0,6 0,5	%	distribution N N	sensitivity coefficient c 1 1 1 Uc: U(k=2)		uncertainty contribution 0,6 0,5 0,8 0,8 1,6	%	degrees of freedom vi
	RMr1 (mea dRk	Estimate xi	%	Uncertainty u(xi) 0,6 0,5	%	distribution N N	sensitivity coefficient c 1 1 Uc: U(k=2) veff:		uncertainty contribution 0,6 0,5 0,8 0,8 1,6 21	%	degrees of freedom vi 11 12
Specimen 686sg,	measurant [Lestimate xi 0 7 0	%	uncertainty u(xi) 0,6 0,5	%	distribution N N	sensitivity coefficient c 1 1 Uc: U(k=2) veff:		uncertainty contribution 0,6 0,5 0,5 0,8 1,6 2,1	%	degrees of freedom vi
Specimen 686sg,	measurant f Quantity Xi	Estimate xi 0 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	%	uncertainty u(xi) 0,6 0,5 uncertainty u(xi)	%	distribution	sensitivity coefficient c 1 1 1 1 Uc: U(k=2) veff: sensitivity coefficient c		uncertainty contribution 0,6 0,5 0,5 0,5 0,5 0,5 0,5 0,5 0,5 0,5 0,5	%	degrees of freedom vi
Specimen 6865sg.	RMr1 (mea dRk	Estimate xi 7 0 2 2 2 2 2 2 2 2 2 2 2 2 0	% % % % % %	uncertainty u(xi) 0,6 0,5 0,5 uncertainty u(xi) 0,5 0,5	%	distribution N N N A A A A A A A A A A A A A A A A	sensitivity coefficient c 1 1 1 1 1 Uc: U(k=2) veff: veff: c c 1 1 1		uncertainty contribution 0,6 0,5 0,5 0,5 0,5 0,5 0,5	% % % % % % % % % % % % % % % % % % % %	degrees of freedom vi
Specimen 606sg,	RMr1(mea dRk dRk understand understand Quantity Xi RMr2(mea dRk	Estimate xi Mr2 Estimate xi 92 0	% % % % % % % %	uncertainty u(xi) 0,6 0,5 	%	distribution N N distribution	sensitivity coefficient c 1 1 1 1 Uc: U(k=2) veff: c veff: c 1 1 1 1 Uc: Uc:		uncertainty contribution 0,6 0,5 0,5 21 0,8 21 21 21 21 21 0,5 0,5 0,5 0,5	% % % %	degrees of freedom vi
Specimen 686sg,	RMr1 (mea dRk dRk	Estimate xi 7 0 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	%	uncertainty u(xi) 0,6 0,5 0,5 	%	distribution N N A A A A A A A A A A A A A A A A A	sensitivity coefficient c 1 1 1 1 1 Uc: U(k=2) Veff: c efficient c 1 1 1 1 1 Uc: U(k=2)		uncertainty contribution 0,6 0,5 0,5 0,5 21 uncertainty contribution ui() 0,5 0,5 0,5 0,5	% % % % % % % % % % % % % % % % % % % %	degrees of freedom vi
	RMr1(mea dRk dRk understand under	Lestimate xi Ar2 Estimate xi Ar2 O	% % 	uncertainty u(xi) 0,6 0,5 0,5 0,5 0,5 0,5 0,5	% % % % %	distribution N N O O O O O O O O O O O O O O O O O	sensitivity coefficient c 1 1 1 1 Uc: U(k=2) veff: c eff: c 1 1 1 1 Uc: U(k=2) veff:		uncertainty contribution 0,6 0,5 0,5 0,5 21 0,7 0,5 0,5 0,5 0,5 0,5 0,5 0,5 0,5 0,5 0,5	% % % % % % % % % % % % % % % %	degrees of freedom vi 11 12 degrees of freedom vi 11 12

Image: section of the section of t												
Refress Refress Construct Refress Construct Refress Construct Constru		Quantity Xi	Estimate xi		uncertainty u(xi)		distribution	sensitivity coefficient c		uncertainty contribution ui()		degrees of freedom <i>v</i> i
Contrast												
adde No N 1 42 mm 33 42 dign add 0 nm 1,5 mm N 1 15 mm 100 add 0 nm 0,0 R 155 rm 0,0 rm 100 adde 0 nm 0,0 R 155 rm 0,0 rm 100 adde 0 nm 0,0 R 100 55 rm 00 rm 100 adde 0 nm 0,0 rm 0,0 rm 0,0 rm 0,0 rm 0,0 rm 100 adde 0 nm 0,0 rm 0,0 rm 0,0 rm 0,0 rm 100 adde 0 nm 0,0 rm 0,0 rm 0,0 rm 0,0 rm 100 yet 0 nm 0,0 rm 0,0 rm 100 0,0 rm 100 yet 0 nm 1,0 rm 0,0 rm 100 0,0 rm 100 yet 0 nm 1,0 rm 10,0 rm 100 0,0 rm 100 yet 0 nm 1,0 rm 10,0 rm <td></td> <td>C Ra(meas)</td> <td>1515</td> <td>nm</td> <td>0,003</td> <td>nm</td> <td>N</td> <td>1515</td> <td>nm</td> <td>5,1</td> <td>nm</td> <td>13</td>		C Ra(meas)	1515	nm	0,003	nm	N	1515	nm	5,1	nm	13
diaf 0 nm 1 i m 1 i m 1 i m 1 i m 1 i m 1 i m 1 i m 1 m		dnoise	0	nm	4,0	nm	N	1		4,0	nm	39
Calego O Co O Co R 105 mm RO D mm D		dref	0	nm	1,6	nm	N	1		1,6	nm	39
app b c		dZalign	0		0,0		R	1515	nm	0,0	nm	1000
Specim Appendix		dpi dZresolutir		nm nm	5,8	nm nm	R	1		5,8	nm nm	1000
Specime SDB Set of the												
Appel Appel <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>Uc:</td><td></td><td>8,9</td><td>nm</td><td></td></th<>								Uc:		8,9	nm	
Spacime CD								II(k=2)		18	nm	
Specime Specim Specime Specime								0(1(-2)		10		
Specime Control Contro Control Control								veff:		108		
Specime Data by book watches in the second of												
Spectrome S34g. meaner law in the sensitivity in the sensintere sensitivity in the sensitivity in the sensitivi		_										
No. Quantity Estimate xi Constraint (x) Constraint (x) <thconstraint< th=""> Constraint Con</thconstraint<>	Specimen 633g, n	neasurant R	z									
C 1 0003 N 7464 n 244 n 173 n 1 173 n 63 R1 0005 0 0 0 N 1 173 m 63 m 33		Quantity Xi	Estimate xi		uncertainty u(xi)		distribution	sensitivity coefficient c		uncertainty contribution ui()		degrees of freedom vi
C C 1 0.003 N 7444 nm 24.24 nm 173.9 mm 173.9												
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		C	1		0,003		N	7464	nm	24,9	nm	13
Specime Source Soure		dpoise	/464	nm nm	1/3,9	nm	N	1		1/3,9	nm nm	55
dziajo opi d/ d/ dzesoluti 0 m R 746a m 1 0.0 m 100 m		dref	U 	nm	12.7	nm	N	1		12.7	nm	39
dpl 0 mm 5,8 m R 1 5,8 m R 1 0,3 m 1000 dzesolut 0 nm 0,3 nm 1000		dZalign	0		0,0		R	7464	nm	0,0	nm	1000
Specimen 0 nm 0,3 nm R 1 0,3 nm 1000 Specimen 0 nm 0,3 nm R 1 0,3 nm 1000 Specimen 0 nm 0 nm 0,3 nm R 1 0,3 nm 1000 Specimen 0 nm 0 nm 0 nm 0,0 nm 1 <t< td=""><td></td><td>dpl</td><td>0</td><td>nm</td><td>5,8</td><td>nm</td><td>R</td><td>1</td><td></td><td>5,8</td><td>nm</td><td>1000</td></t<>		dpl	0	nm	5,8	nm	R	1		5,8	nm	1000
Image: state in the state		dZresolutio	(0	nm	0,3	nm	R	1		0,3	nm	1000
Normal Participant Normal Partipant Normal Participant Normal Par								Uc:		178.8	nm	
Image: book of the section												
image: sector of 31g, sector of 31								U(k=2)		358	nm	
Image: bold bit is an image: bold								uoff		66		
Specime 633 g, me surrant Rmax second of the second												
Specimen 633g, measurant Rk Quantity Estimate uncertainty uncertainty uncertainty distribution sensitivity uncertainty degrees of Xi Xi Xi xi uncertainty uncertainty uncertainty c uncertainty uncerta		Quantity Xi	max Estimate xi		uncertainty u(xi)		distribution	sensitivity coefficient c		uncertainty contribution		degrees of freedom vi
Rk(meas) 446/ nm 25/ nm N 1 25/ nm 1 25/ nm 1 dnoise 0 nm 13/ nm N 1 13/ nm 33 dref 0 nm 50 nm N 1 13/ nm 33 dzign 0 0.0 R 4487 nm 0.0 nm 1000 dpl 0 nm 5,8 nm R 1 5,8 nm 1000 dZresoluti 0 nm 0,3 nm R 1 0,3 nm 1000 Uc: 33,5 nm 1 33,5 nm 1 1 1 1 Uc: 0 nm 0.0 0 nm 0.0 0 0 1 0.0 1 Uc: 33,5 nm 0 nm 0 nm 0.0 0 0 0 0 0 0 0 Uc: 0 nm 0.0 0 nm 0.0 0 0 0 0 0 0 Uc: 0 nm 0.0 0 nm 0.0 0 0 0 0 0 0		Rmax(me: dnoise dref dZalign dpl dZresolutio	1 8905 0 0 0 0 0 0	nm nm nm nm	0,003 121,1 34,5 16,8 0,0 5,8 0,3	nm nm nm nm nm	N N N R R R	8905 1 1 8905 1 1 Uc: U(k=2) veff:	nm 	297,7 121,1 34,5 16,8 0,0 5,8 0,3 130,6 261	nm nm nm nm nm nm nm	13 11 35 30 1000 1000
unoise U nm 13,4 nm N 1 13,4 nm 33 dref 0 nm 5,0 nm N 1 5,0 nm 33 dZalign 0 0,0 R 4487 nm 0,0 nm 100 dpl 0 nm 5,8 nm R 1 5,8 nm 100 dZresolutiv 0 nm 0,3 nm R 1 0,3 nm 100 Uc: 33,5 nm Uc: 33,5 nm 1 0,7 nm Uc: 1 0,7 nm 1 0,7 nm 100	Specimen 633g, n	Rmax(mei dnoise dref dZalign dJZresolutio dZresolutio neasurant R Quantity Xi	1 8905 0 0 0 0 0 0 0 0 k Estimate xi 1	nm nm nm nm nm	0,003 121,1 34,5 16,8 0,0 5,8 0,3	nm nm nm nm nm nm	N N N N R R Image: State of the state o	8905 1 1 8905 1 Uc: U(k=2) veff: sensitivity coefficient c 4487	nm	29,7 121,1 34,5 16,8 0,0 5,8 0,3 130,6 261 15 15 uncertainty contribution ui()	nm nm nm nm nm nm nm nm	1: 1 3: 1000 1000 1000
dZalign 0 0,0 R 4487 nm 0,0 nm 1000 dpl 0 nm 5,8 nm R 1 5,8 nm 1000 dZresolutic 0 nm 0,3 nm R 1 0,3 nm 1000 Uc: 33,5 nm 1 0,3 nm 1 0,3 nm 1000 Uc: 33,5 nm 1 0,3 nm 1 0,3 nm 1000	Specimen 633g, n	Rmax(mei dnoise dref dZalign dpl dZresolutii	1 8905 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	nm nm nm nm nm	0,003 121,1 34,5 16,8 0,0 5,8 0,3 0,3	nm nm nm nm nm nm nm nm	N N N N R R Image: Second Sec	8905 1 1 8905 1 Uc: U(k=2) veff: sensitivity coefficient c 4487 1	nm	29,7 121,1 34,5 16,8 0,0 5,8 0,3 130,6 261 15 15 15 15 15 15 15 15 15,0 25,7	nm nm nm nm nm nm nm nm nm nm nm nm nm	11: 11: 38: 33: 1000 1000 1000 1000
dql 0 nm 58 nm R 1 58 nm 100 dZresolutic 0 nm 0,3 nm R 1 0,3 nm 100 U(k=2) 67 nm	Specimen 633g, n	Rmax(mei dnoise dref dZalign dpl dZresolutii	1 8905 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	nm nm nm nm nm nm nm nm nm nm	0,003 121,1 34,5 16,8 0,0 5,8 0,3 0,3 0,3 0,0 0,0 0,0 0,003 25,7 13,4 5,5	nm nm nm nm nm nm nm nm nm	N N N N R R R R C C C C C C C C C C C C	8905 1 1 1 8905 1 1 Uc: U(k=2) veff: coefficient c 4487 1 1	nm nm nm nm	uncertainty contribution ui) 150 297, 121,1 34,5 16,8 0,0 5,8 0,3 130,6 261 15 15 15 261 15 15 261 15 15 261 15 15 267, 13,4 4 5,7 267, 13,4 5,7 267, 13,4 5,7 267, 13,4 5,7 267, 13,4 5,7 267, 10,8 267, 10,8 267, 10,8 10,8 10,8 10,8 10,8 10,8 10,8 10,	nm nm nm nm nm nm nm nm nm nm nm	1: 1 3: 3: 1000 1000 1000 1000 1000 1000
dZresolutio 0 nm 0,3 nm R 1 0,3 nm 1000 Uc: 33,5 nm Uc: 33,5 nm U(k=2) 67 nm	Specimen 633g, n	Rmax(mei dnoise dref dZalign dpl dZresolutii neasurant R Quantity Xi C C Rk(meas) dnoise dref dZalign	1 8905 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	nm nm nm nm nm nm nm nm nm	0,003 121,1 34,5 16,8 0,0 5,8 0,3 0,3 0,3 0,3 0,0 3 0,0 3 25,7 13,4 5,0 0,0 0,0 0,0 0,0 13,4 0,0 0,0 0,0 13,4 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0	nm nm nm nm nm nm nm nm nm nm nm	N N N N R R R R I R I I I I I I I I I I	8905 1 1 8905 1 1 Uc: U(k=2) veff: veff: 4487 1 1 1 4487 1 1 4487	nm nm nm nm nm	uncertainty contribution ui) 150 261 130,6 130,6 130,6 150 15 15 15 15 15 15 15 15 15 15 15 15 15	nm nm nm nm nm nm nm nm nm nm nm nm	11: 11: 33: 1000 100
Image: Constraint of the second se	Specimen 633g, n	Rmax(mei dnoise dref dZalign dpl dZresolutii Quantity Xi C C Rk(meas) dnoise dref dZalign dpl	1 8905 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	nm nm nm nm nm nm nm nm nm nm	0,003 121,1 34,5 16,8 0,0 5,8 0,3 0,3 0,3 0,0 0,0 0,003 25,7 13,4 5,0 0,00 5,8	nm nm nm nm nm nm nm nm nm nm nm	N N N N R R Image: Second Sec	8905 1 1 1 8905 1 1 Uc: U(k=2) veff: veff: 4487 1 1 4487 1 1 4487 1 1	nm nm nm nm nm	297,7 121,1 34,5 16,8 0,0 5,8 0,3 130,6 261 15 15 15 15 15 15 15 15 15 1	nm nm nm nm nm nm nm nm nm nm nm nm nm n	1000 1000 1000 1000 1000 1000 1000 100
0 0	Specimen 633g, n	Rmax(mei dnoise dref dZalign dJ dZresolutii Quantity Xi C C Rk(meas) dnoise dref dZalign dJ dZresolutic	1 8905 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	nm nm nm nm nm nm nm nm nm nm nm	0,003 121,1 34,5 16,8 0,0 5,8 0,3 0,3 0,3 0,0 5,8 0,0 3 25,7 13,4 5,0 0,003 25,7 13,4 5,0 0,0,0 8 0,0,0 13,4 13,4 13,4 13,4 13,4 13,4 13,4 13,4	nm nm nm nm nm nm nm nm nm nm nm	N N N N R R Image: Second Sec	8905 1 1 1 8905 1 1 Uc: U(k=2) veff: veff: 4487 1 1 4487 1 1 4487 1 1	nm	297,7 121,1 34,5 16,8 0,0 5,8 0,3 130,6 261 15 15 15 15 15 15 15 15 15 1	nm nm nm nm nm nm nm nm nm nm nm nm nm n	11: 11: 33: 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000
U(k=2) 67 nm	Specimen 633g, n	Rmax(mei droise dref dZalign dJ dZresolutii Quantity Xi C C Rk(meas) dnoise dref dZalign dJ dZresolutio	1 8905 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	nm nm nm nm nm nm nm nm nm nm nm	0,003 121,1 34,5 16,8 0,0 5,8 0,3 0,3 0,3 0,0 5,8 0,0 0,003 25,7 13,4 5,0 0,0,0 5,8 0,3	nm nm nm nm nm nm nm nm nm nm nm	N N N N R R Image: Second Sec	8905 1 1 1 8905 1 1 Uc: U(k=2) veff: veff: 4487 1 4487 1 1 4487 1 1 1 1 1 1 1 1 1 1 1 1 1	nm	297,7 121,1 34,5 16,8 0,0 5,8 0,3 130,6 261 15 15 15 15 15 15 15 15 15 1	nm nm nm nm nm nm nm nm nm nm nm nm nm n	degrees of freedom vi 13 3 3 3 3 3 3 3 3 3 1000 1000 1000 10
	Specimen 633g, n	Rmax(mei droise dref dZalign dpl dZresolutii Quantity Xi C C Rk(meas) dnoise dref dZalign dpl dZresolutio	k Estimate xi 4487 0 0 0 0 0 0 0 0 0 0 0 0 0	nm nm nm nm nm nm nm nm nm nm nm	0,003 121,1 34,5 16,8 0,0 5,8 0,3 0,3 0,3 0,0 0,0 0,003 25,7 13,4 5,0 0,003 25,7 13,4 5,0 0,0,0 5,8 0,3	nm nm nm nm nm nm nm nm nm nm nm nm	N N N N R R Image: Second Sec	8905 1 1 1 8905 1 1 Uc: U(k=2) veff: veff: 4487 1 1 4487 1 1 Uc: Uc: 1 1 1 1 1 1 1 1 1 1 1 1 1	nm	297,7 121,1 34,5 16,8 0,0 5,8 0,3 130,6 261 15 15 15 15 15 15 15 15 15 1	nm nm nm nm nm nm nm nm nm nm nm nm nm n	11: 11: 33: 1000 1000 1000 1000 1000 1000 1000 1000 1000
	Specimen 633g, n	Rmax(mei droise dref dZalign dJ dZresolutin a	k Estimate xi 4487 0 0 0 0 0 0 0 0 0 0 0 0 0	nm nm nm nm nm nm nm nm nm nm nm	0,003 121,1 34,5 16,8 0,0 5,8 0,3 0,3 0,3 0,0 0,0 25,7 13,4 5,0 0,003 26,7 13,4 5,0 0,0,0 5,8 0,3	nm nm nm nm nm nm nm nm nm nm nm nm nm	N N N N R R Image: Second Sec	8905 1 1 1 8905 1 1 Uc: U(k=2) veff: veff: 4487 1 1 4487 1 1 Uc: U(k=2) U(k=2)	nm	297,7 121,1 34,5 16,8 0,0 5,8 0,3 130,6 261 261 261 15 261 15 15 261 15 15 261 15 261 15 261 15 261 15 261 15 261 261 263 263 263 263 263 263 263 263 263 263	nm nm nm nm nm nm nm nm nm nm nm nm nm n	11: 11: 33: 1000 1000 1000 1000 1000 1000 1000 1000 1000

Image: state in the state												
C C		Quantity Xi	Estimate xi		uncertainty u(xi)		distribution	sensitivity coefficient c		uncertainty contribution ui()		degrees of freedom <i>v</i> i
Second O </td <td></td> <td>C Rpk(meas dnoise</td> <td>1 732 0</td> <td>nm nm</td> <td>0,003 14,3 4,5</td> <td>nm nm</td> <td>N N N</td> <td>732</td> <td>nm</td> <td>2,4 14,3 4,5</td> <td>nm nm nm</td> <td>13 11 39</td>		C Rpk(meas dnoise	1 732 0	nm nm	0,003 14,3 4,5	nm nm	N N N	732	nm	2,4 14,3 4,5	nm nm nm	13 11 39
Image: state sta		dZalign dpl dZresolutiv		nm nm	0,0 5,8 0,3	nm nm	R R R	732	nm	0,0 5,8 0,3	nm nm nm	1000 1000 1000
Specime Display								Uc:		16,4	nm	
Image: state in the state								U(k=2)		33	nm	
Specime Data bit is and interval if it is								veff:		19		
Specimen 633e. Bestinate N Constrainty site Constrainty (s) Constrainty (s												
Specimes Circle Circle <td>Specimen 633g, n</td> <td>Quantity Xi</td> <td>vk Estimate xi</td> <td></td> <td>uncertainty u(xi)</td> <td></td> <td>distribution</td> <td>sensitivity coefficient c</td> <td></td> <td>uncertainty contribution ui()</td> <td></td> <td>degrees of freedom <i>v</i>i</td>	Specimen 633g, n	Quantity Xi	vk Estimate xi		uncertainty u(xi)		distribution	sensitivity coefficient c		uncertainty contribution ui()		degrees of freedom <i>v</i> i
Specime Sign N 1 2.0 N 1000 33 <th< td=""><td></td><td>C Rvk(meas)</td><td>1</td><td>nm</td><td>0,003</td><td>nm</td><td>N N</td><td>2483</td><td>nm</td><td>8,3</td><td>nm nm</td><td>13</td></th<>		C Rvk(meas)	1	nm	0,003	nm	N N	2483	nm	8,3	nm nm	13
Adalan 0 0 00 0 00 <		dref	0	nm	2,1	nm	N	1		2,1	nm	39
Specifier 0 m 0,3 m R 1 0,3 m 1000 Image: Specifier Image: Specifier <td< td=""><td></td><td>dZalign dpl</td><td>0</td><td>nm</td><td>5,8</td><td>nm</td><td>R</td><td>2483</td><td>nm</td><td>5,8</td><td>nm nm</td><td>1000</td></td<>		dZalign dpl	0	nm	5,8	nm	R	2483	nm	5,8	nm nm	1000
Image: state in the state		dZresoluti	: 0	nm	0,3	nm	R	1		0,3	nm	1000
Note Sector								Uc:		27,2	nm	
Image: state strate								U(k=2)		54	nm	
Image: state in the state								veff:		16		
Specime 633g, me asurant M2 uncertainty uncertainty </th <th>Specimen 633g, n Specimen 63g, n Specimen 63g</th> <th>RMr1(mea dRk</th> <th>r1 Estimate xi 5,8 0,0</th> <th>%</th> <th>uncertainty u(xi) 0,1 0,2</th> <th>%</th> <th>distribution N N</th> <th>sensitivity coefficient c 1 1 1 Uc:</th> <th></th> <th>uncertainty contribution ui() 0,1 0,2</th> <th>%</th> <th>degrees of freedom <i>v</i>i</th>	Specimen 633g, n Specimen 63g, n Specimen 63g	RMr1(mea dRk	r1 Estimate xi 5,8 0,0	%	uncertainty u(xi) 0,1 0,2	%	distribution N N	sensitivity coefficient c 1 1 1 Uc:		uncertainty contribution ui() 0,1 0,2	%	degrees of freedom <i>v</i> i
RM/2(mea 82 % 0,1 % N 1 0,1 % 11 dRk 0 % 0,2 % N 1 0,2 % 28 dRk 0 % 0,2 % N 1 0,2 % 28 dRk 0 % 0,2 % N 1 0,2 % 28 dRk 0 % 0,2 % N 1 0,2 % 28 dRk 0 % 0,2 % 0,2 % 0,2 % 28 dRk 0 % 0,2 % 0,2 % 0,2 % 28 dRk 0 % 0,2 % % 0,2 % 1 1 0,2 % 1								U(k=2) veff:		0,5	%	
Uc: 0,2 % Uk=2 0,2 %	Specimen 633g, n	Quantity Xi	r2 Estimate xi		uncertainty u(xi)		distribution	U(k=2) veff: sensitivity coefficient c		0,5	%	degrees of freedom <i>v</i> i
U(k=2) 0,5 %	Specimen 633g, n	RMr2(mea dRk	r2 Estimate xi 82 0	%	uncertainty u(xi) 0,1 0,2	%	distribution N N	U(k=2) veff: sensitivity coefficient c 1 1		0,5 39 uncertainty contribution ui() 0,1 0,2	%	degrees of freedom <i>v</i> i
boff 20	Specimen 633g, n	RMr2(mea dRk	r2 Estimate xi 82 0	%	uncertainty u(xi) 0,1 0,2	%	distribution N N	U(k=2) veff: sensitivity coefficient c 1 1 Uc:		0,5 39 uncertainty contribution ui() 0,1 0,2 0,2	%	degrees of freedom vi 11 28
	Specimen 633g, n	easurant M Quantity Xi RMr2(mea dRk	r2 Estimate xi 82 0	% % %	uncertainty u(xi) 0,1 0,2	% % %	distribution N N	U(k=2) veff: sensitivity coefficient c 1 1 Uc: U(k=2)		0,5 39 uncertainty contribution ui() 0,1 0,2 0,2	% % %	degrees of freedom vi

		Quantity Xi	Estimate xi		uncertainty u(xi)		distribution	sensitivity coefficient c		uncertainty contribution ui()		degrees of freedom <i>v</i> i
		0	4		0.000		N	450		0.5		10
		C Ra(meas)	150	nm	22	nm	N	150	nm	22	nm nm	13
		dnoise	0	nm	4,0	nm	N	1		4,0	nm	39
		dref	0	nm	1,6	nm	N	1		1,6	nm	39
		dZalign del	0		0,0		R	150	nm	0,0	nm	1000
		dZresoluti	0	nm	0,3	nm	R	1		0,3	nm	1000
								Uc:		7,5	nm	
								U(k=2)		15	nm	
								veff:		382		
Specimen	n 629f, me	asurant Rz										
		Quantity Xi	Estimate xi		uncertainty u(xi)		distribution	sensitivity coefficient c		uncertainty contribution ui()		degrees of freedom <i>v</i> i
		C	1250		0,003		N	1258	nm	4,2	nm	13
		Rz(meas)	1258	nm	26,1	nm	N	1		26,1	nm	39
		dref	0	nm	12,7	nm	N	1		12,7	nm	39
		dZalign	0		0,0		R	1258	nm	0,0	nm	1000
		dpl	0	nm	5,8	nm	R	1		5,8	nm	1000
		dZresolutii	(U	nm	U,3	nm	R	1		U,3	nm	1000
								Uc:		42,4	nm	
								U(k=2)		85	nm	_
								veff		96		_
Specimen	1 629f, me	asurant Rr Quantity Xi	nax Estimate xi		uncertainty u(xi)		distribution	sensitivity coefficient c		uncertainty contribution ui()		degrees of freedom vi
Specimen	ı 629f, me	asurant Rr Quantity Xi	nax Estimate xi		uncertainty u(xi)		distribution	sensitivity coefficient c		uncertainty contribution ui()		degrees of freedom <i>v</i> i
Specimen	1 629f, me	Quantity Xi	nax Estimate xi		uncertainty u(xi)		distribution	sensitivity coefficient c		uncertainty contribution ui()		degrees of freedom vi
Specimen	1 629f, me	Quantity Xi	nax Estimate xi		uncertainty u(xi) 0,003		distribution	sensitivity coefficient c 1440	nm	uncertainty contribution ui() 4,8	nm	degrees of freedom vi
Specimen	n 629f, me	Quantity Xi C Rmax(me: dnoise	nax Estimate xi 1 1440	nm	uncertainty u(xi) 0,003 33,5 34,5	nm	distribution N N	sensitivity coefficient c 1440 1	nm	uncertainty contribution ui() 4,8 33,5 34,5	nm nm nm	degrees of freedom vi 13 7 39
Specimen	n 629f, me	Quantity Xi C Rmax(mea dnoise dref	nax Estimate xi 1440 0 0	nm nm nm	uncertainty u(xi) 0,003 33,5 34,5 16,8	nm nm nm	distribution N N N N	sensitivity coefficient c 1440 1 1	nm	uncertainty contribution ui() 4,8 33,5 34,5 16,8	nm nm nm nm	degrees of freedom vi 13 7 39 39 39
Specimen	n 629f, me	Quantity Xi C Rmax(mea dnoise dref dZalign	nax Estimate xi 1440 0 0 0	nm nm nm	uncertainty u(xi) 0,003 33,5 34,5 16,8 0,0	nm nm nm	distribution N N N N R	sensitivity coefficient c 1440 1 1 1 1440	nm	uncertainty contribution ui() 4,8 33,5 34,5 16,8 0,0	nm nm nm nm nm	degrees of freedom vi 13 7 39 39 1000
Specimen	1 629f, me	C Rmax(mea droise dref dZalign dpl	nax Estimate xi 1440 0 0 0	nm nm nm nm	uncertainty u(xi) 0,003 33,5 34,5 16,8 0,0 5,8	nm nm nm	distribution N N N N R R -	sensitivity coefficient c 1440 1 1 1 1 440 1 1	nm	uncertainty contribution ui() 4,8 33,5 34,5 16,8 0,0 5,8	nm nm nm nm nm nm	degrees of freedom vi 13 7 39 39 39 1000 1000
Specimen	1 629f, me	C Quantity Xi C Rmax(me: dnoise dref dZalign dpl dZresoluti	nax Estimate xi 1440 0 0 0 0 0	nm nm nm nm nm	uncertainty u(xi) 0,003 33,5 34,5 34,5 16,8 0,0 5,8 0,3	nm nm nm nm nm	distribution N N N R R R R	sensitivity coefficient c 1440 1 1 1 1440 1 1 1440 1 1	nm	uncertainty contribution ui() 4,8 33,5 34,5 34,5 16,8 0,0 5,8 0,3	nm nm nm nm nm nm nm	degrees of freedom vi 13 7 39 39 39 1000 1000
Specimer 	1 629f, me	C Rmax(mea dnoise dref dZalign dpl dZresolutiu	nax Estimate xi 1440 0 0 0 0 0 0	nm nm nm nm	uncertainty u(xi) 0,003 33,5 34,5 16,8 0,0 5,8 0,3	nm nm nm nm nm	distribution N N N R R R R	sensitivity coefficient c 1440 1 1 1 1440 1 1 1 440 1 1 1 1 440 2 1 1	nm	uncertainty contribution ui() 4,8 33,5 34,5 16,8 0,0 5,8 0,3 51,5	nm nm nm nm nm nm nm	degrees of freedom vi 13 7 39 39 1000 1000 1000
Specimer	1 629f, me	C Rmax(mea dnoise dref dZalign dpl dZresolutio	nax Estimate xi 1440 0 0 0 0 0	nm nm nm nm	uncertainty u(xi) 0,003 33,5 34,5 16,8 0,0 5,8 0,0 0,3	nm nm nm nm	distribution N N R R R	sensitivity coefficient c 1440 1 1 1440 1 1440 1 1 1 4 0 1 1 1 0	nm	uncertainty contribution ui() 4,8 33,5 34,5 16,8 0,0 5,8 0,3 51,5	nm nm nm nm nm nm nm	degrees of freedom vi 13 7 39 39 1000 1000 1000
Specimer	1 629f, me	Quantity Xi C Rmax(me: dnoise dref dZalign dzl dzl esolutio	nax Estimate xi 1440 0 0 0 0	nm nm nm nm	uncertainty u(xi) 0,003 33,5 34,5 16,8 0,0 5,8 0,3	nm nm nm nm nm	distribution N N R R R	sensitivity coefficient c 1440 1 1 1440 1 1 440 1 0 (k=2)	nm	uncertainty contribution ui() 4,8 33,5 34,5 16,8 0,0 5,8 0,0 5,1,5 51,5 103	nm nm nm nm nm nm nm nm	degrees of freedom vi 13 7 39 39 1000 1000
Specimer	1 629f, me	asurant Rr Quantity Xi C Rmax(mei dnoise dref dZalign dpl dZresolutii	nax Estimate xi 1440 0 0 0 0	nm nm nm nm	uncertainty u(xi) 0,003 33,5 34,5 16,8 0,0 5,8 0,3	nm nm nm nm nm	distribution N N R R R	sensitivity coefficient c 1440 1 1 1440 1 1 440 1 1 1 440 0 (k=2)	nm	uncertainty contribution ui() 4,8 33,5 34,5 16,8 0,0 5,8 0,3 51,5 51,5	nm nm nm nm nm nm nm	degrees of freedom vi 13 7 39 1000 1000
Specimer	1 629f, me	asurant Rr Quantity Xi C Rmax(me: dnoise dref dzalign dpl dZresoluti	nax Estimate xi 1440 0 0 0 0	nm nm nm nm	uncertainty u(xi) 0,003 33,5 34,5 16,8 0,0 5,8 0,3	nm nm nm nm	distribution N N N R R R	sensitivity coefficient c 1440 1 1 1440 1 1 440 1 1 440 0 1 1 440 0 1 442 0 1 2 4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	nm	uncertainty contribution ui() 4,8 33,6 34,5 16,8 0,0 58,0 0,3 51,5 103 103	nm nm nm nm nm nm nm nm	degrees of freedom vi 13 7 39 39 39 1000 1000
Specimer	1 629f, me	Quantity Quantity Xi C Rmax(me: dnoise dref dZalign dpl dZresolutio	nax Estimate xi 1440 0 0 0 0 0	nm nm nm nm	uncertainty u(xi) 0,003 33,5 34,5 16,8 0,0 5,8 0,3	nm nm nm nm nm	distribution N N N R R R R	sensitivity coefficient c 1440 1 1 1 440 1 1 1 440 1 1 0 (k=2) veff:	nm	uncertainty contribution ui() 4,8 33,5 34,5 16,8 0,0 5,8 0,3 51,5 103 32	nm nm nm nm nm nm nm	degrees of freedom vi 13 7 39 1000 1000 1000
Specimer	1 629f, me	asurant Rr Quantity Xi C Rmax(me: dnoise dref dzalign dpl dZresolutio	nax Estimate xi 1440 0 0 0 0 0 0	nm nm nm nm	uncertainty u(xi) 0,003 33,5 34,5 16,8 0,0 5,8 0,3	nm nm nm nm nm	distribution N N R R R	sensitivity coefficient c 1440 1 1 1440 1 1 1 Uc: U(k=2) veff:	nm	uncertainty contribution ui() 4,8 33,5 34,5 16,8 0,0 58,0,0 51,5 51,5 103 32	nm nm nm nm nm nm nm nm	degrees of freedom vi 13 7 39 39 1000 1000
Specimer	1 629f, me	asurant Rr Quantity Xi C Rmax(mei dnoise dref dZalign dpl dZresolutin dZresolutin Quantity Xi	Estimate xi 1440 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	nm nm nm nm	uncertainty u(xi) 0,003 33,5 34,5 16,8 0,0 5,8 0,3	nm nm nm nm nm nm	distribution N N R R R R distribution distribution	sensitivity coefficient c 1440 1 1 1440 1 1 Uc: U(k=2) veff: coefficient c	nm	uncertainty contribution ui() 4,8 33,5 34,5 16,8 0,0 51,5 51,5 103 32 32 uncertainty contribution ui()	nm nm nm nm nm nm nm	degrees of freedom vi 13 7 39 39 1000 1000 1000
Specimer	1 629f, me	asurant Rr Quantity Xi C Rmax(me: dnoise dref dZalign dpl dZresolutio	Estimate xi 1440 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	nm nm nm nm	uncertainty u(xi) 0,003 33,5 16,8 0,0 5,8 0,3 0,3 0,3	nm nm nm nm nm nm	distribution N N R R R R distribution distribution	sensitivity coefficient c 1440 1 1 1440 1 1 Uc: U(k=2) veff: c sensitivity coefficient c 463	nm	uncertainty contribution ui() 4,8 33,5 34,5 16,8 0,0 51,5 51,5 103 32 32 uncertainty contribution ui() 1,5	nm nm nm nm nm nm nm nm	degrees of freedom vi 13 7 39 39 1000 1000 1000
Specimer	1 629f, me	asurant Rr Quantity Xi C Rmax(me: dnoise dref dZalign dpl dZresolutin Zresolutin Quantity Xi	Estimate xi 1440 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	nm nm nm nm nm	uncertainty u(xi) 0,003 33,5 34,5 16,8 0,0 5,8 0,3 0,3 0,3 0,3 0,2 0,0 0,0 3 8,4 0,003 8,4	nm nm nm nm nm nm nm nm	distribution N N R R R R R I I I I I I I I I I I I I	sensitivity coefficient c 1440 1 1 1 440 1 1 1 440 1 1 1 40 2 463 463 1	nm	uncertainty contribution ui() 4,8 33,5 34,5 16,8 0,0 5,8 0,3 51,5 103 32 32 32 32 32 32 32 32 32 32 32 32 32	nm nm nm nm nm nm nm nm nm	degrees of freedom vi 39 39 1000 1000 1000 1000
Specimer	n 629f, me	asurant Rr Quantity Xi C Rmax(me: dnoise dref dZalign dpl dZresolutio dpl dZresolutio Quantity Xi C Rk(meas) dnoise	Estimate xi 1 1440 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	nm nm nm nm nm nm nm	uncertainty u(xi) 0,003 33,5 34,5 16,8 0,0 5,8 0,3 0,3 0,3 0,3 0,3 0,3 0,3 0,3 0,3 0,3	nm nm nm nm nm nm nm nm nm	distribution N N N R R R R G G G G G G G G G G G G G	sensitivity coefficient c 1440 1 1 1 1 440 1 1 Uc: U(k=2) veff: coefficient c 463 1 1	nm	uncertainty contribution ui() 4,8 33,5 34,5 16,8 0,0 58,8 0,3 51,5 103 32 32 32 32 32 32 32 32 32 32 32 32 32	nm nm nm nm nm nm nm nm nm nm nm	degrees of freedom vi 13 7 39 39 1000 1000 1000 1000
Specimer	1 629f, me	Asurant Rr Quantity Xi C Rmax(mea dnoise dref dZalign dpl dZresolutin dZresolutin dZresolutin C Rk(meas) dnoise dref	nax Estimate xi 1 (1440 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	nm nm nm nm nm nm nm nm nm nm	uncertainty u(xi) 0,003 33,5 16,8 0,0 5,8 0,3 0,3 0,3 0,3 0,3 0,3 0,0 0,003 8,4 13,4 13,4 5,0	nm nm nm nm nm nm nm nm nm nm nm	distribution N N N R R R R I I I I I I I I I I I I I	sensitivity coefficient c 1440 1 1 1440 1 1 440 1 1 440 veff: c veff: c	nm	uncertainty contribution ui() 4,8 33,6 34,5 16,8 0,0 51,5 103 32 103 103 103 103 103 103 103 103 103 103	nm nm nm nm nm nm nm nm nm nm nm nm	degrees of freedom vi 13 7 39 39 1000 1000 1000 1000
Specimer	1 629f, me	Asurant Rr Quantity Xi C Rmax(me: dnoise dref dZalign dpl dZresolutin dZresolutin dZresolutin C Rk(meas) dnoise dref dzalign dref dzalign dref dzalign dref dzalign dref dzalign dref dzalign dref dzalign dref dzalign dref dzalign dref dzalign dzesolutin Xi	Estimate xi 1440 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	nm nm nm nm nm nm nm	uncertainty u(xi) 0,003 33,5 16,8 0,0 5,8 0,3 0,3 0,3 0,3 0,3 0,3 0,3 0,3 0,3 0,3	nm nm nm nm nm nm nm nm	distribution N N N R R R R R distribution distribution N N N N N N N N N N N N N N N N N N N	sensitivity coefficient c 1440 1 1 1 1 1 440 1 1 Uc: U(k=2) veff: c efficient c 463 1 1 1 463	nm	uncertainty contribution ui() 4,8 33,5 34,5 16,8 0,0 51,5 103 32 32 32 32 32 32 32 32 32 32 32 32 32	nm nm nm nm nm nm nm nm nm nm nm nm nm	degrees of freedom vi 13 7 39 39 1000 1000 1000 1000 1000
Specimen	1 629f, me	asurant Rr Quantity Xi C Rmax(mei dnoise dref dZalign dpl dZresolutio Zresolutio Xi Quantity Xi C C Rk(meas) dnoise dref dZalign dpl dZresolutio	nax Estimate xi 1440 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	nm nm nm nm nm nm nm nm nm nm nm	uncertainty u(xi) 0,003 33,5 16,8 0,0 5,8 0,3 0,3 0,3 0,3 0,0 0,3 0,0 0,0 8,4 13,4 5,0 0,0 0,0 8,4 13,4 5,0 0,0 0,0 3 8,4 13,4 5,0 0,0 0,0 3 8,4 13,4 5,0 0,0 10,0 10,0 10,0 10,0 10,0 10,0 1	nm nm nm nm nm nm nm nm nm nm nm nm	distribution N N N R R R R R G G G G G G G G G G G G	sensitivity coefficient c 1440 1 1 1 440 1 1 1 Uc: U(k=2) veff: c veff: c 463 1 1 1 463 1 1	nm	uncertainty contribution ui() 4,8 33,5 34,5 16,8 0,0 51,5 51,5 103 32 32 32 32 32 32 32 32 32 32 32 32 32	nm nm nm nm nm nm nm nm nm nm nm nm nm n	degrees of freedom vi 13 7 39 39 1000 1000 1000 1000 1000 1000 100
Specimer	1 629f, me	Asurant Rr Quantity Xi C Rmax(mea dnoise dref dZalign dJ dZresolution Asurant Rk Quantity Xi C Rk(meas) dnoise dref dZalign dpl dZresolution	nax Estimate xi 1 (1440 0 0 0 0 0 0 0 0 0 0 0 0 2 2 2 2 2 2	nm nm nm nm nm nm nm nm nm nm	uncertainty u(xi) 0,003 33,5 16,8 0,0 5,8 0,0 0,3 0,3 0,3 0,0 0,0 0,003 8,4 13,4 13,4 5,0 0,0,0 8,4 0,3	nm nm nm nm nm nm nm nm nm nm nm nm	distribution N N N R R R R I I I I I I I I I I I I I	sensitivity coefficient c 1440 1 1 1 1 1 1 440 1 1 1 Uc: U(k=2) veff: c 463 1 1 1 1 463 1 1 1 1 0 1 2	nm	uncertainty contribution ui() 4,8 33,5 16,8 0,0 51,5 103 32 103 0,5 8,4 0,0 1,5 8,4 13,4 13,4 13,4 5,0 0,0,5 8,8 0,3 17,6	nm nm nm nm nm nm nm nm nm nm nm nm nm n	degrees of freedom vi 13 7 39 39 1000 1000 1000 1000 1000 1000 100
Specimer	1 629f, me	Asurant Rr Quantity Xi C Rmax(mei dnoise dref dZalign dpl dZresolutin C Rkarant Ri Quantity Xi C C Rk(meas) dnoise dref dZalign dJ dzresolutin	nax Estimate xi 1 1440 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	nm nm nm nm nm nm nm nm nm nm nm nm nm	uncertainty u(xi) 0,003 33,5 16,8 0,0 5,8 0,3 0,3 0,3 0,3 0,0 0,003 8,4 13,4 5,0 0,003 8,4 13,4 5,8 0,0 0,003	nm nm nm nm nm nm nm nm nm nm nm nm nm n	distribution N N R R R R G G G G G G G G G G G G G G	sensitivity coefficient c 1440 1 1 1 440 1 1 1 440 1 1 1 Uc: Veff: c veff: c 463 1 1 1 463 1 1 1 1 463	nm	uncertainty contribution ui() 4,8 33,5 34,5 16,8 0,0 5,8 0,0 51,5 103 32 32 32 32 32 32 32 32 32 32 32 32 32	nm nm nm nm nm nm nm nm nm nm nm nm nm n	degrees of freedom vi 39 39 1000 1000 1000 1000 1000 1000 100
Specimer Specimer	1 629f, me	asurant Rr Quantity Xi C Rmax(mei dnoise dref dZalign dpl dZresolutii C Rkay Quantity Xi C Rk(meas) dnoise dref dZalign dJ dzresolutii dziesolutii	nax Estimate xi 1 1440 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	nm nm nm nm nm nm nm nm nm nm nm nm nm	uncertainty u(xi) 0,003 33,5 34,5 16,8 0,0 5,8 0,3 0,3 0,3 0,0 0,003 8,4 13,4 5,0 0,003 8,4 13,4 5,8 0,0 0,003 8,4	nm nm nm nm nm nm nm nm nm nm nm nm nm n	distribution N N N R R R G G G G G G G G G G G G G G	sensitivity coefficient c 1440 1 1 1440 1 1 1440 1 1 1 Uc: U(k=2) veff: sensitivity coefficient c 463 1 1 1 463 1 1 1 Uc: U(k=2)	nm	uncertainty contribution ui() 4,8 33,5 34,5 16,8 0,0 5,8 0,3 51,5 103 32 32 32 32 32 32 32 32 32 32 32 32 32	nm nm nm nm nm nm nm nm nm nm nm nm nm n	degrees of freedom vi 39 39 1000 1000 1000 1000 1000 1000 100
Specimer	1 629f, me	Asurant Rr Quantity Xi C Rmax(met droise dref dZalign dZresolutio A Quantity Xi C C RK(meas) dnoise dref dZalign dZresolutio	Estimate xi 1 1440 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	nm nm nm nm nm nm nm nm nm nm nm nm	uncertainty u(xi) 0,003 33,5 16,8 0,0 5,8 0,3 0,3 0,3 0,3 0,3 0,0 0,003 8,4 13,4 5,0 0,003 8,4 13,4 5,0 0,0,0 0,003	nm nm nm nm nm nm nm nm nm nm nm nm nm n	distribution N N N R R R R G G G G G G G G G G G G G	sensitivity coefficient c 1440 1 1 1 1 440 1 1 Uc: U(k=2) 2 2 eff: 2 463 1 1 1 1 1 463 1 1 1 1 0 (k=2) 2 2 4 6 3 1 1 1 2 2 2 2 4 5 3 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	nm	uncertainty contribution ui() 4,8 33,5 34,5 16,8 0,0 51,5 103 32 32 32 32 32 32 32 32 32 32 32 32 32	nm nm nm nm nm nm nm nm nm nm nm nm nm n	degrees of freedom vi 39 39 1000 1000 1000 1000 1000 1000 100

Specimen 6	29f, measurant R	k	1				1				
	Quantity Xi	Estimate xi		uncertainty u(xi)		distribution	sensitivity coefficient c		uncertainty contribution ui()		degrees of freedom <i>v</i> i
	C Rpk(meas dnoise dref dZalign dpl	1 134 0 0 0 0	nm nm nm nm	0,003 4,2 4,5 1,9 0,0 5,8	nm nm nm nm	N N N N R R	134 1 1 1 134 134	nm	0,4 4,2 4,5 1,9 0,0 5,8	nm nm nm nm nm nm	13 7 39 39 1000 1000
	dZresoluti	(0	nm	0,3	nm	R	1		0,3	nm	1000
							Uc:		8,7	nm	
							U(k=2)		17	nm	
							veff:		99		
Specimen 6	29f, measurant Ry	/k									
	Quantity Xi	Estimate xi		uncertainty u(xi)		distribution	sensitivity coefficient c		uncertainty contribution ui()		degrees of freedom <i>v</i> i
	C Rvk(meas dnoise	1 ; 299 0	nm nm	0,003	nm nm	N N N	299 1 1	nm	1,0 9,1 4,6	nm nm nm	13 7 39
	dret dZalign	0	nm	2,1	nm	R	299	nm	2,1	nm nm	1000
	dpl dZresoluti	(O	nm nm	5,8	nm nm	R	1		5,8	nm nm	1000
							Uc:		12,0	nm	
							11(k=2)		24	nm	
							∪(n-2)		24		
							ven.		20		
c • •	200 ()										
Specimen 6.	291, measurant M	Ectimate		uncortointy		distribution	concitivity		uncortainty		degrees of
	Xi	xi		u(xi)		distribution	coefficient C		contribution ui()		freedom vi
	RMr1 (mea dRk	a 8,7 O	%	0,4	%	N	1		0,4 0,6	%	7
							Uc:		0,8	%	
							U(k=2)		1,5	%	
							veff:		42		
Specimen 6	29f, measurant M	r2									
	Quantity Xi	Estimate xi		uncertainty u(xi)		distribution	sensitivity coefficient c		uncertainty contribution ui()		degrees of freedom <i>v</i> i
	RMr2(mea dRk	a 87,9 0	%	0,5	%	N	1		0,5 0,6	%	7
							UC:		U,8	70	
							U(k=2)		1,6	%	
						Í	veff:		35		

Specimen 1.006,											
	Quantity Xi	Estimate xi		uncertainty u(xi)		distribution	sensitivity coefficient c		uncertainty contribution ui()		degrees of freedom vi
	C	1		0.003		N	25	nm	0.1	nm	13
	Ra(meas)	25	nm	0,003	nm	N	1		0,8	nm	59
	dnoise	0	nm	4,0	nm	N	1		4,0	nm	24
	dZalign	0	rinn	0,0	rirri	R	25	nm	0,0	nm	1000
	dpl	0	nm	5,8	nm	R	1		5,8	nm	1000
	dZresolutic	. 0	nm	0,3	nm	R	1		0,3	nm	1000
							Uc:		7,2	nm	
							U(K=2)		14	nm	
							veff:		228		
Specimen 1.006,	measurant R	z									
	Quantity Xi	Estimate xi		uncertainty u(xi)		distribution	sensitivity coefficient c		uncertainty contribution ui()		degrees of freedom vi
	0	1		0.002		N	1.40		0.5		12
	Rz(meas)	146	nm	8,8	nm	N	146	nm	0,5	nm nm	59
	dnoise	0	nm	26,0	nm	N	1		26,0	nm	24
	dref d7align	0	nm	9,3	nm	N	1/16	000	9,3	nm	24
	dpl	0	nm	5,8	nm	R	140	1000	5,8	nm	1000
	dZresolutio	. 0	nm	0,3	nm	R	1		0,3	nm	1000
							Lle:		29.6	nm	
							00.		20,0		
							U(k=2)		59	nm	
							uoff		20		
							Poli.				
C											
Specimen 1.006,	measurant R	max				-linaulle alle e					damere of
Specimen 1.006,	<mark>measurant R</mark> Quantity Xi	max Estimate xi		uncertainty u(xi)		distribution	sensitivity coefficient		uncertainty contribution		degrees of freedom vi
Specimen 1.006,	Quantity	max Estimate xi		uncertainty u(xi)		distribution	sensitivity coefficient c		uncertainty contribution ui()		degrees of freedom <i>v</i> i
Specimen 1.006,	<mark>measurant R</mark> Quantity Xi	max Estimate xi		uncertainty u(xi)		distribution	sensitivity coefficient c		uncertainty contribution ui()		degrees of freedom <i>v</i> i
Specimen 1.006,	C	max Estimate xi		uncertainty u(xi) 0,003		distribution	sensitivity coefficient c	nm	uncertainty contribution ui() 0,6	nm	degrees of freedom vi
Specimen 1.006,	C Rmax(mea	max Estimate xi 1 185	nm	uncertainty u(xi) 0,003 23,3	nm	distribution N N	sensitivity coefficient c 185	nm	uncertainty contribution ui() 0,6 23,3 23,3	nm	degrees of freedom <i>v</i> i 13 11
Specimen 1.006,	C Rmax(mea dnoise	max Estimate xi 185 0 0	nm nm	uncertainty u(xi) 0,003 23,3 30,3 11 4	nm nm nm	distribution N N N N	sensitivity coefficient c 185 1 1 1	nm	uncertainty contribution ui() 0,6 23,3 30,3 11 4	nm nm nm nm	degrees of freedom vi 13 11 24 24
Specimen 1.006,	C C C C C C C C C C C C C C C C C C C	max Estimate xi 1 185 0 0 0	nm nm nm	uncertainty u(xi) 0,003 23,3 30,3 11,4 0,0	nm nm nm	distribution N N N R	sensitivity coefficient c 185 1 1 1 1 1 1	nm	uncertainty contribution ui() 0,6 23,3 30,3 30,3 11,4 0,0	nm nm nm nm nm	degrees of freedom vi 13 11 24 24 1000
Specimen 1.006,	C C C C C C C C C C C C C C C C C C C	max Estimate xi 185 0 0 0 0	nm nm nm	uncertainty u(xi) 0,003 23,3 30,3 11,4 0,0 5,8	nm nm nm nm	distribution N N N R R	sensitivity coefficient c 185 1 1 1 1 1 85 1	nm	uncertainty contribution ui() 0.6 23,3 30,3 311,4 0.0 5,8	nm nm nm nm nm nm	degrees of freedom vi 13 11 24 1000 1000
Specimen 1.006,	C C C Rmax(mea droise dref dZalign dpl dZresolutic	max Estimate xi 185 00 0 0 0 0 0 0 0 0	nm nm nm nm nm	uncertainty u(xi) 0,003 23,3 30,3 11,4 0,0 5,8 0,3	nm nm nm nm nm	distribution N N N R R R	sensitivity coefficient c 185 1 1 1 1 1 185 1 1 1 185 1 1	nm	uncertainty contribution ui() 0.6 23,3 30,3 311,4 0.0 5,8 0,3	nm nm nm nm nm nm nm	degrees of freedom vi 13 11 24 24 1000 1000
Specimen 1.006,	C Rmax(mea dnoise droise dref dZalign dpl dZresolutic	max Estimate xi 185 0 0 0 0 0	nm nm nm nm nm nm	uncertainty u(xi) 0,003 23,3 30,3 11,4 0,0 5,8 0,3	nm nm nm nm nm nm	distribution N N N R R R R	sensitivity coefficient c 185 1 1 1 1 1 1 185 1 1 1 185 1 1 1 0 c:	nm	uncertainty contribution ui() 0.6 23,3 30,3 11,4 0,0 5,8 0,3 40,3	nm nm nm nm nm nm nm	degrees of freedom vi 13 11 24 24 1000 1000
Specimen 1.006,	C C Rmax(mea dnoise dref dZalign dpl dZresolutic	max Estimate xi 185 0 0 0 0 0 0 0	nm nm nm nm nm	uncertainty u(xi) 0,003 23,3 00,3 11,4 0,0 5,8 0,3	nm nm nm nm nm	distribution N N R R R	sensitivity coefficient c 185 1 1 1 185 1 1 1 0 0 0 0 (k=2)	nm	uncertainty contribution ui() 0,6 23,3 30,3 30,3 11,4 0,0 5,8 0,3 	nm nm nm nm nm nm nm nm	degrees of freedom vi 13 11 24 1000 1000 1000
Specimen 1.006,	measurant R Quantity Xi C C Rmax(mea dnoise dref dZalign dpl dZresolutic	max Estimate xi 18550 0 0 0 0 0	nm nm nm nm nm	uncertainty u(xi) 0,003 30,3 30,3 11,4 0,0 5,8 0,3	nm nm nm nm nm	distribution N N N R R R R	sensitivity coefficient c 185 1 1 1 185 185 1 1 0 0 0 (k=2) 22 0 22 0 22 0 22 0 22 0 22 0 22 0 2	nm	uncertainty contribution ui() 0.6 23,3 30,3 30,3 311,4 0.0 5,8 0,3 40,3 81 40,3	nm nm nm nm nm nm nm nm	degrees of freedom vi 13 11 24 24 1000 1000
Specimen 1.006,	C Rmax(mea dnoise dref dZalign dpl dZresolutic	max Estimate xi 1 185 0 0 0 0 0 0	nm nm nm nm nm	uncertainty u(xi) 0,003 23,3 00,3 11,4 0,0 5,8 0,3	nm nm nm nm nm	distribution N N N R R R R	sensitivity coefficient c 185 1 1 185 1 1 185 1 1 105 1 1 Uc: U(k=2) 22 eff:	nm	uncertainty contribution ui() 0.6 23,3 30,3 11,4 0,0 5,8 0,3 40,3 40,3 81 40,3	nm nm nm nm nm nm nm nm	degrees of freedom vi 13 11 24 24 1000 1000
Specimen 1.006,	C C Rmax(mea dnoise dref dZalign dpl dZresolutic	max Estimate xi 1 185 0 0 0 0 0 0	nm nm nm nm nm	uncertainty u(xi) 0,003 23,3 00,3 11,4 0,0 5,8 0,3	nm nm nm nm nm	distribution N N R R R R	sensitivity coefficient c 185 1 1 1 185 185 1 1 Uc: U(k=2) veff.	nm	uncertainty contribution ui() 0.6 23,3 30,3 30,3 311,4 0.0 5,8 0,3 40,3 81 40,3 81	nm nm nm nm nm nm nm nm nm	degrees of freedom <i>v</i> i 13 11 24 1000 1000 1000
Specimen 1.006,	measurant R Quantity Xi C Rmax(mea dnoise dref dZalign dpl dZresolutic	max Estimate xi 1 1 185 0 0 0 0 0 0 0 0 0 0 0 0	nm nm nm nm nm	uncertainty u(xi) 0,003 23,3 03,3 11,4 0,0 5,8 0,3	nm nm nm nm nm	distribution N N R R R R	sensitivity coefficient c 185 1 1 1 1 185 15 1 0 U(k=2) veff:	nm	uncertainty contribution ui() 0.6 23,3 30,3 30,3 11,4 0,0 5,8 0,3 40,3 81 	nm nm nm nm nm nm nm nm	degrees of freedom vi 13 11 24 24 1000 1000
Specimen 1.006,	measurant R Quantity Xi C C Rmax(mes droise droise drof dZalign dpl dZresolutic dZresolutic	max Estimate xi 1 185 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	nm nm nm nm nm	uncertainty u(xi) 0,003 23,3 30,3 11,4 0,0 5,8 0,3 0,3 0,3 0,3 0,3 0,3 0,4 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0	nm nm nm nm nm	distribution N N N R R R R distribution distribution	sensitivity coefficient c 185 1 1 185 1 1 1855 1 1 Uc: U(k=2) 2/eff: sensitivity coefficient		uncertainty contribution ui() 0.6 23,3 30,3 11,4 0.0 5.8 0,3 40,3 40,3 81 40,3 40,3 40,3 40,3 40,3 40,3 40,3 40,3	nm nm nm nm nm nm nm nm	degrees of freedom vi 13 11 24 24 1000 1000 1000
Specimen 1.006,	measurant R Quantity Xi C C Mmax(mea dnoise dref dZalign dpl dZresolutic	max Estimate xi 1 185 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	nm nm nm nm nm	uncertainty u(xi) 0,003 23,3 00,3 11,4 0,0 5,8 0,3 0,3 0,3 0,3 0,3 0,3 0,3 0,3 0,3 0,3	nm nm nm nm nm nm	distribution N N N R R R R distribution distribution	sensitivity coefficient c 185 1 1 1 185 1 1 1 0 c: U(k=2) veff: sensitivity coefficient c	nm	uncertainty contribution ui() 0.6 23,3 30,3 11,4 0.0 5,8 0,3 40,3 40,3 40,3 81 40,3 40,3 40,3 40,3 40,3 40,3 40,3 40,3	nm nm nm nm nm nm nm nm nm	degrees of freedom <i>v</i> i 13 11 24 24 1000 1000 1000
Specimen 1.006,	C C C C C C C C C C C C C C C C C C C	max Estimate xi 1 185 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	nm nm nm nm nm nm	uncertainty u(xi) 0,003 23,3 30,3 11,4 0,0 5,8 0,3 0,3 0,3 0,3 0,3 0,3 0,3 0,3 0,3 0,3	nm nm nm nm nm nm nm	distribution N N R R R R distribution distribution	sensitivity coefficient c 185 1 1 1 1 1 2 2 2 2 2 2 2 2 2 3 2 3 2 3 2	nm	uncertainty contribution ui() 0,6 23,3 30,3 11,4 0,0 5,8 0,3 40,3 40,3 40,3 81 42 42 42 42 42 42 42 42 42 42 42 42 42	nm nm nm nm nm nm nm nm nm	degrees of freedom vi 13 11 24 1000 1000 1000 1000
Specimen 1.006,	measurant R Quantity Xi C Rmax(mea dnoise dref dZalign dpl dZresolutic dZresolutic Quantity Xi	max Estimate xi 1 185 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	nm nm nm nm nm nm nm	uncertainty u(xi) 0,003 23,3 30,3 11,4 0,0 5,8 0,3 0,3 0,3 0,4 0,0 0,0 0,003 3,9	nm nm nm nm nm nm nm nm nm	distribution N N N R R R R distribution distribution N N N N N N N N N N N N N N N N N	sensitivity coefficient c 185 1 1 1 185 1 1 1 10 2 0 (k=2) veff: veff: c efficient c 78 1	nm	uncertainty contribution ui() 0.6 23,3 30,3 11,4 0,0 5,8 0,3 40,3 40,3 40,3 40,3 40,3 40,3 40,3	nm nm nm nm nm nm nm nm nm nm	degrees of freedom vi 13 11 24 24 1000 1000 1000
Specimen 1.006,	measurant R Quantity Xi C C Rmax(mea droise dref dZalign dpl dZresolutic dzresolutic d dZresolutic dzign dzi	max Estimate xi 1 185 0 0 0 0 0 0 0 0 0 0 0 0 0	nm nm nm nm nm nm nm nm nm nm	uncertainty u(xi) 0,003 23,3 30,3 11,4 0,0 5,8 0,3 0,3 0,3 0,3 0,3 0,3 0,3 0,3 0,3 0,3	nm nm nm nm nm nm nm nm nm	distribution N N N R R R R distribution distribution N N N N N N N N N N N N N N N N N N	sensitivity coefficient c 185 1 1 1 185 1 1 105 1 1 0 (k=2) veff: veff: c efficient c 78 1 1	nm	uncertainty contribution ui() 0.6 23,3 30,3 11,4 0.0 5,8 0,3 40,3 40,3 81 40,3 81 40,3 81 40,3 9 40,3 9 40,3 3,9 13,2 4,7 4,7 4,7 4,7 4,7 4,7 4,7 4,7 4,7 4,7	nm nm nm nm nm nm nm nm nm nm	degrees of freedom <i>vi</i> 13 11 24 24 1000 1000 1000 1000
Specimen 1.006,	measurant R Quantity Xi C C Rmax(mea droise dref dZalign dpl dZresolutic dZresolutic dZresolutic dZresolutic c C Rk(meas) dnoise dref dZalign	max Estimate xi 1 185 0 0 0 0 0 0 0 0 0 0 0 0 0	nm nm nm nm nm nm nm nm nm nm nm nm nm n	uncertainty u(xi) 0,003 23,3 30,3 11,4 0,0 5,8 0,3 0,3 0,3 0,0 0,003 3,9 13,2 4,5 0,00	nm nm nm nm nm nm nm nm nm nm nm nm nm	distribution N N N R R R R distribution distribution N N N N N N N N N N N N N R	sensitivity coefficient c 185 1 1 1 185 1 1 1 105 0 1 0 (k=2) veff. veff. sensitivity coefficient c 78 1 1 1 1 5	nm	uncertainty contribution ui() 0.6 23,3 30,3 11,4 0,0 5,8 0,3 40,3 40,3 81 40,3 81 40,3 40,3 9 40,3 9 40,3 3 9 40,3 3 9 40,3 3 9 3 11,2 4,5 5 0,0 0,0 13,2 14,2 14,2 14,2 14,2 14,2 14,2 14,2 14	nm nm nm nm nm nm nm nm nm nm nm nm nm n	degrees of freedom vi 13 11 24 24 1000 1000 1000 1000 1000
Specimen 1.006,	measurant R Quantity Xi C C Rmax(mea dref dZalign dpl dZresolutic dref Quantity Xi Quantity Xi C C Rk(meas) dnoise dref dZalign dpl dz	max Estimate xi 1 185 0 0 0 0 0 0 0 0 0 0 0 0 0	nm nm nm nm nm nm nm nm nm nm nm nm nm	uncertainty u(xi) 0,003 23,3 30,3 11,4 0,0 5,8 0,3 0,3 0,0 0,003 3,9 13,2 4,5 0,0 0,0 5,8	nm nm nm nm nm nm nm nm nm nm nm nm nm n	distribution N N N R R R distribution distribution N R R R R R R R R R R R R R R R R R R	sensitivity coefficient c 185 1 1 1 1855 1 1 1 1055 1 1 1055 1 1 1055 1 1 1055 1 1 2 2 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		uncertainty contribution ui() 0.6 23,3 30,3 11,4 0,0 5,8 0,3 40,3 40,3 81 40,3 81 40,3 9 40,3 9 40,3 9 40,3 9 40,3 9 40,3 9 3,9 13,2 4,5,5 0,0 0 5,8	nm nm nm nm nm nm nm nm nm nm nm nm nm n	degrees of freedom vi 13 11 24 24 1000 1000 1000 1000 1000
Specimen 1.006,	measurant R Quantity Xi C C Rmax(mea dref dZalign dpl dZresolutic dref Quantity Xi Quantity Xi C Rk(meas) dnoise dref dZalign dpl dZresolutic dref dZalign dpl dZresolutic	max Estimate xi 1 185 0	nm nm nm nm nm nm nm nm nm nm nm nm nm n	uncertainty u(xi) 0,003 23,3 30,3 11,4 0,0 5,8 0,3 0 0 0 0,003 3,9 13,2 4,5 0,0 0 0,5,8 0,3 0 0,003 3,9 13,2 4,5 0,00 5,8 0,3 0,000 0,000000	nm nm nm nm nm nm nm nm nm nm nm nm nm n	distribution N N N R R R distribution distribution N N R R R N N N N N N N R R R R R R R	sensitivity coefficient c 185 1 1 1 185 1 1 1855 1 1 1 10 5 1 1 2 2 (k=2) 2 2 4 5 2 4 5 2 1 2 2 5 1 1 1 1 1 2 5 1 1 1 1 1 1 1	nm	uncertainty contribution ui() 0,6 23,3 30,3 11,4 0,0 5,8 0,3 40,3 40,3 81 40,3 40,3 40,3 9 40,3 9 40,3 9 40,3 9 40,3 9 40,5 8 1 9 40,5 8 1 9 40,5 8 1 9 40,5 9 9 9 13,2 4,5 0,0 9 13,2 9 13,2 9 13,2 9 13,2 9 13,2 9 13,2 9 14,4 14 14 14 14 14 14 14 14 14 14 14 14 14	nm nm nm nm nm nm nm nm nm nm nm nm nm n	degrees of freedom vi 13 11 24 24 1000 1000 1000 1000 1000 1000
Specimen 1.006,	measurant R Quantity Xi C C Rmax(mea dnoise dref dZalign dpl dZresolutic	max Estimate xi 1 185 0 0 0 0 0 0 0 0 0 0 0 0 0	nm nm nm nm nm nm nm nm nm nm nm nm nm n	uncertainty u(xi) 0,003 23,3 30,3 11,4 0,0 5,8 0,3 0 0 0 0,003 3,9 13,2 4,5 0,0 0 5,8 0,3	nm nm nm nm nm nm nm nm nm nm nm nm nm n	distribution N N N R R R R distribution distribution N N N N N N N N N N N R R R R R R R R	sensitivity coefficient c 185 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0	nm	uncertainty contribution ui() 0.6 23,3 30,3 11,4 0.0 5,8 0,3 40,3 40,3 40,3 40,3 40,3 40,3 9 40,3 30,9 10,0 10,0 5,8 0,0 3,9,9 13,2 4,5 5,0,0 3,9 15,8	nm nm nm nm nm nm nm nm nm nm nm nm nm n	degrees of freedom vi 13 11 24 24 1000 1000 1000 1000 1000 1000
Specimen 1.006, Specimen 1.006, Specim		max Estimate xi 1 185 0 0 0 0 0 0 0 0 0 0 0 0 0	nm nm nm nm nm nm nm nm nm nm nm nm nm n	uncertainty u(xi) 0,003 23,3 30,3 11,4 0,0 5,8 0,3 0,3 0,3 0,3 0,3 0,3 0,3 0,3 0,3 0,3	nm nm nm nm nm nm nm nm nm nm nm nm nm n	distribution N N R R R R distribution distribution	sensitivity coefficient c 185 1 1 1 1 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0		uncertainty contribution ui() 0,6 23,3 30,3 11,4 0,0 5,8 0,3 40,3 40,3 40,3 40,3 40,3 40,3 40,3	nm nm nm nm nm nm nm nm nm nm nm nm nm n	degrees of freedom vi 13 11 24 4 24 1000 1000 1000 1000 1000 100
Specimen 1.006, Specimen 2.006, Specim	measurant R Quantity Xi C Rmax(mea droise dref dZalign dpl dZresolutic Guantity Xi C Rk(meas) dnoise dref dZalign dpl dZresolutic	max Estimate xi 1 185 0 0 0 0 0 0 0 0 0 0 0 0 0	nm nm nm nm nm nm nm nm nm nm nm nm nm n	uncertainty u(xi) 0,003 23,3 30,3 11,4 0,0 5,8 0,3 0,3 0,3 0,3 0,0 0,003 9,003 9,13,2 13,2 14,5 0,0 0,5,8 8,0,3	nm nm nm nm nm nm nm nm nm nm nm nm nm n	distribution N N N R R R R I Gistribution distribution N N N N N N N N R R R R R R R R R R R	sensitivity coefficient c 185 1 1 1 1855 1 1 1 1855 1 1 1 2 2 2 4 5 6 7 8 1 1 1 7 8 1 1 1 7 8 1 1 1 2 2 2 2 2 7 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	nm	uncertainty contribution ui() 0.6 23,3 30,3 11,4 0.0 5,8 0.3 40,3 40,3 40,3 40,3 40,3 40,3 40,3 40,	nm nm nm nm nm nm nm nm nm nm nm nm nm n	degrees of freedom vi 13 11 24 24 1000 1000 1000 1000 1000 1000

	ie asurant n										
	Quantity Xi	Estimate xi		uncertainty u(xi)		distribution	sensitivity coefficient c		uncertainty contribution ui()		degrees of freedom vi
	C Rnk(meas	1	nm	0,003	nm	N	28	nm	0,1	nm	13
	dnoise	0	nm	4,3	nm	N	1		4,3	nm	24
	dref dZelian	0	nm	1,5	nm	N	1		1,5	nm	24
	dpl	0	nm	5,8	nm	R	20	nm	5,8	nm	1000
	dZresolutio	0	nm	0,3	nm	R	1		0,3	nm	1000
							Uc:		7,5	nm	
							U(k=2)		15	nm	
							veff:		200		
Specimen 1.006, r	Quantity	vk Estimate xi		uncertainty u(xi)		distribution	sensitivity coefficient		uncertainty contribution		degrees of freedom vi
							с		ui()		
	С	1		0,003		N	33	nm	0,1	nm	13
	Rvk(meas)	33	nm	2,4	nm	N	1		2,4	nm	11
	dref	0	nm	1,7	nm	N	1		1,7	nm	24
	dZalign	0		0,0		R	33	nm	0,0	nm	1000
	dZresolutio	0	nm nm	5,0	nm nm	R	1		0,3	nm nm	1000
											-
							Uc:		8,0	nm	
							U(k=2)		16	nm	
							veff:		168		
Specimen 1.006, r	neasurant M	Ir1				distrik stiss	tati ita -				damaga af
	Xi	xi		uncentainty		distribution	sensitivity		uncentainty		degrees of
				u(xi)			coefficient c		contribution ui()		freedom vi
	RMr1(mea	12,3	%	u(xi)	%	N	coefficient c		contribution ui() 0,9	%	freedom 21
	RMr1(mea dRk	12,3 0	%	u(xı) 0,9 4,2	%	N N	coefficient c 1 1		contribution ui() 0,9 4,2	%	11 45
	RMr1(mea dRk	12,3 0	%	u(xi)	%	N N	coefficient c 1 1		contribution ui() 0,9 4,2	%	11 45
	RMr1(mea dRk	12,3	%	0,9 4,2	%	N N 	coefficient c 1 1 Uc:		Contribution ui() 0,9 4,2 4,3	%	11 45
	RMr1 (mea dRk	12,3	%	u(xi)	%	N N	coefficient c 1 Uc: U(k=2)		Contribution ui() 0,9 4,2 4,3 4,3 8,6	%	11 45
	RMr1 (mea dRk		%	u(xi)	%	N N	coefficient c 1 Uc: U(k=2) veff.		Contribution ui() 0,9 4,2 4,3 8,6 8,6 4,9	% %	11 11 45
	RMr1 (mea dRk	12,3	%	u(xi)	%	N N	coefficient c 1 1 1 1 1 0 (k=2) veff.		Contribution ui() 0,9 4,2 4,3 8,6 8,6 49	% %	11 45
Specimen 1.006, r	RMr1(mea dRk	12,3 0	%	u(xi)	%	N	Coefficient c 1 1 1 1 1 Uc: U(k=2) veff.		0,9 4,2 4,3 8,6 49	%	11 11 45
Specimen 1.006, 1	RMr1 (mea dRk	r2 Estimate	%	u(xi)	%	N N N distribution	coefficient c 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2		contribution ui() 0,9 4,2 4,3 8,6 49 uncertainty contribution ui()	%	freedom <i>v</i> i
Specimen 1.006, I	RMr1(mea dRk contention contentio	12,3 0	%	u(xi) 0,9 4,2 uncertainty u(xi)	% % %	N N N distribution	coefficient c 1 1 1 1 1 2 Uc: U(k=2) veff: sensitivity coefficient c 1		uncertainty ui() 0,9 4,2 4,3 8,6 4,3 4,3 4,3 4,3 4,3 4,3 4,3 4,3 4,4 4,3 4,4 4,4	% % %	degrees of freedom <i>v</i> i
Specimen 1.006, 1	RMr1(mea dRk easurant N Quantity Xi RMr2(mea dRk	12,3 0	% % % % % %	u(xi) 0,9 4,2 uncertainty u(xi) 1,1 4,2	% % %	N N N distribution	coefficient c 1 1 1 1 1 2 Uc: U(k=2) 2 2 eff: c 2 2 2 2 2 2 2 2 2 3 2 2 3 2 3 2 3 2 3		uncertainty contribution 4,2 4,3 8,6 49 49 49 49 49 49 49 49 49 49 49 49 49	% % % %	degrees of freedom vi 11 45
Specimen 1.006, I	RMr1(mea dRk easurant N Quantity Xi RMr2(mea dRk	12,3 0	% % % %	u(xi) 0,9 4,2 uncertainty u(xi)	% % % % %	N N N distribution N N N	coefficient c 1 1 1 1 1 2 Veff: c efficient c 1 1 1		contribution ui() 0,9 4,2 4,3 8,6 49 uncertainty contribution ui() 1,1 4,2	% % %	degrees of freedom vi
Specimen 1.006, 1	RMr1 (mea dRk dRk Quantity Xi RMr2(mea dRk	12,3 0	% % % % % % %	u(xi) 0,9 4,2 uncertainty u(xi) 1,1 4,2	% % % % %	N N N distribution	coefficient c 1 1 1 1 1 2 Uc: U(k=2) veff: veff: c c f c 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		uncertainty ui() 4,2 4,2 4,3 8,6 49 49 49 49 49 49 4,2 4,3	% % % % % % % % % %	degrees of freedom vi 11 degrees of freedom vi 11 45
Specimen 1.006, r	RMr1 (mea dRk dRk a control of the second control of the second co	12,3 0	% % % % %	u(xi) 0,9 4,2 uncertainty u(xi) 1,1 4,2	%	N N N distribution	coefficient c 1 1 1 1 2 νeff: νeff: νeff: 1 1 1 νeff: 1 1 νeff: 1 νeff: 1 νeff: 1 νeff: 1 νeff: 1 νeff: 1 νeff: 1 νeff: 1 νeff: 1 νeff:		contribution ui() 0,9 4,2 4,3 8,6 49 49 49 49 49 49 49 49 49 49 49 49 49	% % % % % %	treedom 21
Specimen 1.006, r	RMr1 (mea dRk dRk a comparent N comparent	12,3 0	% % 	u(xi)	%	N N N 	coefficient c 1 1 1 1 1 2 0 0 (k=2) 2 9 0 0 0 0 1 1 1 1 1 2 0 0 0 0 0 1 1 1 1 1		contribution ui() 0,9 4,2 4,3 8,6 49 49 49 49 49 49 49 49 49 49 49 49 49	% % % % % %	treedom 21

Results and measurement conditions

Below we have summarized our measurement results and measurement conditions according to the table from the technical report.

Depth standa	ard		Pt	D							lambda-c	lambda-s	Speed	Force	Sampl-dist
	EN 806										mm	μm	mm/s	mN	μm
R1	0,2 µm	value/µm	0,332	0,293									0,5	0,55	0,25
		std. dev./nm	7	9											
		U/nm (k=2)	26	23											
R3	1,5 µm	value/µm	1,396	1,371									0,5	0,55	0,25
		std. dev./nm	6	10											
		U/nm (k=2)	27	26											
R6	8 µm	value/µm	8,368	8,349									0,5	0,55	0,25
		std. dev./nm	7	10											
		U/nm (k=2)	62	61											
Geom. Stand	lard		Ra	Rz	Rmax	RSm									
Rub	P114A/528-RS 5	value/µm	0,504	1,592	1,604	49,805					0,25	2,5	0,5	0,55	0,25
		std. dev./nm	2	5	9	176									
		U/nm (k=2)	15	58	69	1023									
РТВ	7070/PGN10	value/µm	2,961	9,655	9,823	199,937					2,5	8	0,5	0,55	0,25
		std. dev./nm	13	44	56	24									
		U/nm (k=2)	35	127	151	964									
РТВ	8194/PGN3	value/µm	0,904	3,097	3,118	118,927					0,8	2,5	0,5	0,55	0,25
		std. dev./nm	7	53	56	1138									
		U/nm (k=2)	20	126	138	2470									
Roughn.stan	dard		Ra	Rz	Rmax	Rk*	Rpk*	Rvk*	Mr1/%*	Mr2/%*	lambda-c	lambda-s	Speed	Force	Sampl-dist
Roughn.stan	dard		Ra	Rz	Rmax	Rk*	Rpk*	Rvk*	Mr1/%*	Mr2/%*	lambda-c mm	lambda-s µm	Speed mm/s	Force mN	Sampl-dist µm
Roughn.stann very coarse	dard 686sg	value/µm	Ra 2,351	Rz 14,330	Rmax 15,567	Rk* 8,075	Rpk*	Rvk* 3,121	Mr1/%* 7,4	Mr2/%* 92,5	lambda-c mm 2,5	lambda-s µm 8	Speed mm/s 0,5	Force mN 0,55	Sampl-dist µm 0,25
Roughn.stan	dard 686sg	value/µm std. dev./nm	Ra 2,351 24	Rz 14,330 272	Rmax 15,567 36	Rk* 8,075 143	Rpk* 1,276 66	Rvk* 3,121 89	Mr1/%* 7,4 0,6	Mr2/%* 92,5 0,5	lambda-c mm 2,5	lambda-s µm 8	Speed mm/s 0,5	Force mN 0,55	Sampl-dist µm 0,25
Roughn.stan	dard 686sg	value/µm std. dev./nm U/nm (k=2)	Ra 2,351 24 52	Rz 14,330 272 556	Rmax 15,567 36 148	Rk* 8,075 143 293	Rpk* 1,276 66 132	Rvk* 3,121 89 181	Mr1/%* 7,4 0,6 1,6	Mr2/%* 92,5 0,5 1,3	lambda-c mm 2,5	lambda-s µm 8	Speed mm/s 0,5	Force mN 0,55	Sampl-dist µm 0,25
Roughn.stan	686sg 686sg 633g	value/µm std. dev./nm U/nm (k=2) value/µm	Ra 2,351 24 52 1,515	Rz 14,330 272 556 7,464	Rmax 15,567 36 148 8,905	Rk* 8,075 143 293 4,487	Rpk* 1,276 66 132 0,732	Rvk* 3,121 89 181 2,483	Mr1/%* 7,4 0,6 1,6 5,8	Mr2/%* 92,5 0,5 1,3 81,8	lambda-c mm 2,5 0,8	lambda-s µm 8 2,5	Speed mm/s 0,5	Force mN 0,55	Sampl-dist µm 0,25 0,25
Roughn.stann very coarse coarse	dard 686sg 633g	value/µm std. dev./nm U/nm (k=2) value/µm std. dev./nm	Ra 2,351 24 52 1,515 1	Rz 14,330 272 556 7,464 174	Rmax 15,567 36 148 8,905 121	Rk* 8,075 143 293 4,487 26	Rpk* 1,276 66 132 0,732 14	Rvk* 3,121 89 181 2,483 25	Mr1/%* 7,4 0,6 1,6 5,8 0,1	Mr2/%* 92,5 0,5 1,3 81,8	lambda-c mm 2,5	lambda-s µm 8 2,5	Speed mm/s 0,5	Force mN 0,55	Sampl-dist µm 0,25 0,25
Roughn.stan	696sg	value/µm std. dev./nm U/nm (k=2) value/µm std. dev./nm U/nm (k=2)	Ra 2,351 24 52 1,515 1 18	Rz 14,330 272 556 7,464 174 358	Rmax 15,567 36 148 8,905 121 261	Rk* 8,075 143 293 4,487 26 67	Rpk* 1,276 66 132 0,732 14 33	Rvk* 3,121 89 181 2,483 25 54	Mr1/%* 7,4 0,6 1,6 5,8 0,1 0,5	Mr2/%* 92,5 0,5 1,3 81,8 0,1 0,5	lambda-c mm 2,5 0,8	lambda-s μm 8 2,5	Speed mm/s 0,5	Force mN 0,55	Sampl-dist µm 0,25
Roughn.stan	633g 629f	value/µm std. dev./nm U/nm (k=2) value/µm std. dev./nm k=2) value/µm	Ra 2,351 24 52 1,515 1 1 8 0,150	Rz 14,330 272 556 7,464 174 358 1,268	Rmax 15,567 36 148 8,905 121 261 2,261	Rk* 8,075 143 293 4,487 26 67 0,463	Rpk* 1,276 66 132 0,732 14 33 0,134	Rvk* 3,121 89 181 2,483 25 54 0,299	Mr1/%* 7,4 0,6 1,6 5,8 0,1 0,5 8,7	M/2/%* 92,5 0,5 1,3 81,8 0,1 0,5 87,9	lambda-c mm 2,5 0,8	lambda-s μm 2,5	Speed mm/s 0,5	Force mN 0,55	Sampl-dist µm 0,25 0,25
Roughn.stann very coarse coarse fine	629f	value/µm std. dev./nm U/nm (k=2) value/µm std. dev./nm (k=2) value/µm std. dev./nm	Ra 2,351 24 52 1,515 1 18 0,150 2	Rz 14,330 272 5566 7,464 174 368 1,258 26	Rmax 15,567 36 148 8,905 121 261 1,440 33	Rk* 8,075 143 293 4,487 26 67 0,463 8	Rpk* 1,276 66 132 0,732 14 33 0,134 4	Rvk* 3,121 89 181 2,483 25 54 0,299 9	Mr1/%* 7,4 0,6 1,6 5,8 0,1 0,5 8,7 0,4	Mr2/%* 92,5 0,5 1,3 81,8 0,1 0,5 87,9 0,5	lambda-c mm 2,5 0,8	lambda-s μm 2,5 2,5	Speed mm/s 0,5	Force mN 0.55	Sampl-dist µm 0,25 0,25 0,25
Roughn.stann very coarse coarse fine	633g 629f	valus/µm std. dev./nm U/nm (k=2) valus/µm std. dev./nm U/nm (k=2) valus/µm std. dev./nm (J/nm (k=2)	Ra 2,351 24 52 1,515 1 1 8 0,150 2 2 15	Rz 14,330 272 556 7,464 174 369 1,258 26 85	Rmax 16,567 36 148 8,905 121 261 1,440 33 31 103	Rk* 8,075 143 293 4,487 26 67 0,463 8 35	Rpk* 1,276 66 132 0,732 14 33 0,134 4 17	Rvk* 3,121 89 181 2,483 255 54 0,299 9 9 24	Mr1/%* 7,4 0,6 1,6 5,8 0,1 0,5 8,7 0,4 1,5	Mr2/%* 92,5 0,5 1,3 81,8 81,8 0,1 0,5 87,9 0,5 1,6	Iambda-c mm 2,5 0,8	lambda-s μm 2,5	Speed	Force	Sampl-dist µm 0,25 0,25 0,25 0,25
Roughn.stann very coarse coarse fine SFRN 150	dard 686sg 633g 629f 1.006	value/µm std. dev /nm U/nm (k=2) value/µm std. dev /nm U/nm (k=2) value/µm value/µm	Ra 2,351 24 52 1,515 1 1 8 0,150 2 2 15 0,025	Rz 14,330 272 556 7,464 174 358 1,258 26 65 0,146	Rmax 15,567 36 148 8,905 121 261 1,440 33 103 0,185	Rk* 8,075 143 293 4,487 26 67 0,463 8 35 0,078	Rpk* 1,276 66 132 0,732 14 33 0,134 4 17 0,028	Rvk* 3,121 89 181 2,483 255 54 0,299 9 24 0,033	Mr1/%* 7,4 0,6 1,6 5,8 0,1 0,5 8,7 0,4 1,5 12,3	Mr2/%* 92,5 0,5 1,3 81,8 0,1 0,5 67,9 0,5 1,6 86,8	Iambda-c mm 2,5 0,8 0,8 0,8	lambda-s μm 2,5 2,5 2,5	Speed mm/s 0,5 0,5 0,5 0,5	Force	Sampl-dist μm 0,25 0,25
Roughn.stann very coarse coarse fine SFRN 150	dard 686sg 633g 629f 1.006	value/µm std. dev./nm U/nm (k=2) value/µm std. dev./nm U/nm (k=2) value/µm std. dev./nm std. dev./nm	Ra 2,351 24 52 1,515 1 1 8 0,150 2 15 0,025 1	Rz 14,330 272 556 7,464 174 358 1,258 26 0,146 9 9	Rmax 15,567 36 148 8,905 121 261 1,440 33 0,185 0,185 23	Rk* 8,075 143 293 4,487 26 67 0,463 8 35 0,078 4	Rpk* 1,276 66 132 0,732 14 33 0,134 4 17 0,028 2	Rvk* 3,121 89 181 2,483 2,55 54 0,299 9 24 0,033 2	Mr1/%* 7,4 0,6 1,6 5,8 0,1 0,5 8,7 0,4 1,5 12,3 0,9	Mr2/%* 92,5 0,5 1,3 81,8 0,1 0,5 87,9 0,5 1,6 86,8 86,8	Iambda-c mm 2,5 0,8 0,8 0,25	lambda-s μm 2,5 2,5 2,5	Speed mm/s 0,5	Force	Sampl-dist μm 0,25 0,25 0,25
Roughn stann very coarse coarse fine SFRN 150	6865g 6833g 633g 629f 1.006	value/µm std. dev./nm U/nm (k=2) value/µm std. dev./nm U/nm (k=2) value/µm std. dev./nm td. dev./nm td. dev./nm	Ra 2,351 24 52 1,515 1 18 0,150 2 15 0,025 1 14	Rz 14,330 272 556 7,464 174 358 1,258 26 85 0,146 9 9 59	Rmax 15,567 36 148 8,905 121 261 1,440 33 0,185 23 81	Rk* 8,075 143 293 4,487 26 67 0,463 8 35 0,078 4 31	Rpk* 1,276 66 132 0,732 14 33 0,134 4 17 0,028 2 15	Rvk* 3,121 89 181 2,483 25 54 0,299 9 24 0,033 2 2 16	Mr1/%* 7,4 0,6 1,6 5,8 0,1 0,5 8,7 0,4 1,5 12,3 0,9 8,6	Mr2/%* 92,5 0,5 1,3 81,8 0,1 0,5 87,9 0,5 1,6 86,8 1,1 1,1 8,7	lambda-c mm 2,5 0,8 0,8 0,25	lambda-s μm 2,5 2,5 2,5	Speed mm/s 0,5 0,5 0,5 0,5	Force mN 0,55 0,55 0,55	Sampi-dist µm 0,25 0,25 0,25 0,25 0,25 0,25
Roughn stann very coarse coarse fine SFRN 150 Data files	dard 686sg 633g 629f 1.006	value/µm std. dev./nm U/nm (k=2) value/µm std. dev./nm U/nm (k=2) value/µm std. dev./nm u/nm (k=2)	Ra 2,361 24 52 1,515 1 18 0,150 2 15 0,025 15 0,025 14 Ra	Rz 14,330 272 556 7,464 174 368 1,258 2,6 85 0,146 9 59 Rq	Rmax 15,567 36 148 8,905 121 261 1,440 333 103 0,185 23 81 Rp	Rk* 8,075 143 293 4,467 26 67 0,463 8 35 0,078 4 31 Rv	Rpk* 1,276 66 132 0,732 14 33 0,134 4 17 0,028 2 15 Rt	Rvk* 3,121 89 181 2,483 25 54 0,299 9 24 0,033 2 16 Rsk	Mr1/%* 7,4 0,6 1,6 5,8 0,1 0,5 8,7 0,4 1,5 12,3 0,9 8,6 Rz	Mr2/%* 92,5 0,5 1,3 81,8 0,1 0,5 87,9 0,5 1,6 86,8 1,1 1,1 8,7 87 87 87,9 1,1 1,1 8,7 1,1 1,1 1,1 1,1 1,1 1,1 1,1 1,1 1,1 1	lambda-c mm 2,5 0,8 0,8 0,25 0,25 Rpk	lambda-s μm 2,5 2,5 2,5 2,5 2,5 2,5 2,5	Speed mm/s 0,5 0,5 0,5 0,5 0,5 0,5 0,5 0,5 0,5 0,5	Force mN 0,55 0,55 0,55 0,55 0,55	Sampi-dist µm 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25
Roughn.stann very coarse coarse fine SFRN 150 Data files	dard 686sg 633g 629f 1.006	valus/µm std. dev./nm U/nm (k=2) valus/µm std. dev./nm U/nm (k=2) valus/µm std. dev./nm U/nm (k=2) valus/µm	Ra 2,351 24 52 1,515 1 18 0,150 2 15 0,025 1 1 14 Ra ISO 4287	Rz 14,330 272 556 7,464 174 368 1,258 2,66 85 0,146 9 59 Rq	Rmax 15,567 36 148 8,905 121 261 1,440 333 103 0,185 23 81 Rp	Rk* 8,075 143 293 4,487 26 67 0,463 8 35 0,078 4 31 Rv	Rpk* 1,276 66 132 0,732 14 33 0,134 4 17 0,028 2 15 Rt	Rvk* 3,121 89 181 2,483 25 54 0,299 9 24 0,033 2 2 16 Rsk	Mr1/%* 7,4 0,6 1,6 5,8 0,1 0,5 8,7 0,4 1,5 12,3 0,9 8,6 Rz	Mr2/%* 92,5 0,5 1,3 81,8 0,1 0,5 87,9 0,5 1,6 86,8 1,1 8,7 Rmax DIN 4768	lambda-c mm 2,5 0,8 0,8 0,25 0,25 10,25 10,25 10,25 10,25 10,25 10,25	lambda-s μm 2,5 2,5 2,5 2,5 Rk	Speed mm/s 0,5 0,5 0,5 0,5 0,5 0,5 0,5 0,5	Force mN 0,55 0,55	Sampl-dist µm 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25
Roughn.stan	dard 686sg 633g 629f 1.006	valus/µm std. dev./nm U/nm (k=2) valus/µm std. dev./nm u/nm (k=2) valus/µm std. dev./nm U/nm (k=2) valus/µm std. dev./nm tu/nm (k=2)	Ra 2,351 24 52 1,515 1 1 8 0,150 2 15 0,025 1 1 14 Ra 150 4287 0,087	Rz 14,330 272 556 7,464 174 358 1,258 2,6 0,146 9 59 Rq 0,108	Rmax 15,567 36 148 8,905 121 261 1,440 33 103 0,185 23 81 Rp 0,230	Rk*	Rpk* 1,276 66 132 0,732 14 33 0,134 4 17 0,028 2 15 Rt 0,610	Rvk* 3,121 89 181 2,483 255 54 0,299 9 24 0,033 2 2 16 Rsk -0,014	Mr1/%* 7,4 0,6 1,6 5,8 0,1 0,5 8,7 0,4 1,5 12,3 0,9 8,6 Rz 0,470	Mr2/%* 92,5 0,5 1,3 81,8 0,1 0,5 0,5 1,6 86,8 1,1 1,8,7 Rmax DIN 4768 0,610	Iambda-c mm 2,5 0,8 0,8 0,25 0,25 0,25 150 13565-2 0,066	Iambda-s μm 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5	Speed mm/s 0,5 0,5 0,5 0,5 0,5 0,5 0,5 0,5 0,5 0,5	Force mN 0,55 0,55 0,55 0,55 0,55 0,55 0,55	Sampl-dist µm 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25
Roughn.stann very coarse coarse fine SFRN 150 Data files file 1 file 2	dard 686sg 633g 629f 1.006 1.006	value/µm std. dev./nm U/nm (k=2) value/µm std. dev./nm U/nm (k=2) value/µm std. dev./nm U/nm (k=2) value/µm value/µm value/µm	Ra 2,351 24 52 1,515 1 1 80 0,150 2 15 0,025 1 1 14 Ra 150 4287 0,087 0,087 0,186	Rz 14,330 272 556 7,464 174 359 1,258 2,6 85 0,146 9 59 Rq 0,108 0,108 0,230	Rmax 15,567 36 148 8,905 121 261 1,440 33 103 0,185 23 81 Rp 0,230 0,230 0,509	Rk* 8,075 143 293 4,467 226 67 0,463 8 35 0,078 4 31 Rv 0,239 0,239 0,724	Rpk* 1,276 66 132 0,732 14 33 0,134 4 17 0,028 2 15 Rt 0,610 1,452	Rvk* 3,121 89 181 2,483 255 54 0,299 9 24 0,033 2 16 Rsk -0,014 -0,014	Mr1/%* 7,4 0,6 1,6 5,8 0,1 0,5 8,7 0,4 1,5 12,3 0,9 8,6 Rz 0,470 1,233	Mr2/%* 92,5 0,5 1,3 81,8 0,1 0,5 0,5 0,5 1,6 86,8 1,1 1,8,7 Rmax DIN 4768 0,610 1,419	Iambda-c mm 2,5 0,8 0,8 0,8 0,25 0,25 100,25 100,25 100,25 100,25 0,066 0,130	Iambda-s μm 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5	Speed mm/s 0,5 0,5 0,5 0,5 0,5 0,5 0,5 0,5 0,5 0,5	Force mN 0,55 0,55 0,55 0,55 0,55 0,55 0,55	Sampl-dist μm 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25
Roughn.stann very coarse coarse fine SFRN 150 Data files file 1 file 2 file 3	dard 6865g 633g 629f 1.006 1.006 1001 505 7080	value/µm std. dev./nm U/nm (k=2) value/µm std. dev./nm U/nm (k=2) value/µm std. dev./nm U/nm (k=2) value/µm value/µm value/µm value/µm	Ra 2,351 24 52 1,515 1 1 8 0,150 2 15 0,025 1 1 4 8 8 8 150 4287 0,087 0,186 0,430	Rz 14,330 272 556 7,464 174 368 1,258 0,146 9 59 Rq 0,108 0,230 0,491	Rmax 15,567 36 148 8,905 121 261 1,440 33 0,185 23 81 Rp 0,230 0,509 0,762	Rk* 8,075 143 293 4,487 26 67 0,463 8 35 0,078 4 31 Rv 0,239 0,724 0,730	Rpk* 1,276 66 132 0,732 14 33 0,134 4 177 0,028 2 15 Rt 0,610 1,452 1,492	Rvk* 3,121 89 181 2,483 255 54 0,299 9 24 0,033 2 16 Rsk -0,014 -0,258 0,016	Mr1/%* 7,4 0,6 1,6 5,8 0,1 0,5 8,7 0,4 1,5 12,3 0,9 8,6 Rz 0,470 1,233 1,492	Mr2/%* 92,5 0,5 1,3 81,8 0,1 0,5 87,9 0,5 1,6 86,8 1,1 1,8,7 Rmax DIN 4768 0,610 1,419 1,492	Iambda-c mm 2,5 0,8 0,8 0,8 0,25 0,25 0,25 100,25 100,25 0,06 0,06 0,130 0,130 0,130 0,130 0,130 0,130	Iambda-s μm 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5	Speed mm/s 0,5 0,5 0,5 0,5 0,5 0,5 0,5 0,5 0,5 0,5	Force mN 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,5	Sampl-dist μm 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25
Roughn.stann very coarse coarse fine SFRN 150 Data files file 1 file 2 file 3	dard 686sg 633g 629f 1.006 1.006 1.005 7060	value/µm std. dev./nm U/nm (k=2) value/µm std. dev./nm U/nm (k=2) value/µm std. dev./nm U/nm (k=2) value/µm value/µm value/µm value/µm	Ra 2,351 24 52 1,515 1 18 0,150 2 15 0,025 1 14 Ra ISO 4287 0,087 0,186 0,430	Rz 14,330 272 566 7,464 174 368 1,258 26 85 0,146 9 59 Rq 0,108 0,230 0,491	Rmax 15,567 36 148 8,905 121 261 1,440 33 0,185 23 81 Rp 0,230 0,509 0,762	Rk* 8,075 143 293 4,487 26 67 0,463 8 35 0,078 4 31 Rv 0,239 0,724 0,730	Rpk* 1,276 66 132 0,732 14 33 0,134 4 17 0,028 2 15 Rt 0,610 1,452 1,492	Rvk* 3,121 89 181 2,483 25 54 0,299 9 24 0,033 2 16 Rsk -0,014 -0,258 0,016	Mr1/%* 7,4 0,6 1,6 5,8 0,1 0,5 8,7 0,4 1,5 12,3 0,9 8,6 Rz 0,470 1,233 1,492	Mr2/%* 92,5 0,5 1,3 81,8 0,1 0,5 87,9 0,5 1,6 86,8 1,1 8,7 Rmax DIN 4768 0,610 1,419 1,492	Iambda-c mm 2,5 0,8 0,8 0,25 0,25 10	lambda-s μm 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5	Speed mm/s 0,5 0,5 0,5 0,5 0,5 0,5 0,5 0,5 0,5 0,5	Force mN 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,5	Sampl-dist μm 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25

What we have done so far is to check all relevant measurement data and the uncertainty contributions derived for this comparison. In our case two values were, based on the En criterion, excluded for the calculation of the reference values: Pt for the EN806 depth standard and Rmax for the 686sg roughness standard. After examining the measurement data and the uncertainty calculation for these parameters and we were not able to find any irregularities. However, since Pt is strongly influenced by noise one might argue that we have estimated the uncertainty contribution due to noise a bit on the low side. For Rmax we have measured an exceptionally low standard deviation on the 686sg standard and therefore a low overall measurement uncertainty. This seems to have been measured also by other contributers. So far we can not explain this effect other than that it might be the standard itself.

When looking at the results of the software standards it is surprising to see the variance in the results and in other cases the good agreement without matching the PTB reference value. This might be a starting point for a discussion with the software suppliers in order to reach agreement on the correct implementation on the calculation of the various parameters.

22/22

Appendix B1

Reports of NPL

A3 – MEASUREMENT REPORT

Description of the measurement methods and instruments

NanoSurf IV

NanoSurf IV is an NPL-developed instrument that measures surface texture with an uncertainty given by the equation below. The surface is traversed by a dry-bearing prismatic slideway and a diamond-tipped stylus measures the height variations across the surface. The displacement of the probe and slideway are measured using optical interferometry. A full description of NanoSurf IV can be found elsewhere*.

A4 - Uncertainty of measurement

Uncertainties

The standard uncertainty of the NanoSurf IV instrument is $u(x, z) = \sqrt{0.66^2 + (0.039L)^2}$ with 45 degrees of freedom where L is the measured displacement in millimetres. The expanded uncertainty at a confidence level of 95% is found by multiplying the standard uncertainty by a coverage factor of 2. The calculation of this uncertainty can be found in Leach 2002** and is for displacement measurements in both the x and z axes, referred to as the *instrument uncer*tainty. When measuring a surface, the uncertainty due to the variation over the surface (referred to as the *surface uncertainty*) has to be taken into account. Where parameters that have units of length are reported the standard uncertainty equation is applied to the mean parameter value to find the instrument uncertainty (i.e. the value of the parameter is used as the L term in the above equation) and this is added in quadrature to the standard error of the mean over the surface (the surface uncertainty), giving the combined standard uncertainty. This process is not mathematically rigorous as the uncertainties should be propagated through the equation for the parameter, but this is not possible using standard GUM rules for some parameters (for example Ra) so other methods must be applied (for example Monte-Carlo simulation). For this comparison the simpler method has been applied and preliminary tests have shown that the values for the uncertainties obtained are very close to those obtained using Monte-Carlo simulation. The effective degrees of freedom are calculated using the Welch-Satterthwaite equation. For the measurements of the type A2 samples the *instrument uncertainty* is found by propagating the equations for the least-squares lines and adding this in quadrature to the standard uncertainty found by substituting the mean height for L in the above equation. This is then added in quadrature to the surface uncertainty which is found in the normal manner.

*Leach R K 2000 Traceable measurement of surface texture at the National Physical Laboratory using NanoSurf IV *Meas. Sci. Technol.* **11** 1162-1172

**Leach R K 2002 Traceability, calibration and uncertainty issues in surface metrology Version 2 *NPL Report* CLM7 1-57

Laboratory: NPL

Comment from NPL

Please find attached the amended Euromet 600 results.

The following changes were required:

Type A - we found that to calculate Pt we need to level the profiles in a different manner to when we calculate d. We had not come across this, as we never have been asked to quote Pt.

Type C and D - our filter was not operating correctly as NanoSurf IV does not have a uniform sampling rate. This problem is now fixed but it meant that we had to re-analyse the data.

Type F1 - NanoSurf IV requires a *(-1) multiplier. The softgauges do not, so we have had to re-analyse the data.

(Table see below)

Depth standa	rd		Pt	D					lambda-c	lambda-s	Speed
	EN 806								mm	μm	mm/s
R1	0,2 µm	value/µm	0,295	0,283							0,009
		std. dev./nm	3,0	2,8							
		U/nm (k=2)	3,3	7,0							
		D of F	8,9	47,8							
R3	1,5 µm	value/µm	1,375	1,365							0,009
		std. dev./nm	5,4	3,3							
		U/nm (k=2)	5,2	6,2							
		D of F	5,3	38,2							
R6	8 µm	value/µm	8,365	8,351							0,02
		std. dev./nm	15,9	6,3							
		U/nm (k=2)	14,4	11,6							
		D of F	4,1	37,5							
Geom. Stand	ard		Ra	Rz	Rmax	RSm					
Rub	P114A/528-RS 5	value/µm	0,504	1,583	1,591	50,067			0,25	2,5	0,04
		std. dev./nm	1,6	4,5	13,0	19,9					
		U/nm (k=2)	1,7	3,0	7,6	11,6					
		D of F	49,8	17,0	11,7	11,3					
РТВ	7070/PGN10	value/µm	2,951	9,625	9,780	200,049			2,5	8	0,09
		std. dev./nm	12,3	38,3	67,5	52,2					
		U/nm (k=2)	7,3	22,2	40,0	30,2					
		D of F	11,8	11,1	11,0	11,0					
РТВ	8194/PGN3	value/µm	0,900	3,080	3,097	120,030			0,8	2,5	0,09
		std. dev./nm	8,4	51,3	55,8	43,4					
		U/nm (k=2)	5,1	29,7	32,3	25,1					
		D of F	12,7	11,0	11,0	11,1					

Roughn.stand	lard		Ra	Rz	Rmax	Rk*	Rpk*	Rvk*	Mr1/%*	Mr2/%*	lambda-c	lambda-s	Speed
											mm	μm	mm/s
very coarse	686sg	value/µm	2,345	14,293	15,525	8,078	1,25	3,22	7,55	92,62	2,5	8	0,09
		std. dev./nm	20,7	301,4	46,8	202,3	52,4	303,8	0,81	0,75			
		U/nm (k=2)	12,1	174,1	27,1	116,9	30,3	202,6	1,40	1,39			
		D of F	11,3	11,0	11,1	11,0	11,0	8,0	53,6	52,7			
coarse	633g	value/µm	1,515	7,418	8,868	4,579	0,680	2,263	5,17	82,85	0,8	2,5	0,09
		std. dev./nm	2,1	153,3	126,4	72,4	34,6	54,2	0,29	0,89			
		U/nm (k=2)	1,8	88,6	73,0	41,9	20,1	31,3	1,33	1,42			
		D of F	38,8	11,0	11,0	11,0	11,1	11,0	46,4	54,5			
fine	629f	value/µm	0,148	1,234	1,410	0,451	0,136	0,297	9,87	87,66	0,8	2,5	0,09
		std. dev./nm	3,6	50,8	60,3	14,2	6,4	16,4	0,69	0,52			
		U/nm (k=2)	2,5	29,4	34,9	8,3	4,0	9,6	1,38	1,35			
		D of F	20,8	11,0	11,0	11,6	13,9	11,4	51,9	49,2			
SFRN 150	1.006	value/nm **	25,06	140,91	185,70	79,48	26,21	30,50	11,20	86,22	0,25	2,5	0,04
		std. dev./nm	0,63	4,52	14,97	6,14	3,36	4,13	1,78	1,44			
		U/nm (k=2)	1,37	3,02	8,74	3,79	2,35	2,72	1,67	1,56			
		D of F	51,3	16,6	11,5	14,2	22,3	18,4	46,5	53,4			
Data files		Ra	Rq	Rp	Rv	Rt	Rsk [#]	Rz	Rku [#]	Rsm	Rmax	Rpk	
			ISO 4287		-				-			DIN 4768	ISO 13565-2
file 1	xz7080	value/µm	0,424	0,484	0,754	0,721	1,484	0,010	1,475	1,680	99,825		
file 2	xz1001	value/µm	0,087	0,107	0,232	0,238	0,628	-0,160	0,470	2,710	66,135		
file 3	xz505	value/µm	0,187	0,230	0,498	0,748	1,425	-0,220	1,246	2,680	98,808		

*) ISO 13565-1

[#]) These parameters do not have units

**) Values for this artefact quoted in nm

Calibration, traceability and uncertainty issues in surface texture metrology Version 2

NMS Programme for Length 1997 - 1999 Milestone 2.6.6

Richard K Leach Dimensional & Optical Metrology Team Centre for Basic, Thermal and Length Metrology National Physical Laboratory Queens Road Teddington Middlesex United Kingdom TW11 0LW

Abstract

Achieving consistent surface texture measurements is of vital importance to the performance of many components in well-established fields such as mechanical engineering and manufacturing, and is becoming increasingly important in the emerging field of nanotechnology. The route to traceability in surface texture measurements is still ill-defined and it is very uncommon to find a measured surface texture parameter presented with its associated uncertainty. This report summarises the methods used to calibrate surface texture measuring instruments and discusses the various ISO standards in the field. An uncertainty analysis of a fully traceable two-dimensional surface texture measuring instrument: NanoSurf IV, is undertaken and the uncertainties in measured surface texture parameters are analysed.

© Crown Copyright 1999 Version 2 © Crown Copyright 2002 Reproduced by permission of the Controller of HMSO

ISSN 1361-4088

National Physical Laboratory Queens Road, Teddington, Middlesex, United Kingdom, TW11 0LW

No extracts from this report may be reproduced without the prior written consent of the Managing Director, National Physical Laboratory: source must be acknowledged.

Approved on behalf of the Managing Director by Dr David Robinson, Head of Centre for Basic, Thermal and Length Metrology

CONTENTS

1. INTRODUCTION					
2. CALIBRATION OF SURFACE TEXTURE MEASURING INSTRUMENTS (A HISTORY)	10				
3. STANDARDS	17				
4. A FULLY TRACEABLE INSTRUMENT: NANOSURF IV					
5. UNCERTAINTY ANALYSIS OF NANOSURF IV	24				
5.1 COMBINED STANDARD UNCERTAINTY					
5.2 TYPE A AND TYPE B UNCERTAINTIES COMPONENTS					
5.3 DEGREES OF FREEDOM					
5.4 EXPANDED UNCERTAINTY					
5.5 MEASUREMENT PROCESS					
5.6 ASSUMPTIONS					
5.7 MATHEMATICAL MODEL OF THE MEASUREMENT					
5.8 EVALUATION OF THE SENSITIVITY COEFFICIENTS					
5.9 STANDARD UNCERTAINTIES OF INFLUENCE QUANTITIES					
5.9.1 Optical path difference					
5.9.2 Measured parameters influencing the measurement of the optical path difference					
5.9.3 Overall uncertainty due to the measured optical path difference					
5.10 DIFFRACTION EFFECTS AND MISALIGNMENT					
5.11 AIR REFRACTIVE INDEX					
5.11.1 Equations for the refractivity of air					
5.11.2 Conversion of humidity units					
5.11.3 Measured parameters influencing the refractive index of air					
5.11.4 Overall uncertainty due to the refractive index of air measurement					
5.12 EFFECTS ON THE METROLOGY FRAME AND DETECTOR ELECTRONICS					
5.13 EFFECTS OF IMPERFECT OPTICS AND STRAY BEAMS					
5.14 DEAD PATH LENGTH UNCERTAINTY					
5.15 UNCERTAINTIES DUE THE MEASUREMENT SET-UP					
5.15.1 Cosine error					
5.15.2 Abbe error					
5.16 DEGREES OF FREEDOM OF THE INFLUENCE QUANTITIES					
5.17 EXPANDED UNCERTAINTY FOR A LENGTH MEASUREMENT					
5.18 UNCERTAINTIES IN MEASURING SURFACE TEXTURE PARAMETERS					
5.19 REFERENCE DATA					
5.20 UNCERTAINTY IN THE CALCULATION OF THE AVERAGE REFERENCE LINE					
5.21 UNCERTAINTIES IN THE PARAMETERS	50				
5.21.1 Uncertainty in Ra					
5.21.2 Uncertainty in Rq					
-----------------------------------	--				
5.21.3 Uncertainty in Rsk and Rku					
6. DISCUSSION					
7. ACKNOWLEDGEMENTS					
8. REFERENCES					

FIGURE LEGENDS

Figure 2.1 Vibrating stylus calibration rig, from Bendeli, Duraz, et. al. (1974)	11
Figure 2.2 Vibrating stylus calibration rig, from Haitjema (1998)	15
Figure 4.1 Schema of NanoSurf IV	22
Figure 4.2 The sub-systems of NanoSurf IV	23
Figure 5.1 Phase shift of a beam produced by coherent stray light that has travelled as additional path	40
Figure 5.2 <i>x</i> axis slideway pitch errors	44
Figure 5.3 <i>x</i> axis slideway yaw errors	45
Figure 5.4 The reference data	47

TABLES

Table 5.1 Summation of uncertainties due the laser source	30
Table 5.2 Summation of uncertainties due to fluctuations in the phase measurement	31
Table 5.3 Summation of uncertainties due to air temperature measurement	37
Table 5.4 Summation of uncertainties due to air pressure measurement	37
Table 5.5 Summation of uncertainties due to humidity measurement where DP = Dewpoint temperature	38
Table 5.6 Summation of uncertainties due to air carbon dioxide content	38
Table 5.7 Summation of uncertainties due to the Edlén equation	39
Table 5.8 Summation of uncertainties due to dimensional fluctuation of the metrology frame	40
Table 5.9 Summation of uncertainties due to stray light	42

Table 5.10 Summation of uncertainties due to dead path	43
Table 5.11 Summation of uncertainties due to Abbe error	45
Table 5.12 Sources of uncertainty and their associated degrees of freedom. L is in millimetres	46
Table 5.14 Surface texture parameters	49

NOMENCLATURE

Note: Surface texture parameters, for example *Ra*, are defined in table 5.14.

Section 1

g(s)	general function of fringe dispersion			
δ	a small error in $g(s)$			
h	a step height measurement			
S	fringe dispersion			
σ_{s}	variance in the measurement of s			
п	integer fringe number			
λ	the wavelength of light			

Section 5

$u_c(x)$	combined standard uncertainty in a measurement of <i>x</i>
u(x)	standard uncertainty in a measurement of x
L	length measurement made using an interferometer
C _i , C _{ij} , C _{ij}	partial derivatives of the model equation
i, j	subscripts
V	degrees of freedom
п	number of measurements
Ueff	effective number of degrees of freedom
U	expanded uncertainty
k	coverage factor
L_{ϕ}	displacement measured by a two-beam interferometer
λ	wavelength of light
$\Delta \phi$	difference in phase from the reference and measurement arms
L_{Ω}	correction for diffraction
L _n	correction due to the change in air refractive index
L_t	correction for thermal effects on the metrology frame
L_m	correction for mechanical effects on the metrology frame
L _A	correction for imperfect optics and stray beams
L_d	correction for the dead path length
L_T	correction for air turbulence

L_j	correction for the measurement set-up				
$\lambda_{_0}$	fringe displacement				
k	wavenumber				
$w_{_0}$	waist of a laser beam				
и	aperture radius				
w_f	defined by equation (5.13)				
b	defined by equation (5.14)				
D	absolute distance of the lens from the waist of the beam				
f	focal length				
<i>s''</i>	image to lens distance				
S	object to lens distance				
Z_R	Rayleigh length				
т	magnification				
α	misalignment angle				
Z	distance between waist and detector				
1	distance between waist and retro-reflector				
θ	defined in the text				
υ	defined in the text				
σ	defined in the text				
$\lambda_{_{ m vac}}$	wavelength of light in a vacuum				
п	refractive index of air				
σ	wavenumber				
x	carbon dioxide content				
t	air temperature				
р	air pressure				
f	water vapour partial pressure				
t_{dp}	dewpoint temperature				
a(x, y)	complex amplitude at point (x, y)				
$\phi(x, y)$	phase of light at point (x, y)				
$a_s(x, y)$	complex amplitude of stray light at point (x, y)				
$\phi_s(x, y)$	phase of stray light at point (x, y)				
р	path difference between stray light and test beams				
Ι	intensity				

D	dead path length				
Ν	half the number of fringes counted during a displacement				
<i>n</i> ₂	refractive index at the end of a measurement				
Δn	change in refractive index				
d	displacement				
Z	vertical axis				
x	axis of scan				
a	intercept on <i>z</i> axis				
b	gradient				
χ	least-squares minimisation parameter				
<i>a</i> *	least-squares intercept on z axis				
b^*	least-squares gradient				
$S, S_{x'} S_{z'} S_{xx'} S_{zz'} S_{zx}$	summations defined by equations (5.46)				
d	constant of proportionality				
r	population correlation coefficient				
f	defined in equation (5.55)				
Ν	number of data points				
$\mu_{_2}$	second moment				

NPL Report CLM 7

1. INTRODUCTION

Only in recent years have sound metrological principles been applied to the measurement of surface texture. Demonstration of true traceability of surface texture measurements is still rare and often only achieved by the time-consuming task of measuring the characteristics of the separate elements that make up the instrument. There are many different artefacts that can be used to characterise an instrument and a huge number of parameters that can be calculated from the measured data. There is a vast library of specification standards on the subject. The report will only consider those published by the International Standards Organisation (ISO). It is also rare to see an uncertainty figure quoted with a measured surface texture parameter - a taboo in dimensional metrology not seeming to cover surface texture. The aims of this report are to summarise the work to date on calibration of surface texture instruments and their associated uncertainties, to outline and discuss the relevant ISO standards and to carry out an uncertainty analysis for a fully traceable instrument developed at NPL. The results of this uncertainty analysis will then be extended to cover the surface texture parameters that would be calculated from the measured height and length data from the instrument. No attempt has been made in this analysis to examine the effects of the surface-probe interaction or the dynamic effects of scanning - it is assumed that the probe has perfect fidelity with the surface. For this reason NanoSurf IV is always operated as close to these conditions as possible, dynamic and static filtering due to the measurement process are assumed to limit the bandwidth of the instrument, not its measurement uncertainty.

2. CALIBRATION OF SURFACE TEXTURE MEASURING INSTRUMENTS (A HISTORY)

The metrological issues described in this section have been explored since the 1930s when the first surface texture instruments were being used. The traditional method of calibrating a surface texture measuring instrument is to traverse a lined calibration artefact. The period and amplitude of the lines would be chosen to, ideally, encompass the whole operating bandwidth of the instrument or its transmission characteristics. One of the early standards took the form of acid-etched lines in a substrate and was developed by Timms of NPL (1946). Underwood (also of NPL) introduced his Caliblocks in 1953 which were formed with a diamond tool mounted in a dividing engine and used to rule electro-deposited gold. Schobinger (1956) made specimens by vacuum coating glass surfaces with silica through a wire mask. These early artefacts had limited topography and could not match the lower spatial bandwidth limits of the instruments they were designed to calibrate.

Sharman of the National Engineering Laboratory (NEL) (1967) was, perhaps, the first to introduce essentially sinusoidal gratings as artefacts. These were formed by vacuum depositing aluminium and chromium on a lapped steel substrate and for a given peak-to-peak height a single specimen could be used to generate any pitch from $0.25 \,\mu\text{m}$ to $13 \,\mu\text{m}$. The pitch variation was achieved by mounting the specimen on a small rotary table and rotating the specimen relative to the direction of traverse of the pick-up head. Much of the literature suggests the use of step-height standards, such as wrung gauge blocks for low magnification and lever arm devices or evaporated or etched films for high magnifications (Reason 1967).

Van Hasselt & Bruin (1963) and Bendeli, Duruz, *et. al.* (1974) introduced the idea of using a vibrating platform to simulate the spatial frequencies present in a surface. Calibration of a stylus instrument requires low frequency or static calibration to determine scale and linearity of the low frequency recording equipment. Also, dynamic calibration is necessary for transmission characteristics of averaging instruments with meter readouts. They suggest that the problems with using standard artefacts are the difficulty in obtaining satisfactory accuracies for static calibrations at very high magnifications (50 000x and above) without having to rely on the trueness of the attenuators and the effect of the finite shape of the stylus. Their method is, of course, limited to stylus instruments.

Figure 2.1 Vibrating stylus calibration rig, from Bendeli, Duruz, et. al. (1974)

Bendeli's instrumentation is shown in figure 2.1 and its operation is fairly self evident. The method has the following features:

- it provides a measurement of scale factor and linearity of low frequency recorders;
- it provides a measurement of transmission characteristics by applying a random signal to the vibration platform;
- it calibrates parameter meters by applying signals that generate desired profile shapes and characteristics;
- its displacement range is equal to $\pm 2 \mu m$ with -3 dB cut-off point at 800 Hz;
- calibration is via a spherical-ended capacitance probe with an AC resistance bridge, resolution 2 nm;
- its sensitivity is equal to 0.543 V μ m⁻¹ ± 0.5% per month;
- its non-linearity is less than 25 nm at extremities, but 10 nm over \pm 1.5 μ m.

Teague (1978) used interferometrically determined step-heights to calibrate other surface texture measuring instruments. The main sources of error using this technique are due to the geometry of the step (microscopic surface texture of the sides, non-flat surfaces and non-parallel planes) and errors in the interferometry. Teague derived a formula for the normalised uncertainty in a step height measurement, h, which is simply re-stated here

$$\frac{\delta h}{h} = \frac{\sigma_s}{h(n,s)} \left[1 + \left(\frac{\mathrm{d}\delta}{\mathrm{d}s}\right)^2 \right]^{\frac{1}{2}}$$
(2.1)

where *h* is given by

$$h = (n + g(s))\frac{\lambda}{2} \tag{2.2}$$

and *n* is the integer fringe number, g(s) is a general function of the fringe dispersion, *s* (the lateral fringe displacement over the fringe spacing), λ is the wavelength of light, σ_s is the variance in the measurement of *s* and δ is a small error in g(s). Teague then used least-squares methods to calculate the step-height from the measurement data and proved that the uncertainty in assigning a height value to a stylus step-profile is approximately equal to the *Ra* or *Rq* of the step's surface texture.

Tsukada & Kanada (1986) describe how it is difficult to specify, for an entire surface, any averaging parameter due to the enormous amount of data required. They also discussed the difficulties with relating the surface texture tolerances stated on real engineering drawings to the statistical surface texture parameters. By carrying out repeated measurements at different points on the same surface they reached the following conclusions:

- two-dimensional parameters, such as *Ra*, *Rq* and *Rz* when measured locally at different points on a surface, fluctuate according to a Gaussian distribution;
- each sample standard deviation, *S*, has a strong correlation with the population mean *F* and it can be expressed by *S* = *hF* (*h* being a constant);
- three-dimensional surface texture parameters are larger than their two-dimensional brethren.

Whitehouse (1988) discussed the various sources of uncertainty when measuring surface texture with a stylus instrument. He suggested using ruled or etched standards or crystal lattice spacings as calibration artefacts and discussed the need for a knowledge of the inherent elasticity in the instrument being used. He also advocated using x-ray interferometry to calibrate stylus instruments and described a system developed at Warwick University (Chetwynd, Siddons, *et. al.* 1983). The most critical area, with x-ray techniques, was the mechanical interface between the silicon monolith and the transducer.

Song (1988) discussed the use of D-type random profile specimens for calibration of surface texture instruments (see §3 on standards for a fuller description of a D-type specimen). The disadvantages of the D-type specimens were:

• *Ra* range limited from 1.5 to 0.2 μm;

- no smooth datum plane at both sides of the measuring area this makes comparisons awkward;
- large measurement error resulting from the phase error between the skid and stylus.

Song produced many more random profile specimens to overcome these problems.

Griffith & Grigg (1993) suggested using carbon-60 and other fullerene-like structures as calibration artefacts for surface texture measuring instruments requiring nanometre spacings. Franks (1993) used Amplitude-Wavelength space (Stedman 1987) to investigate the performance of various instruments and suggested ways of correlating different probing types by assessing the strength of their surface-probe interaction. Jörgensen, Garnoes, *et. al.* (1997) used waffle-plates to measure lateral non-linearity of scanning probe instruments and Fourier techniques to analyse the measurement data.

Haitjema (1997) reported on a EUROMET project (number 301) that compared methods of measuring depth-setting standards (step-heights). The project involved measuring five standards with groove widths of 0.01 mm and 0.1 mm and nominal depths of 32 nm, 64 nm, 160 nm, 1 μ m and 3.2 μ m. The samples were silicon substrates with a chromium overcoat and the definition of the groove was taken from ISO 5436. Instruments used were the Form Talysurf, Talystep, Nanostep and interference microscopes. If possible, participants were asked to carry out tests on the homogeneity of the specimens and the sensitivity of the depths to their definitions. Results showed that the depths are not sensitive to the definition to within a nanometre. The depth results were in good agreement for the small depths but the 3.2 μ m standard gave a sample standard deviation of around 40 nm. Haitjema suggests that this situation must improve and that agreement should be within 1% (*i.e.* 30 nm in 3 μ m).

NPL has been producing a number of sinusoidal specimens with varying period and amplitude to be used for calibrating surface texture measuring instruments (NMS Programme for Length 1996-1999). Replicas of these samples, and even replicas of the replicas can be produced (Daly, Ferguson, *et. al.* 1997). These samples are measured with a stylus instrument and mathematical techniques (similar to reversal methods) can be applied to extract the shape of the stylus. It is planned by NPL that the range of sinusoidal samples will be increased to include samples with multiple harmonics and varying phases. A number of comparisons of different instruments will then be carried out to assess the samples suitability as calibration artefacts. Watts, Sambles, *et. al.*

(1997) have developed a method using surface plasmons to optically measure the shape of a stylus.

Scheer & Stover (1998) have developed square-wave gratings with depths in the range 1 to 10 nm. These samples are measured using AFM and angle resolved scatter (ARS) and power spectral analysis is used to correlate instruments with differing bandwidths. The production techniques stem from the silicon wafer technologies. Their route to traceability is via the laser source of the ARS instrument.

Haitjema (1998) has recently reported on a thorough investigation of the Form Talysurf stylus instrument. He suggests that deviations in comparisons are caused by short wavelength cut-offs due to stylus geometry and probe resonance oscillations. His method of calibration involves splitting the instrument into a number of sub-systems and using various metrological tools to calibrate the system as a whole. These separate measurements are described below:

x axis calibration

x axis calibration is required for the definition of the cut-off spatial wavelength, the sampling length and to calculate spacing and hybrid parameters (for example Δq). He uses a graduated rule and time-based analysis (this requires a constant traversing speed) to calibrate the *x* axis internal scales.

z axis calibration

Haijema has three methods for calibrating the *z* axis. Firstly, the stylus traces a standard sphere with known radius and the instrument calculates a polynomial correction for arcuate movement of the probe. Secondly, the length of a 0.5 mm gauge block wrung to a flat surface is measured and a length difference of around 10 μ m is achieved by comparing two gauge blocks. The third method uses the set-up shown in figure 2.2. A piezoelectric actuator with capacitive feedback control (DPT) is connected to a function generator and used to move a small gauge block. The gauge block acts as a mirror for a differential plane mirror interferometer and as the contact point for the stylus. This is a very similar system to that of Bendeli, Duruz, *et. al.* (1974) except the traceability path is via the wavelength of the laser source as opposed to capacitance sensors. The same calibration procedures apply in both instruments.

Straightness datum

An optical flat ($Ra \approx 10$ nm) is traced and the known profile minus the measured profile gives the noise. For more confidence in the measurements, the same part of the datum is used in a measurement of different parts of the flat.

Filter definition and dynamic probe behaviour

The frequency and amplitude of the vibrating gauge are varied and the dynamics of the system are investigated. The filtered and unfiltered data are compared plus the Rq measured with the Talysurf to the standard deviation measured with the interferometer system. From these data probe resonances can be identified as well as the effect of stylus flight.

Figure 2.2 Vibrating stylus calibration rig, from Haitjema (1998)

Stylus geometry

The tip of an uncoated razor blade (< $0.1 \mu m$ tip radius) is measured and the stylus geometry calculated. Whitehouse (1994) also discusses using a razor blade to measure the stylus geometry plus an etched artefact with decreasing line-widths to measure geometry and wear.

Measuring force

For the static measuring force a mass balance is probed. Assuming that no stylus flight was apparent from the observations of the dynamic probe behaviour, the dynamic force will be less

than the static force and is not measured. This assumption is not necessarily true (Liu, Chetwynd, *et. al.* 1993). The force is also checked as the direction of probing is reversed.

The above examples illustrate that traceability and calibration in surface texture measurement involves a multitude of artefacts and measurement strategies. The next section will examine the ISO standards that apply in the field.

3. STANDARDS

In 1994 Whitehouse listed over one hundred standards for surface texture measurement, but as more countries adopt the International Standards, this number has dropped to around fifty. There are, however, many more standards that relate to surface texture in some way. The following is a list of surface texture standards compiled using the 1998 Standards Infobase.

AGMA 118.01 (1995)	Information sheet - gear tooth surface texture for aerospace gearing		
	(surface roughness, waviness, form and lay)		
AS 2382 (1981)	Surface roughness comparison specimens		
ASME B46.1 (1978)	Surface texture, (surface roughness, waviness and lay)		
ASTM F 1048- (1992)	Test method for measuring the effective surface roughness of optical		
	components by total integrated scatter		
ASTM F 1438- (1997)	Test method for determining surface roughness by scanning tunneling		
	microscopy for gas distribution system components		
ASTM F 1811- (1997)	Practice for estimating the power spectral density function and related		
	finish parameters from surface profile data		
BS 1134: PT1 (1988)	Assessment of surface texture - methods and instrumentation		
BS 1134: PT2 (1990)	Assessment of surface texture - guidance and general information		
BS 2634: PT1 (1987)	Specification for roughness comparison specimens - specification for		
	turned, ground, bored, milled, shaped and planed specimens		
BS 2634: PT2 (1987)	Specification for roughness comparison specimens - specification for		
	spark-eroded, shot blasted, grit-blasted and polished specimens		
BS 6393 (1987)	As ISO 5436-		
BS 6741: PT1 (1987)	Glossary of surface roughness terms - surface and its parameters		
BS 6741: PT2 (1987)	Glossary of surface roughness terms - measurement of surface		
	roughness parameters		
BS 7900 (1998)	Specification for examination of surface texture of precision steel		
	castings		
BS ISO 3274 (1998)	As ISO 3274-		
DD ENV 623 PT4	Advanced technical ceramics - monolithic ceramics - general and textural		
(1994)	properties - determination of surface roughness		
DIN 31670 PT8 (1986)	Plain bearings: quality assurance of plain bearings: checking the		
	geometrical tolerances and surface roughness of shafts, collars and		
	thrust collars		

DIN 31699 (1986)	Plain bearings: shafts, collars, thrust collars; geometrical tolerances and					
	surface roughness					
DIN 3969 PT1 (1991)	Surface roughness of tooth flanks; roughness parameters, surface					
	grades					
DIN 40686 SUPP2	Surfaces of dense ceramic components for electrical engineering;					
(1983)	determination of surface roughness					
DIN 4762 (1981)	Surface roughness; terminology; surface & its parameters					
DIN 4762 PT1 (1981)	Progressive ratio number values of surface roughness parameters					
DIN 4766 PT1 (1981)	Surface roughness associated with types of manufacturing methods;					
	attainable arithmetical mean value of peak-to-valley height Rz					
DIN 4766 PT2 (1981)	Surface roughness associated with types of manufacturing methods;					
	attainable arithmetical mean value Ra					
DIN 4768 (1974)	Determination of values of surface roughness parameters Ra, Rz, Rmax					
	using electrical contact (stylus) instruments; concepts and measuring					
	conditions					
DIN 4768 PT1 (1978)	Determination of surface roughness Ra, Rz, Rmax with electric stylus					
	instruments; basic data					
DIN 4772 (1979)	Electrical contact (stylus) instruments for measurement of surface					
	roughness by profile method					
DIN 4775 (1982)	Measuring of the surface roughness of workpieces; visual and tactile					
	comparison, methods by means of contact stylus instruments					
DIN 4776 (1990)	Determination of surface roughness parameters Rk, Rpk, Rvk, Mr1, Mr2					
	serving to decrease the material component of roughness profile					
DIN 4776 SUPP1	Measurement of surface roughness; parameters Rk, Rpk, Rvk, Mr1, Mr2					
(1990)	for description of material portion (profile bearing length ratio) in					
	roughness profile; measuring conditions and evaluation procedures					
DIN 54530 PT10	Testing of paper and board cores; surface quality; determination of					
(1993)	surface roughness and waviness					
DIN V ENV 623 PT4	As DD ENV 623 PT4					
ISO 1879-	Classification of instruments and devices for measurement and					
	evaluation of the geometrical parameters of surface finish					
ISO 1879- (1981)	Instruments for the measurement of surface roughness by the profile					
method - vocabulary						
ISO 1880- (1979) Instruments for the measurement of surface roughness by the						
	method - contact (stylus) instruments of progressive profile					
	transformation - profile recording instruments					
ISO 3274- (1975)	Geometrical product specifications (GPS) - surface texture: profile					
	method - nominal characteristics of contact (stylus) instruments					

ISO 4287/1-(1984)	Surface roughness - terminology - surface and its parameters					
ISO 4287/2- (1984)	Surface roughness - terminology - measurement of surface roughness					
	parameters					
ISO 4288- (1983)	Geometrical product specifications (GPS) - surface texture: profile					
	method - rules and procedures for the assessment of surface texture					
ISO 468- (1972)	Surface roughness - parameters, their values and general rules for					
	specifying requirements					
ISO 5436- (1985)	Calibration specimens - stylus instruments - types, calibration and use of					
	specimens					
JIS-B0601 (1982)	Surface roughness - definitions and designation					
JIS-B0652 (1973)	Instruments for the measurement of surface roughness by the					
	interferometric method					
JIS-K7104 (1976)	Methods for comparison of surface roughness of plastics					
MIL-I-45177 (1996)	Instrument, tracer, surface roughness					
NAS 30 (1956)	Surface roughness designation					
NAS 31 (1958)	Conversion table, surface roughness designations					
SIS 81 20 05 (1973)	Concrete surfaces. Determination of surface roughness					
SS 674 (1989)	Surface roughness - guidance for the choice of surface roughness					
SS 675 (1989)	Surface roughness - measurement of surface roughness by means of					
	electrical profile recording instruments					
SS ENV 623-4	As DD ENV 623 PT4					
SS ISO 4287-1	As ISO 4287/1-					
SS ISO 4287-2	As ISO 4287/2-					
SS ISO 4288 (1988)	Rules and procedures for the measurement of surface roughness using					
	stylus instruments					
SS ISO 468	As ISO 468-					
UNI ISO 1879	As ISO 1879-					
UNI ISO 1880	As ISO 1880-					
UNI ISO 4287/1	As ISO 4287/1-					
UNI ISO 4287/2	As ISO 4287/2-					
UNI ISO 4288	As SS ISO 4288					
UNI ISO 468	As ISO 468-					
VD/VDE 2615 (1988)	Surface roughness measurement of cylindrical gears and bevel gears by					
	means of electrical stylus-type instruments					

The most important standard as far as this report is concerned is ISO 5436 (1985): *Calibration specimens - stylus instruments - types, calibration and use of specimens*. This standard advocates the use of calibration specimens or artefacts to calibrate the operating characteristics of contact stylus instruments. Four different types of specimen are described:

Type A - These are used to measure the vertical magnification of an instrument. They come in two sub-groups: *Type A1* - a wide calibrated groove with a flat valley the size of which is dictated by the dimensions of the stylus tip, *Type A2* - same as A1 but with a rounded valley.

Type B - These are used to investigate the geometry of the stylus tip. They also come with two subgroups: *Type B1* - narrow grooves proportioned to be sensitive to the dimensions of the stylus; *Type B2* - two grids of equal *Ra*, one sensitive to the tip dimensions the other insensitive.

Type C - These are used to check parameter meters. They consist of a grid of repetitive grooves of similar shape (for example sinusoidal, triangular and arcuate waveforms) with low harmonic amplitudes. Type C specimens have well documented surface texture parameters and can be used to check the horizontal magnification.

Type D - These are used for an overall check of the meter calibration. They have irregular profiles in the direction of traverse, but they have the convenience of an approximately constant cross-section along their lengths.

All the specimens are made of suitably hard materials but glass or quartz is favoured. At the time of writing the type B1 specimens are still under development.

Calibration of the specimens is carried out using interferometry and the route to traceability is via the calibrated vacuum wavelength of the source. The use of interferometry usually requires the surface to be metalised and only shallow grooves can be measured without having to resort to specialised fringe analysis techniques. Problems arise due to the differences between the interaction of a contact stylus instrument and the surface and an optical beam and the surface. Examples quoted in the standard are the effects of the optical properties of the specimen material and the effects of oblique incidence. The magnitude of these effects is assumed negligible by the standard - a assumption that is not considered wise by the author.

ISO 5436 goes on to consider the calibration aspects of instruments with a datum skid, the effects of stylus wear, practical use of the standard specimen and error statements. Very little, if any, real consideration is given to the statement of uncertainty that would either accompany a calibrated instrument or the artefacts used to calibrate an instrument. This is thought to be an aspect of the standards that is not sufficiently covered.

NPL Report CLM 7

4. A FULLY TRACEABLE INSTRUMENT: NANOSURF IV

NanoSurf IV is a surface texture measuring instrument that measures displacements in two nominally orthogonal axes with an uncertainty of better than 1 nm. Many instruments can resolve sub-nanometre features but the user has no way of knowing whether the readout of the co-ordinates from the instrument is correct. They are fiducial indicators - not measuring instruments in the true sense of the word. NanoSurf IV is simply a stylus instrument but with traceable metrology inherent in its design. Figure 4.1 shows the subsystems of NanoSurf IV and illustrates how they are related. In addition to the core subsystems there is also instrumentation to input the signals from the interferometers and control the moving parts in the instrument, a computing system that automates a measurement and carries out any data analysis, plus systems to control the environment in which the instrument is housed. Each is described in detail elsewhere (Leach 2000). Figure 4.2 is a photograph of NanoSurf IV with only the electronic and computer subsystems not shown.

Figure 4.1 Schema of NanoSurf IV

Briefly, with reference to figure 4.1, the object to be measured is placed on a specimen table that in turn sits on the x slideway. The z slideway is used to bring the stylus into contact with the surface to be measured. The drive mechanism pushes or pulls the x slideway via a coupling rod and hence

moves the surface being measured whilst the stylus follows the surface. The displacements in the x and z axes are measured using two non-polarising Michelson interferometers.

Figure 4.2 The sub-systems of NanoSurf IV

5. UNCERTAINTY ANALYSIS OF NANOSURF IV

The uncertainty analysis of NanoSurf IV has been split into two sections. Firstly, the uncertainty of a length measurement made using the interferometers and secondly the uncertainty in a measurement of a surface roughness parameter. At all times the uncertainty calculation follows internationally accepted guidelines for the evaluation and expression of uncertainties as laid out in the *Guide to the Expression of Uncertainty in Measurement* (1993), herein simply referred to as the *GUM*.

5.1 COMBINED STANDARD UNCERTAINTY

The combined standard uncertainty, $u_c(L)$ is an estimate of the standard deviation of the distribution of possible values (or probability distribution) of a length measurement made using an interferometer, *L*. The combined standard uncertainty, as its name implies, is a quadrature sum of the uncertainties $u(x_i)$ of all the influence factors x_i , weighted by a sensitivity coefficient [§5.1.2 *GUM*]

$$u_{c}^{2}(L) = \sum_{i=1}^{N} c_{i}^{2} u^{2}(x_{i}) + \sum_{i=1}^{N} \sum_{j=1}^{N} \left[\frac{1}{2} c_{ij}^{2} + c_{i} c_{ijj} \right] u^{2}(x_{i}) u^{2}(x_{j})$$
(5.1)

where $u(x_i)$ are the standard uncertainties attributed to the influence quantities x_i , and where the sensitivity coefficients

$$c_{i} = \frac{\partial L}{\partial x_{i}}, \ c_{ij} = \frac{\partial^{2} L}{\partial x_{i} \partial x_{j}}, \ c_{ijj} = \frac{\partial^{3} L}{\partial x_{i} \partial^{2} x_{j}}$$
(5.2)

are the partial derivatives of the model equation. Note that equation (5.1) assumes the input quantities are uncorrelated and is only an approximation of the uncertainty.

It is convenient to think of equation (5.1) as consisting of two parts: terms containing $u^2(x_i)$, and cross terms containing $u^2(x_i)u^2(x_j)$ that take into account the degree of non-linearity in the model. The cross terms may be referred to as second order terms by some authors in the literature, including the *GUM*.

5.2 TYPE A AND TYPE B UNCERTAINTIES COMPONENTS

In the *GUM* there is considerable concern about distinguishing between Type A and Type B uncertainty components. The distinction between Type A and Type B uncertainties relates to the manner in which they are established and not how they are subsequently treated when they are combined. Type A uncertainties are those for which repeated measurements are made and the standard deviation is evaluated from the data, and used as the standard uncertainty. Type B uncertainties are those for which repeated measurements cannot simply isolate the influence, and the uncertainty must be referred to by some other means [§4.2, §4.3 *GUM*].

The rectangular distribution occurs in Type B uncertainty evaluation and is used frequently in this section. As explained in §4.4.5 of the *GUM*, if data to estimate the uncertainty distribution of an influence parameter are limited, often an adequate and useful approximation is to assume an upper +*a* and a lower -*a* bound for a range of equally probable values. The standard uncertainty (§4.3.7 *GUM*) is then given by $a/\sqrt{3}$. Similarly, a reading from a meter read-out of resolution *b* has a standard uncertainty of $b/\sqrt{12}$ [§F.2.2.1 *GUM*]; the reading is considered to be a rectangular distribution bounded by $\pm a = +b/2$ and -b/2.

5.3 DEGREES OF FREEDOM

The degrees of freedom, v_{x_i} are estimated for each of the $u(x_i)$. For Type A uncertainty evaluation, the degrees of freedom v = n - 1, where n is the number of observations taken to determine the arithmetic mean [§G.3.3 *GUM*]. In many cases, the uncertainty evaluation is Type B, and the degrees of freedom are estimated according to the relative uncertainty in the uncertainty $\Delta u/u$, or to put it another way - the judgement of reliability or confidence in the estimation of the uncertainty is given by [§G.4.2 *G UM*]

$$v_i \approx \frac{1}{2} \left[\frac{\Delta u(x_i)}{u(x_i)} \right]^{-2}.$$
(5.3)

Degrees of freedom for influence parameter uncertainties are combined in one step for the overall uncertainty budget effective degrees of freedom, by applying the Welch-Satterthwaite formula [§G.4.1 *GUM*]

$$v_{eff} = \frac{u_c^4(y)}{\sum_{i=1}^{N} \frac{u_i^4(y)}{v_i}}.$$
(5.4)

Degrees of freedom are always truncated to the next integer [§G.4.1 GUM].

5.4 EXPANDED UNCERTAINTY

It is desirable to express uncertainties so that for most of the measurements the measured value is within the uncertainty range of the 'true value'. The expanded uncertainty [§6.2 *GUM*]

$$U = ku_c(L) \tag{5.5}$$

is defined as the combined uncertainty multiplied by a coverage factor k. The value of the coverage factor is chosen depending on the level of confidence that would facilitate the interpretation of the uncertainty and the number of degrees of freedom. Most measurements are expressed with a value of k between two and three. k = 2 corresponds to a confidence level of approximately 95% assuming a high number of degrees of freedom [§6.2.2 *GUM*].

The steps involved in this uncertainty analysis are based upon those presented by Decker, Ulrich, *el. al.* (1998):

Step 1: Analyse the measurement process and identify the influence quantities.
Step 2: List any simplifying assumptions and their impact on the measurement.
Step 3: Form a mathematical model of the measurement in terms of the influence quantities (expressed in an optimal form).
Step 4: Evaluate the sensitivity coefficients of the influence quantities.

Step 5: Evaluate the standard uncertainties and degrees of freedom of the influence quantities.

Step 6: Determine correlated components.

Step 7: Calculate the combined and expanded uncertainties and degrees of freedom for the overall process.

5.5 MEASUREMENT PROCESS

At this stage only the displacement of either the cat's-eye in the z axis or the corner-cube in the x axis is analysed. The following influence quantities are considered:

Laser source:

- short and long-term calibration;
- frequency stability;
- intensity stability;
- beam characteristics;
- polarisation.

Interferometer characteristics:

- collimation/obliquity effects;
- quality of the optical components;
- air refractive index ;
- stray beams;
- diffraction effects;
- dead path error;
- air turbulence effects.

Metrology frame:

- thermal expansion;
- mechanical expansion and rigidity;
- Abbe offset;
- cosine error;
- co-ordinate orthogonality.

Detection system:

• linearity of photo-detectors;

- detector geometry;
- electronic noise;
- frequency response;
- resolution.

Computing/software:

• quality of mathematical fits and models.

By identifying the specific characteristics of the measurement procedure and considering the conditions of the laboratory, some of these influence quantities can be combined or be deemed negligible. When an influence quantity is deemed negligible it is because sound physical laws have been applied to model its magnitude and effect, or because it has been measured to be negligible. It is important to appreciate that the final uncertainty in length measurement is for a strict range of conditions and techniques.

5.6 ASSUMPTIONS

Evaluation of measurement uncertainty must be for a specific measurement scenario. The specifics of the measurement and the influence factors should be well defined before trying to consider their uncertainties. At this stage their are no simplifying assumptions apparent to the NanoSurf IV measurement technique. Of course, the assumption is made that operators of NanoSurf IV are applying best laboratory practice that is free of blunders. The ISO 9001 Quality Management System in operation at NPL should ensure this.

5.7 MATHEMATICAL MODEL OF THE MEASUREMENT

The primary influence factors recognised above can be expressed algebraically and combined to yield a mathematical model representing the measurement. Starting from first principles the measured displacement of one of the retro-reflectors in an ideal Michelson interferometer is given by

$$L_{\phi} = \frac{\lambda}{2\pi} \Delta \phi \tag{5.6}$$

where λ is the wavelength of the laser source and $\Delta \phi$ is the difference in the phase from the reference and measurement arms of the interferometer. A non-ideal interferometer will measure a length given by

$$L = L_{\phi} + L_{\Omega} + L_{n} + L_{t} + L_{m} + L_{A} + L_{d} + L_{T} + L_{i}$$
(5.7)

where L_{Ω} is a correction to the measured length for the effects of diffraction, L_n is a correction due to the change in the refractive index of the air in which the laser operates, L_t is that for thermal effects on the metrology frame, L_m is that for mechanical effects on the metrology frame, L_A is that for the imperfect optics and stray beams, L_d is that for the dead path length, L_T is that for the effects of air turbulence and L_j is that for the measurement set-up, *i.e.* Abbe and cosine errors. Once again, it assumed that the input quantities are uncorrelated.

5.8 EVALUATION OF THE SENSITIVITY COEFFICIENTS

The equation for the combined standard uncertainty is applied to the mathematical model describing the measurement. Simply making the substitution of the influence variables in place of the x_i in equation (5.1), the combined standard uncertainty can be written as

$$u_{c}^{2}(L) = c_{L_{\phi}}^{2} u^{2}(L_{\phi}) + c_{L_{\Omega}}^{2} u^{2}(L_{\Omega}) + c_{L_{n}}^{2} u^{2}(L_{n}) + c_{L_{t}}^{2} u^{2}(L_{t}) + c_{L_{m}}^{2} u^{2}(L_{m}) + c_{L_{A}}^{2} u^{2}(L_{A}) + c_{L_{d}}^{2} u^{2}(L_{d}) + c_{L_{T}}^{2} u^{2}(L_{T}) + c_{L_{t}}^{2} u^{2}(L_{f}) + \text{higher order terms}$$
(5.8)

where the sensitivity coefficients, c_i , for the first order terms are

$$c_{L_{\phi}} = \frac{\partial L}{\partial L_{\phi}}, \ c_{L_{\Omega}} = \frac{\partial L}{\partial L_{\Omega}}, \ c_{L_{n}} = \frac{\partial L}{\partial L_{n}}, \ c_{L_{t}} = \frac{\partial L}{\partial L_{t}}, \ c_{L_{m}} = \frac{\partial L}{\partial L_{m}}, \ c_{L_{A}} = \frac{\partial L}{\partial L_{A}}, \ c_{L_{d}} = \frac{\partial L}{\partial L_{d}}, \ c_{L_{T}} = \frac{\partial L}{\partial L_{T}}, \ c_{L_{f}} = \frac{\partial L}{\partial L_{f}}, \ c_{L_{f}} = \frac{\partial L}{\partial L_{f}},$$

Calculating the partial derivatives c_i , c_{ij} and c_{ijj} in equation (5.8) determines the sensitivity coefficients for the uncertainty in displacement measurement. In the case of equation (5.8) all of the first order terms are equal to unity and the higher order terms are equal to zero. Each term in equation (5.8) is now examined in detail.

5.9 STANDARD UNCERTAINTIES OF INFLUENCE QUANTITIES

5.9.1 Optical path difference

The combined uncertainty in the measurement of the optical path difference is given by

$$u_c^2(L_{\phi}) = c_{\Delta\phi}^2 u^2(\Delta\phi) + c_{\lambda}^2 u^2(\lambda) + \text{ higher order terms.}$$
(5.10)

The first order sensitivity coefficients are given by $(\lambda/2\pi)$ and $(\Delta\phi/2\pi)$ respectively. For convenience, c_{λ} is expressed as L/λ . The second-order nature of the all higher order coefficients means they are negligible.

5.9.2 Measured parameters influencing the measurement of the optical path difference

Vacuum wavelength

The laser wavelength is calibrated by beat frequency measurement against one of the standard NPL iodine-stabilised lasers. The wavelength stability is quoted as $\pm 1 \times 10^{\circ}$ over 24 hours with a drift of $\pm 1 \times 10^{\circ}$ between calibrations (every 2500 hours). Table 5.1 shows the uncertainty contributions.

Source	Size	k	Standard	Sensitivity	Contribution
			uncertainty	coefficient	
Primary laser accuracy	$2.5 \times 10^{-11} \lambda$	1	2.5 x 10 ⁻¹¹ λ	L/X	2.5 x 10 ⁻¹¹ L
Stability of laser	$1 \ge 10^{-9} \lambda$	1	$1 \ge 10^{-9} \lambda$	L/X	1 x 10 ⁻⁹ L
Yearly drift range	$1 \times 10^{8} \lambda$	1	$1 \mathrm{x} 10^{-8} \lambda$	L/X	1 x 10-8 L
	•	•	•		1 x 10 ⁻⁸ L

Table 5.1 Summation of uncertainties due to the laser source

Phase difference

The uncertainty in the phase difference measurement cannot easily be differentiated from other sources of uncertainty. Its effect is measured in §5.9.4 and summarised in table 5.2. Notice that the effect of this uncertainty is considered twice in the uncertainty analysis - once in combination with the calibration parameters of the laser wavelength and again in §5.12 as a purely random and experimentally determined parameter.

Source	Size	k	Standard	Sensitivity	Contribution
			uncertainty	coefficient	
Random phase fluctuation	0.1 nm	1	0.1 nm	1	0.1 nm
	0.1 nm				

Table 5.2 Summation of uncertainties due to fluctuations in the phase measurement

5.9.3 Overall uncertainty due to the measured optical path difference

Combining the values for the sensitivity coefficient and the measured parameters gives a total uncertainty in the measurement of the optical path difference of

$$u_c(L_{\phi}) = \sqrt{(1 \times 10^{-2} L)^2 + 0.01} \text{ nm}$$
 (5.11)

where *L* is in millimetres.

5.10 DIFFRACTION EFFECTS AND MISALIGNMENT

As the interferometers are illuminated by a laser source, the shift of the phase and changes in the curvature of the wavefronts lead to systematic errors, to which there must be added the error caused by misalignments. Consider an ideal interferometer illuminated by a monochromatic Gaussian beam that produces two interfering beams. No diffraction is assumed to occur in the optical system. The error in the fringe spacing when the interference pattern is focussed onto the detector is given by (Mana 1989)

$$\frac{2\Delta\lambda_0}{\lambda} = \left(\frac{1}{k^2 w_0^2}\right) \left(\frac{\left[1 + 2u^2 / w_f^2\right] e^{-2u^u / w_f^2} - 1}{e^{-2u^u / w_f^2} - 1}\right) + \left(\frac{2}{k^2 w_0^2}\right) \left(\frac{b}{2D}\right)^2$$
(5.12)

where λ is the wavelength of the laser source, λ_0 is the fringe displacement, k is the wavenumber, w_0 is the waist of the laser, u is the aperture radius, D is the absolute distance of the lens from the waist of the beam, f is the focal length of the lens and w_f and b are given by

$$w_f = 2\left(\frac{f}{b}\right)w_0\tag{5.13}$$

and

$$b = k w_0^2 \,. \tag{5.14}$$

Before calculating the error term given by equation (5.12) it is necessary to calculate the effective beam waist due to the collimating telescope. To do this a new waist is found for each of the optical elements by using the following (Self 1983)

$$\frac{1}{f} = \frac{1}{s''} + \frac{1}{s + z_R^2 / (s - f)}$$
(5.15)

and

$$z_R'' = m^2 z_R$$
 (5.16)

where *s* is the object to lens distance, *s*" is the image to lens distance, *m* is the magnification and z_R is the Rayleigh length or the distance over which the beam radius spreads by a factor of $\sqrt{2}$. The Rayleigh length is related to the beam waist by

$$z_R = \frac{\pi w_0^2}{\lambda}.$$
(5.17)

From the numerical values of the interferometer systems, $\Delta\lambda$ turns out to be less than 30 fm and is considered negligible.

Assuming the size of the detector is a lot larger than the spot size and that

$$\frac{\alpha}{\theta} \le \frac{z}{|z-l|} \tag{5.18}$$

where α is the misalignment angle, *l* is the distance between the waist and the retro-reflector, *z* is the distance between the waist and the detector, $\theta = \lambda / (\pi w_0)$, the normalised error can be reduced to

$$\frac{4}{\theta^2} \frac{2\Delta\lambda_0}{\lambda} = 1 - \left(\frac{v^2 - 2}{8v^2}\right)\sigma^2.$$
(5.19)

In equation (5.19) $v = w/w_a$, $\sigma = 2\alpha/(v\theta)$ and

$$w^{2} = w_{0}^{2} \left[1 + 4 \left(\frac{z}{b} \right)^{2} \right].$$
 (5.20)

Inserting values for the parameters in equation (5.19), even if the interferometer were misaligned by as much as $\alpha = 5^{\circ}$, $\Delta\lambda$ would only be equal to 0.1 pm. This source of uncertainty is, therefore, taken to be negligible.

According to the above the correction for the effects of diffraction and misalignment of the interferometer, $L_{\Omega} = 0$, as are its associated uncertainties.

5.11 AIR REFRACTIVE INDEX

When performing optical interferometry in air, it is important to correct the laser wavelength for the refractivity of the air through which it passes. The correction factor, the refractive index, is applied to the vacuum wavelength of the light emitted by the laser

$$\lambda = \frac{\lambda_{vac}}{n} \tag{5.21}$$

where λ_{vac} is the wavelength in vacuum and *n* is the refractive index of air, for ambient conditions.

5.11.1 Equations for the refractivity of air

In 1965 Edlén reviewed the most recent work, collated findings and issued new formulae for the dispersion of air. The formulae derived in that paper have since been widely used to correct for the refractivity of air, with a minor correction to the humidity term suggested by Birch & Downs (1988) and a further correction suggested by Bönsch and Potulski (1998) for the latest standard conditions. The calculation starts with the dispersion of dry air for the new standard conditions, temperature t = 20 °C (ITS-90), pressure p = 100 000 Pa and 0.04% carbon dioxide content, describing the refractivity of standard air dependent on the wavenumber $\sigma = 1/\lambda$.

$$(n-1)_{N}.10^{8} = 8091.37 + \frac{233\ 3983}{130-\sigma^{2}} + \frac{15\ 518}{38.9-\sigma^{2}}.$$
(5.22)

A CO₂ content *x*, differing from 0.04%, changes the refractivity to

$$(n-1)_{x} = (n-1)_{N} [1 + 0.5327(x - 0.0004)].$$
(5.23)

The deviation of temperature and pressure from the reference conditions is taken into account by

$$(n-1)_{tp} = \frac{(n-1)_x p}{93214.6} \frac{1+10^{-8} (0.5953 - 0.009876t) p}{1+0.003661t}.$$
(5.24)

The influence of water vapour with partial pressure f is calculated, which results in the refractive index for moist air

$$n_{tpf} - n_{tp} = -f(3.802 - 0.0384\sigma^2).10^{-10}.$$
(5.25)

The uncertainty attributed to the empirical determination of the numerical coefficients in this equation $\pm 1 \times 10^{-8}$ at the one standard deviation level of confidence (Birch & Downs 1994).

The length correction that accounts for the refractive index of air is given by

$$L_n = -nL \tag{5.26}$$

and its combined standard uncertainty

$$u_{c}^{2}(L_{n}) = \left(\frac{\partial L_{n}}{\partial p}\right)^{2} u_{c}^{2}(p) + \left(\frac{\partial L_{n}}{\partial x}\right)^{2} u_{c}^{2}(x) + \left(\frac{\partial L_{n}}{\partial t}\right)^{2} u_{c}^{2}(t) + \left(\frac{\partial L_{n}}{\partial t}\right)^{2} u_{c}^{2}(f) + \left(\frac{\partial L_{n}}{\partial t}\right)^{2} u_{c}^{2}(f)$$

Calculating the partial derivatives and putting in the values of the reference conditions the sensitivity coefficients are given by (see §5.11.2 for the reference values of humidity)

$$\left(\frac{\partial L_n}{\partial p}\right) = 2.68 \times 10^{-9} L / Pa$$

$$\left(\frac{\partial L_n}{\partial x}\right) = 1.4 \times 10^{-10} L / ppm$$

$$\left(\frac{\partial L_n}{\partial t}\right) = -9.30 \times 10^{-7} L / ^{\circ} C.$$

$$\left(\frac{\partial L_n}{\partial f}\right) = -3.8 \times 10^{-10} L / Pa$$

$$\left(\frac{\partial L_n}{\partial \lambda}\right) = 1.22 \times 10^{-5} L / \mu m$$
(5.28)

The largest cross term is given by

$$\frac{1}{2}c_{tt}^{2} + c_{t}c_{ttt} = 8 \times 10^{-9} L^{2} / {}^{\circ}\text{C}^{2}, \qquad (5.29)$$

but this would multiply $u^2(x_t)$ and it is therefore considered that all cross terms are negligible.

5.11.2 Conversion of humidity units

The humidity is measured using a dewpoint hygrometer, which displays results in the form of °C dewpoint temperature. Magnus' relation (BS 1339: 1965) is used to convert °C dewpoint into partial pressure of water vapour for use by the Edlén equations and is given by

$$f = 10^{\left(0.7857 + \frac{7.5t_{dp}}{237.3 + t_{dp}}\right)}$$
(5.30)

where t_{dp} is the dewpoint temperature in °C. Partially differentiating gives

$$\left(\frac{\partial f}{\partial t_{dp}}\right) = \ln(10) \times \left[\frac{-7.5t_{dp}}{\left(237.3 + t_{dp}\right)^2} + \frac{7.5}{237.3 + t_{dp}}\right] \times 10^{\left(0.7857 + \frac{7.5t_{dp}}{237.3 + t_{dp}}\right)}.$$
(5.31)

In most dimensional metrology laboratories the humidity is controlled at around 10 °C dewpoint. Substituting t_{dp} = 10 °C gives

$$\left(\frac{\partial}{\partial}_{dp}\right) = 82.2 \operatorname{Pa} \, {}^{\mathrm{o}}\mathrm{C}^{-1}.$$
(5.32)

Hence a variation in humidity of 1 °C dewpoint alters the partial pressure by 82.2 Pa and hence the refractive index by 3.12×10^{8} .

5.11.3 Measured parameters influencing the refractive index of air

Air temperature

The air temperature is measured by platinum resistance thermometers (PRTs) inside the anechoic chamber and close to the object being measured. The calibration certificate of the PRTs states a calibration uncertainty of \pm 0.005 °C at a 95% confidence level. The self-heating of the PRT (Downs, Ferris, *et. al.* 1990) was assessed by observing a typical PRT resistance reading as the current was increased by a factor of $\sqrt{2}$ from its initial value of 1 mA. Table 5.3 summarises the contributions due to the air temperature measurement.

Air pressure

The pressure transducer is located inside the equipment rack and is connected to the anechoic chamber via PVC tubing. The calibration certificate quotes an uncertainty of \pm 5 Pa at a confidence level of 95% for the primary standard, and shows a variation of \pm 20 Pa in calibrated results. Table 5.4 summarises the contributions due to the measurement of air pressure.

Source	Size	k	Standard	Sensitivity	Contribution
			uncertainty	coefficient	
Resistance bridge accuracy	3 mK	√3	1.7 mK	9.30 x 10 ⁻⁷ L/K	1.6 x 10 ⁻⁹ L
PRT calibration	5 mK	1.96	2.6 mK	9.30 x 10 ⁻⁷ L/K	2.4 x 10 ⁻⁹ <i>L</i>
ITS90 equations	0.13 mK	1	0.13 mK	9.30 x 10 ⁻⁷ L/K	1.2 x 10 ⁻¹⁰ L
PRT inter-calibration drift	2 mK	1	2 mK	9 30 x 10 ⁻⁷ L/K	19 x 10 ⁻⁹ L
	2 1110	1	2 1110	9.00 X 10 E/ K	1.9 × 10 E
PRT - air lag	10 mK	√3	5.8 mK	9.30 x 10 ⁻⁷ L/K	5.4 x 10 ⁻⁹ L
Self heating of PRT	12 mK	√3	6.9 mK	9.30 x 10 ⁻⁷ L/K	6.4 x 10 ⁻⁹ L
Ŭ				,	
	9.1 x 10 ⁻⁹ L				

Table 5.3 Summation of uncertainties due to air temperature measurement

Source	Size	k	Standard	Sensitivity	Contribution
			uncertainty	coefficient	
Primary standard uncertainty	5 Pa	1.96	2.6 Pa	2.68 x 10 ⁻⁹ L/Pa	7.0 x 10 ⁻⁹ L
Sensor variability	20 Pa	√3	11.6 Pa	2.68 x 10 ⁻⁹ L/Pa	3.1 x 10 ⁻⁸ L
Sensor resolution	1 Pa	√12	0.3 Pa	2.68 x 10 ^{.9} L/Pa	8.0 x 10 ⁻¹⁰ L
			•		3.2 x 10 ⁻⁸ L

Humidity

The humidity transducer is located inside the equipment rack and is connected to the anechoic chamber via PVC tubing. The calibration certificate quotes an uncertainty of \pm 0.2 °C at a

confidence level of 95%. Table 5.5 summarises the contributions due to the measurement of humidity.

Source	Size	k	Standard	Sensitivity	Contribution	
			uncertainty	coefficient		
Dewpoint meter calibration	0.2 °C DP	1.96	0.10 °C DP	3.0 x 10 ⁻⁸ L/°C DP	3.0 x 10 ⁻⁹ L	
Magnus' equation	0.2 °C DP	√3	0.12 °C DP	3.0x10 ⁻⁸ L/°C DP	3.6 x 10-9 L	
Interface resolution	0.5 °C DP	√12	0.14 °C DP	3.0 x 10⁻ଃ L/°C DP	4.2 x 10 ⁻⁹ L	

Table 5.5 Summation of uncertainties due to air humidity measurement where DP = Dewpoint temperature

Carbon dioxide content

Typical changes in the carbon dioxide content in a laboratory, due to such things as human respiration, can be up to 100 ppm (Downs 1998). Table 5.6 shows the effect of this departure on the uncertainty due to the refractive index.

Source	Size	k	Standard	Sensitivity	Contributio	
			uncertainty	coefficient	n	
Departure from standard conditions (<i>i.e.</i> 400 ppm)	100 ppm	1	100 ppm	1.47 x 10 ⁻¹⁰ L/ppm	1.47 x 10 ⁻⁸ L	

Table 5.6 Summation of uncertainties due to air carbon dioxide content

Vacuum wavelength

The combined uncertainty attributed to the vacuum wavelength through its contribution to the refractive index of air is very small. Using values from table 5.1 and equation (5.28) gives

$$u_c(\lambda) = 8 \times 10^{-14} \, L \tag{5.33}$$

which is considered negligible.

Uncertainty of the Edlén equations

Table 5.7 presents the contribution due to the uncertainty in the Edlén equations.

Source	Size	k	Standard	Sensitivity	Contribution
			uncertainty	coefficient	
Accuracy of Edlén equations	3 x 10 ⁻⁸	3	1 x 10 ⁻⁸	L	1.0 x 10 ⁻⁸ L
					1.0 x 10 ⁻⁸ L

Table 5.7 Summation of uncertainties due to the Edlén equations

5.11.4 Overall uncertainty due to the refractive index of air measurement

Combining the values for the sensitivity coefficients and the measured parameters gives a total uncertainty in the refractive index measurement of

$$u_c(L_n) = 3.8 \times 10^{-8} \, L \tag{5.34}$$

where *L* is the measured length.

5.12 EFFECTS ON THE METROLOGY FRAME AND DETECTOR ELECTRONICS

It is very difficult to separate the effects of thermal and mechanical changes on the metrology frame plus the effects of the detector electronics and data processing. It is also very difficult to rigorously model these effects. For these reasons, the stability of the metrology frame, detection system and mathematical algorithms has been experimentally measured with no regard as to the source of any fluctuations, *i.e.* a correction for the stability of the metrology frame and detection system is equal to $(L_t + L_m + L_T + L_{\phi})$. It must also be remembered that other random uncertainty
contributions, such as refractive index fluctuations, will also be present in these measurements. The measured uncertainty term is, therefore, expected to be a pessimistic value.

To measure the stability of the metrology frame and detection system, the output of the interferometers was monitored over a one minute period with the retro-reflectors stationary. The results are given in table 5.8. During the experiments the humidity and barometric pressure were monitored for stability - any noticeable drift or large fluctuations voided the experiment.

Source	Size	k	Standard	Sensitivity	Contribution
			uncertainty	coefficient	
<i>x</i> axis dimensional change	0.1 nm	1	0.1 nm	1	0.1 nm
					0.1 nm

Table 5.8 Summation of uncertainties due to dimensional fluctuations of the metrology frame

5.13 EFFECTS OF IMPERFECT OPTICS AND STRAY BEAMS

Due to the very high spatial and temporal coherence of the laser source, stray light can interfere with beams reflected from the surfaces present in reference and measurement arms of the interferometers. The dominant effects are usually due to unwanted reflections and isolated strong point scatterers, both leading to random and non-random spatial variations in the scattered phase and amplitude (Hariharan 1997). This analysis does not attempt to isolate sources of stray reflection.

Assuming the stray light affects one beam only, its amplitude, a_s , adds vectorily to the amplitude of the main beam, a as in figure 5.1.

Figure 5.1 Phase shift of a beam produced by coherent stray light that has travelled an additional path

In the case of a Michelson interferometer, the complex amplitude at any point in the interference pattern is obtained by summing the complex amplitude of the stray light and the complex amplitudes of the beams reflected from the reference and test surfaces. If we assume that the beams reflected from the reference and test surfaces have unity intensity, the resultant complex amplitude is given by the relation

$$a(x, y) = \left| 1 + e^{\left[-i\phi(x, y) \right]} + a_s(x, y) e^{\left[-i\phi_s(x, y) \right]} \right|$$
(5.35)

where $\phi_s = (2\pi/\lambda)p$, and *p* is the difference in the lengths of the optical paths traversed by the stray light and by the test beams relative to the beam reflected from the reference surface. The intensity in the interference pattern is then

$$I(x, y) = a^{2}(x, y) = 2 + |a_{s}|^{2} + 2a_{s}\cos\phi_{s} + 2[1 + a_{s}\cos\phi_{s}]\cos\phi + 2a_{s}\sin\phi_{s}\sin\phi.$$
(5.36)

Assuming $a_s \approx 1$, $\Delta \phi$ can be found by equating the following

$$\left[1 + a_s \cos\phi_s\right] \cos\phi + a_s \sin\phi_s \sin\phi \equiv A\cos(\phi - \Delta\phi).$$
(5.37)

After some simple trigonometry and assuming $\Delta \phi$ is a small angle the magnitude of the phase error is given by

$$\Delta \phi \approx a_s \sin \phi_s \,. \tag{5.38}$$

To minimise the effects of stray reflections all the optical components are thoroughly cleaned, the retro-reflectors are mounted at a non-orthogonal angle to the beam propagation direction (to avoid reflections off the front surfaces) and all the non-critical optical surfaces are anti-reflection (AR) coated. It is extremely difficult, if not impossible, to measure the amplitude of the stray light, simply because it propagates in the same direction as the main beams. The value of a_s is taken to be equal to the value of the reflection coefficient of the AR coat, $a_s = 0.004$. This gives a value for $\Delta \phi$ of ± 0.4 nm. Table 5.9 summarises this uncertainty contribution.

Source	Size	k	Standard	Sensitivity	Contribution
			uncertainty	coefficient	
Uncertainty due to stray light	0.4	√3	0.23	1	0.23 nm
					0.23 nm

Table 5.9 Summation of uncertainties due to stray light

5.14 DEAD PATH LENGTH UNCERTAINTY

Dead path length, *d*, is defined as the difference in distance in air between the reference and measurement retroreflectors and the beamsplitter when the interferometer measurement is initiated (Zanoni 1988). Dead path error occurs when there is a non-zero dead path and environmental conditions change during a measurement. The equation below yields the displacement, *D*, for a single pass interferometer such as those used on NanoSurf IV

$$D = \frac{N\lambda_{vac}}{n_2} - \frac{\Delta nd}{n_2}$$
(5.39)

where *N* is half the number of fringes counted during the displacement, n_2 is the refractive index at the end of the measurement, Δn is the change in refractive index over the measurement time: that is $n_2 = n_1 + \Delta n$, and n_1 is the refractive index at the start of the measurement. The second term on the right hand side of equation (5.39) is the dead path error, L_{dp} .

Dead path error is corrected for in the software but there is still an uncertainty in the correction given by

$$u_{c}^{2}(L_{dp}) = \left(\frac{\partial L_{dp}}{\partial n_{1}}\right)^{2} u_{c}^{2}(n_{1}) + \left(\frac{\partial L_{dp}}{\partial n_{2}}\right)^{2} u_{c}^{2}(n_{2}) + \left(\frac{\partial L_{dp}}{\partial d}\right)^{2} u_{c}^{2}(d) + \text{higher order terms} \quad (5.40)$$

The dead path imposes several critical measurement conditions on NanoSurf IV. Firstly, a sample must always be mounted such that the initial position is at the position of zero dead path. This can only be achieved to within 1 mm and $u_c^2(d)$ is ± 1 mm using a steel rule (plus the optical elements will be affected by thermal expansion and refractive index variations). Also, the environmental

conditions have to be monitored. Any drifts in temperature of greater than \pm 0.1 °C and pressure greater than \pm 10 Pa void a measurement. Note that higher order terms in equation (5.40) are all negligible. Table 5.10 summarise the uncertainty in the measurement and correction for the dead path length.

Source	Size	k	Standard	Sensitivity	Contribution
			uncertainty	coefficient	
Uncertainty due dead path	0.20	√3	0.12	1	0.12 nm
					0.12 nm

Table 5.10 Summation of uncertainties due to dead path

5.15 UNCERTAINTIES DUE THE MEASUREMENT SET-UP

5.15.1 Cosine error

There will always be some misalignment of the measurement axis to the axis of motion of the stage. The measurement axis is the central line parallel to the in and out beams to and from the measurement retroreflector. The misalignment manifests itself as an error in the measured length that is directly proportional to the cosine of the angle between the measurement axis and the axis of motion of the stage. The cosine error always causes the interferometer to measure shorter than the actual distance travelled by the stage.

The cosine error in the *x* axis can be measured (and minimised) by removing the beamsplitter, attaching a mirror to the front of the measurement retroreflector and auto-reflecting the laser beam onto the output aperture of the laser. The alignment can then be checked as the stage is moved through its full range. The worst case measured was a displacement from the aperture of less than 1 mm for a path length of around 1 m. This corresponds to a cosine error of $1.5 \times 10^{-10} L$ and is negligible.

Provided the *z* interferometer block can be set up so as to get interference, the small length over which it operates ensures a negligible cosine error in this axis.

NPL Report CLM 7

5.15.2 Abbe error

The causes and effects of the Abbe error are described elsewhere (Leach 2000). The Abbe offset has been made negligible in the z axis by virtue of the interferometer and probe design, *i.e.* the displacement measuring axis is co-axial with the displacement to be measured. In the x axis there can be an Abbe offset of up to 5 mm.

NS4 Slideway Pitch Errors

Figure 5.2 *x* axis slideway pitch errors

To determine the Abbe error in the x axis, the straightness of the slideway must be determined. This was carried out by setting up an autocollimator with a small aluminised microscope coverslip epoxied to the front of the specimen mounting plate. To ensure that the slideway and autocollimator had the same mechanical earth (the stainless steel vibration isolation plate) a small, lightweight autocollimator was constructed from a compact disc reading head (Sony Model D50 Mk II, Armstrong & Fitzgerald 1992). The autocollimator has a resolution of 0.01 second of arc and was calibrated using an NPL indexing table (Moore 1440). Figures 5.2 and 5.3 show the straightness results for the x axis slideway. Note that there is no Abbe sensitivity to roll. From both the graphs it is apparent that the repeatability of these measurements is excellent when the direction of travel is reversed.

Over the full 35 mm travel range the pitch and yaw errors correspond to Abbe errors of 3.2 nm and 3.6 nm respectively. However, a typical measurement of surface texture would take place over

44

less than 10 mm and over this displacement the Abbe error for both pitch and yaw is 0.84 nm. Table 5.11 shows the contribution of the Abbe error to the uncertainty.

NS4 Slideway Yaw Errors

Figure 5.3 *x* axis slideway yaw errors

Source	Size	k	Standard	Sensitivity	Contribution
			uncertainty	coefficient	
Uncertainty due <i>x</i> straightness	0.02 arc sec	√3	0.49	1	0.49 nm
Resolution of autocollimator	0.01 arc sec	√12	0.07	1	0.07 nm
<u> </u>		•	•		0.59 nm

Table 5.11 Summation of uncertainties due to Abbe error

5.16 DEGREES OF FREEDOM OF THE INFLUENCE QUANTITIES

Table 5.12 lists the degrees of freedom associated with each source of measurement uncertainty plus the magnitude of the uncertainty.

Applying equation (5.4) gives an effective number of degrees of freedom of 45.

5.17 EXPANDED UNCERTAINTY FOR A LENGTH MEASUREMENT

Adding the uncertainty contributions in table 5.12 in quadrature and multiplying by a coverage factor of k = 2 (justified with 45 degrees of freedom), gives the following combined standard uncertainty

$$u_c^{2}(L_x) = 2 \times \sqrt{0.66^2 + 1.5 \times 10^{-3} L^2}$$
(5.41)

Source of uncertainty	Uncertainty/nm	Degrees of freedom
Optical path difference	$\sqrt{(1 \times 10^{-2} L)^2 + 0.01}$	19
Air refractive index	$3.8 \times 10^{-2} L$	∞
Metrology frame & detection system	0.10	19
Imperfect optics & stray beams	0.23	∞
Deadpath length	0.12	∞
Abbe error	0.59	9

Table 5.12 Sources of uncertainty and their associated degrees of freedom. *L* is in millimetres.

As an example, if L_z were equal to 1 mm, then $u_c^2(L_z) = 1.322$ nm and if $L_z = 1$ nm, $u_c^2(L_z) = 1.320$ nm. It is clear that in most cases the length dependent uncertainty contribution is negligible. The uncertainty in NanoSurf IV is quoted as 1.320 nm at k = 2 with 45 degrees of freedom.

5.18 UNCERTAINTIES IN MEASURING SURFACE TEXTURE PARAMETERS

In order to put a meaningful number to measured surface texture data and aid in understanding the functionality of a surface, various parameters, such as the average or peak-to-valley height, can be calculated. It is extremely rare to see rigorous uncertainty analysis applied to the calculation of uncertainty in a parameter. This section applies the guidelines laid down in the *GUM* to calculate the uncertainty in a given surface texture parameter. Only the parameters advocated by the ISO standards are considered. Note that the effects of any mechanical, electrical or computational filtering of the measured data are not considered here (with the exception of the calculation of the average reference line).

5.19 REFERENCE DATA

To obtain a reference data set, a 0.2 mm trace of an optical flat (NPL specimen D19) was taken at a speed of 0.1 mm per minute. The *x* and *z* displacements were measured at 2048 sampling points. A first-order polynomial least-squares fit was removed from the data - this filtering is necessary due to the lack of levelling of the specimen. The dominant frequency component that is clearly evident in the trace is the resonant frequency of the probing system. As this is only a reference set of data, no post measurement filtering or de-trending has been carried out (Rothe, Duparré, *et. al.* 1994). All calculations were carried out using MATLAB (MathWorks Inc.) to ensure the reliability of any mathematical algorithms. Figure 5.4 presents the first 150 data points.

Figure 5.4 The reference data

5.20 UNCERTAINTY IN THE CALCULATION OF THE AVERAGE REFERENCE LINE

Before most parameters can be calculated a average reference line has to be fitted to the x and z data. The fitting equation is given by

$$z = a + bx \tag{5.43}$$

where a is the intercept on the z axis and b is the gradient. Uncertainties in a an b must be propagated through to the parameters.

To find u(a) and u(b) we must carry out a least-squares fit to the measured data assuming there are errors in both x and z. In the general case, this problem has no analytical solution, but when u(x) can be assumed proportional to u(z), as is the case with NanoSurf IV, the problem can be circumvented (Bruzzone & Moreno 1998). When only uncertainties in z are considered, the least-squares fitting requires the minimisation of

$$\chi^{2} = \sum_{i=1}^{n} \frac{\left(z_{i} - a - bx_{i}\right)^{2}}{u^{2}(z_{i})}.$$
(5.44)

The problem has the solutions

$$b^* = \frac{SS_{xz} - S_x S_z}{SS_{xx} - S_x^2}$$
 and $a^* = \frac{S_{xx} S_z - S_x S_{xz}}{SS_{xx} - S_x^2}$ (5.45)

where

$$S = \sum_{i=1}^{n} \frac{1}{u^{2}(z_{i})} \qquad S_{x} = \sum_{i=1}^{n} \frac{x_{i}}{u^{2}(z_{i})} \qquad S_{z} = \sum_{i=1}^{n} \frac{z_{i}}{u^{2}(z_{i})} \qquad S_{z} = \sum_{i=1}^{n} \frac{x_{i}z_{i}}{u^{2}(z_{i})} \qquad S_{zz} = \sum_{i=1}^{n} \frac{x_{i}z_{$$

The fit parameters' uncertainties are then given by

$$u(a^*) = \sqrt{\frac{S_{xx}}{SS_{xx} - S_x^2}} \text{ and } u(b^*) = \sqrt{\frac{S}{SS_{xx} - S_x^2}}.$$
 (5.47)

If errors in both co-ordinates are considered, the effective variance method states that the expression (Barker & Diana 1974)

$$\chi^{2} = \sum_{i=1}^{n} \frac{\left(z_{i} - a - bx_{i}\right)^{2}}{u^{2}(z_{i}) + u^{2}(x_{i})}$$
(5.48)

must be minimised. Equation (5.48) has no analytical solution in the general case. However, provided u(x) = du(z), where *d* is a constant (unity in the case of NanoSurf IV), equation (5.48) reduces to

$$\chi^{2} = \frac{1}{1+b^{2}d^{2}} \sum_{i=1}^{n} \frac{(z_{i}-a-bx_{i})}{u^{2}(z_{i})}.$$
(5.49)

Minimisation of equation (5.49) leads to a quadratic expression for *b*, but only the root given here is to be considered (Bruzzone & Moreno 1999)

$$db = \frac{1}{2} \left\{ -\frac{1}{db^*} + \frac{db^*}{r^2} + \frac{1}{db^*} \left[\left(1 - \frac{(db^*)^2}{r^2} \right)^2 + 4(db^*)^2 \right]^{1/2} \right\}$$
(5.50)

where r is the linear correlation coefficient, given by

$$r^{2} = \frac{\left(SS_{xz} - S_{x}S_{z}\right)^{2}}{\left(SS_{xx} - S_{x}^{2}\right)\left(SS_{zz} - S_{z}^{2}\right)}.$$
(5.51)

Once the slope *b* has been obtained, it is possible to evaluate *a* by means of

$$a = \frac{S_z - S_x b}{S}.$$
(5.52)

For the case of proportional errors in x and z, the uncertainties in a and b can be found from the following

$$u^{2}(b) = u^{2}(b^{*})f(db^{*}, r^{2})$$
(5.53)

and

$$u^{2}(a) = \frac{1+b^{2}d^{2}}{S} \left\{ 1 + [u^{2}(a^{*})S - 1]f(db^{*}, r^{2}) \right\}$$
(5.54)

where

$$f(db^*, r^2) = (1 + b^2 d^2)^2 \frac{1 + (db^*)^2 / r^2}{\left[1 + d^2 (2bb^* - b^{*2} / r^2)\right]^2}.$$
(5.55)

For the reference data set the uncertainties are u(a) = 0.46 nm and $u(b) = 8.7 \times 10^{-6}$. Assuming these uncertainties are rectangularly distributed, they must be divided by $\sqrt{3}$. Once the calculated least-squares curve has been removed from the data, a given value of z_i is given by

$$z_{i}' = z_{i} - (a + bx_{i}).$$
(5.56)

An uncertainty in z' is now given by the following equation

$$u^{2}(z') = u^{2}(z) + u^{2}(a) + x^{2}u^{2}(b) + b^{2}u^{2}(x).$$
(5.57)

5.21 UNCERTAINTIES IN THE PARAMETERS

A list and short description of the surface texture parameters in ISO 4287: 1997 (*Geometrical product specifications (GPS) - Surface texture: Profile method - Terms, definitions and surface texture parameters*) is given in table 5.13. Where a parameter only applies to one length measurement, for example *Rp*, equation 5.41 should be applied appropriately. Where a parameter is the sum of parameters calculated for their corresponding sampling lengths over the entire evaluation length, a simple quadrature sum should be applied.

Name & symbol	Short description
profile peak height, <i>Zp</i>	distance between the <i>x</i> axis and the highest point of the profile peak
profile valley height, <i>Zv</i>	distance between the <i>x</i> axis and the lowest point of the profile valley
profile element height, Zt	sum of the height of the peak and depth of the valley of a profile element
profile element width, <i>Xs</i>	length of the <i>x</i> axis segment intersecting with the profile element

material length of profile at level c, M(c) sum of the section lengths obtained, intersecting with

maximum profile peak height, *Rp* maximum profile valley depth, *Rv* maximum height of profile, *Rz*

mean height of profile elements, Rc

the profile element by a line parallel to the x axis at a given level c

largest profile peak height within a sampling length largest profile valley depth within a sampling length sum of height of the largest profile peak height and the largest profile valley within a sampling length

mean value of the profile element heights Zt within a sampling length

$$Rc = \frac{1}{m} \sum_{i=1}^{m} Zt_i$$

total height of profile, Rt sum of the height of the largest profile peak height Zpand the largest profile valley depth Zv within the evaluation length

arithmetical mean deviation of the arithmetic mean of the absolute ordinate values Z(x)assessed profile, Rawithin a sampling length

$$Ra = \frac{1}{l} \int_{0}^{l} |Z(x)| dx$$

root mean square deviation of the root mean square value of the ordinate values Z(x) with assessed profile, Rq the sampling length

 $Rq = \sqrt{\frac{1}{l} \int_{0}^{l} Z^{2}(x) dx}$

skewness of the assessed profile, Rsk

quotient of the mean cube value of the ordinate values Z(x) and the cube of Rq respectively within the sampling length

$$Rsk = \frac{1}{Rq^3} \left[\frac{1}{l} \int_0^l Z^3(x) dx \right]$$

kurtosis of the assessed profile, Rku

quotient of the mean quartic value of the ordinate values Z(x) and the fourth power of Rq respectively within the sampling length

$$Rku = \frac{1}{Rq^4} \left[\frac{1}{l} \int_0^l Z^4(x) dx \right]$$

mean width of the profile elements,mean value of the profile element widths Xs within aRSmsampling length

$$RSm = \frac{1}{m} \sum_{i=1}^{m} Xs_i$$
root mean square slope of the root mean square value of the ordinate slopes dZ/dX ,
assesses profile, $R\Delta q$ within the sampling length
material ratio of the profile, $Rmr(c)$ ratio of the material length of the profile elements $Ml(c)$
at a given level c to the evaluation length
 $Rmr(c) = \frac{Ml(c)}{l}$
profile section height difference, $R\delta c$ vertical distance between two section levels of given
material ratio
 $R\delta c = C(Rmr1) - C(Rmr2); \ (Rmr1 < Rmr2)$
relative material ratio, Rmr
material ratio determined at a profile section $R\delta c$,
related to reference C0
 $Rmr = Rmr(C1)$
where
 $C1 = C0 - R\delta c$
 $C0 = C(Rmr0)$

Table 5.14 Surface texture parameters

5.21.1 Uncertainty in Ra

The equation given in table 5.14 for *Ra* is for continuous data sampling within the sampling length. For the case of a real surface texture measuring instrument, with a finite sampling length, *Ra* is given by

$$Ra = \frac{1}{N} \sum_{i=1}^{N} |Z_i|.$$
 (5.58)

To calculate the uncertainty, $u_c(Ra)$, equation (5.1) is applied to equation (5.58), *i.e.*

$$u_c^2(Ra) = c_{z_i}^2 u^2(z_i) = \frac{1}{N} \sum_{i=1}^N u^2(z_i)$$
(5.59)

where all the higher order terms are equal to zero. The combined standard uncertainty of the *Ra* parameter is simply the sum of the individual uncertainties divided by the number of samples, or

the average uncertainty. There is, however, a subtlety here. By definition, it is not physically possible to have a negative Ra. But, if it is assumed that the measurement uncertainties are normally distributed, it is possible to have a confidence interval that allows negative Ra values. For example, $Ra = 0.1 \text{ nm} \pm 0.5 \text{ nm}$ could have values of Ra that vary from -0.4 nm to 0.6 nm. The problem has arisen due to the arbitrary assumption that the uncertainties in Ra are normally distributed about the "true value", whereas the mathematical definition of Ra rules this assumption out - any measurement noise will positively bias the value of Ra. As each surface will have a different distribution of surface heights, a value for Ra can only be stated with a standard uncertainty - to state an expanded uncertainty has implied that we have prior knowledge of the height distribution of the surface. Of course, the distribution could be calculated for each surface, but this would not be practical without rigorous software backup.

For the reference data set, Ra = 0.65 nm and its standard uncertainty is 0.5 nm.

5.21.2 Uncertainty in *Rq*

The equation for a sampled evaluation of *Rq* is given by

$$Rq = \sqrt{\frac{1}{N} \sum_{i=1}^{N} Z_i^2}$$
(5.60)

The associated uncertainty in *Rq* is given by

$$u_c^2(Rq) = c_{z_i}^2 u^2(z_i) = \frac{1}{N} \frac{1}{Rq} \sum_{i=1}^N z_i^2 u^2(z_i).$$
(5.61)

The higher order terms are not equal to zero but will be negligibly small. For the reference data set Rq = 1.4 nm with a standard uncertainty of 0.30 nm. Again, because the value for Rq is always positive, the same points raised above for Ra apply for Rq.

5.21.3 Uncertainty in Rsk and Rku

The uncertainties in the skewness and kurtosis of a surface cannot be calculated using the guidelines laid down in the *GUM*. This is because they are defined parameters calculated from the

data. There definitions lead to complexities with the higher order terms that give nonsensible results.

NPL Report CLM 7

6. DISCUSSION

In §2 a number of methods, both historical and current, were described for calibrating a surface texture measuring instrument. No other area of dimensional metrology has such a vast armoury of methodologies and parameters available to choose from when applying metrology. This situation must be rationalised. Most instruments are calibrated using some form of specimen with a 'known' surface texture (or at least a 'known' value for a surface texture parameter). These specimens have not always been calibrated in both lateral and vertical directions.

NanoSurf IV is a surface texture measuring instrument that measures the co-ordinates of points on a surface in two-dimensions (assuming it is operating in its measurement bandwidth). The instrument is designed primarily to calibrate surface texture standard specimens that can be inturn used to calibrate other instruments. The author sees this as the way forward.

Uncertainty analysis is a complicated and time-consuming process that must be applied, at the very least, to instruments in the calibration chain such as NanoSurf IV. This would make it easier for an instrument lower down the chain of accuracy to simply apply calibrated specimens as a simple check for instrument performance. NPL is currently developing a series of sinusoidal (in the first instance) samples to bridge the gap between instruments like NanoSurf IV and those in industry.

7. ACKNOWLEDGEMENTS

The authors would like to thank Keith Jackson (NPL) and Dr Derek Chetwynd (Warwick University) for help with the technical aspects of this report. The work was funded by the DTI as part of the NMS Programme for Length 1997-1999.

8. REFERENCES

Armstrong T R, Fitzgerald M P 1992 An autocollimator based on the laser head of a compact disc player *Meas. Sci. Technol.* **3** 1072-1076

Barker D R, Diana L M 1974 Simple method for fitting data when both variables have uncertainties *Am. J. Phys.* **42** 223-227

Bendeli A, Duruz J, Thwaite E G 1974 A surface simulator for precise calibration of surface roughness measuring equipment *Metrologia* **10** 137-143

Bönsch G, Potulski E 1998 Measurement of the refractive index of air and comparison with the Edlén formulae *Metrologia* **35** 133-139

Bruzzone H, Moreno C 1998 When errors in both coordinates make a difference in the fitting of straight lines by least squares *Meas. Sci. Technol.* **9** 2007-2011

Chetwynd D G, Siddons D P, Bowen D K 1983 X-ray interferometer calibration of microdisplacement transducers *J. Phys. E: Sci. Instrum.* **16** 871-874

Decker J E, Ulrich A, Pekelsky J R 1998 Uncertainty of gauge block calibration by mechanical comparison: a worked example for gauge blocks of dissimilar materials *Proc. SPIE* **3477** 225-246

Downs M J, Ferris D H, Ward R E 1990 Improving the accuracy of the temperature measurement for gases by correction for the response delays in the thermal sensors *Meas. Sci. Technol.* **1** 717-719 Downs M J 1998 Realisation of the optimum performance from length-measuring interferometers by atmospheric refractometry *Proc. SPIE* **3477** 46-53

Franks A 1993 Progress towards traceable nanometric surface metrology *Nanotechnology* **4** 200-205 Griffith J E 1993 Dimensional metrology with scanning probe microscopes *J. Appl. Phys.* **74** R83-R109

Haitjema H 1997 International comparison of depth-setting standards Metrologia 34 161-167

Haitjema H 1998 Uncertainty analysis of roughness standard calibration using stylus instruments *Prec. Eng.* **22** 110-119

Hariharan P 1997 Interferometric measurements of small-scale surface irregularities: sources of errors *Opt. Eng.* **36** 2330-2334

Hume K J 1980 *A history of engineering metrology* (Mechanical Engineering Publications Ltd) ch. 8 Jørgensen J F, Garnaes J, Thulstrup D, Rasmussen S E 1997 Calibrated surface characterization, problems and solutions 7th Int. Conf. on Metrology and Properties of Engineering surfaces 358-365 Leach R K 2000 NanoSurf IV: Traceable surface texture measurement at the nanometre level (PhD Thesis: Warwick University) to be published Mana G 1989 Diffraction effects in optical interferometers illuminated by laser sources *Metrologia* **26** 87-93

National Measurement System Programme for Length 1996-1999 MPU 7/28.18

Petru F, Cíp O 1999 Problems regarding linearity of data of a laser interferometer with a singlefrequency laser *Prec. Eng.* **23** 39-50

Reason R E 1967 ASTME Intern. Conf. On Manufacturing Technology, Ann Arbor, Michigen

Rothe H, Duparré A, Jacobs S 1994 Generic detrending of surface profiles Opt. Eng. 33 3023-3030

Schobinger J P 1959 Investigation into the production of roughness standards (PhD thesis: Federal Technical College, Zürich)

Self S A 1983 Focussing of spherical Gaussian beams Appl. Opt. 22 658-661

Sharman H B 1967 Calibration of surface texture measuring instruments *Proc. Instn. Mech. Engnrs.* **182** 319-326

Sheer B W, Stover J C 1998 Development of a smooth-surface microroughness standard *Proc SPIE* **3141** 78-87

Song 1988 Random profile precision roughness calibration specimens *Surface Topography* **1** 303-314 Standards Infobase 1998 (ILI: Berkshire)

Stedman M 1987 Basis for comparing the performance of surface-measuring machines *Prec. Eng.* **9** 149-152

Teague E C 1978 Uncertainties in calibrating a stylus type surface texture measuring instrument with an interferometrically measured step *Metrologia* **14** 39-44

Timms C 1946 Measurement of surface roughness Metal Treatment 13 111

Tsukada T, Kanada T 1986 Evaluation of two- and three-dimensional surface roughness profiles and their confidence *Wear* **109** 69-78

Underwood A 1953 Two recent developments for accurate measurement of surface texture *Proc. Symp. on Engineering Dimensional Metrology, NPL* **II** 621

Van Hasselt R, De Bruin W 1963 Comparative investigation of industrial surface-roughness measuring instruments *Ann. CIRP* **XI** 193

Watts R A, Samble J R, Hutley M C, Preiest T W, Lawrence C R 1997 A new optical technique for characterizating reference artefacts for surface profilometry *Nanotechnology* **8** 35-39

Whitehouse D J 1988 Nano-calibration of stylus-based surface measurements J. Phys. E: Sci. Instrum. **21** 46-51

Whitehouse D J 1994 Handbook of surface metrology (Institute of Physics Publishing)

Yule G U, Kendall M G 1937 An introduction to the theory of statistics (Charles Griffin: London)

Zanoni C A 1988 *High precision interferometric linear and angular displacement interferometry* Zygo Corporation document

Appendix B1

Reports of PTB

Measurement Report

Calibration method

On the calibration standards the measurement values were determined with a contact stylus instrument according to ISO 3274 (1996). Those were Taylor Hobson Nanostep1 with the acquisition of data by PTB, RMA (roughness measurement set-up) with Mahr PMK drive unit and acquisition of data by PTB. The evaluation was carried out by software developed partly in PTB and partly by UBM.

The instrument's vertical sensitivity were calibrated by a reference calibration standard, that has traceability to the national length unit

Conditions of measurement

The measurements were carried out by means of a pick-up with independent datum. The stylus tip radius was approx. **2 \mum**. The measuring force at Nanostep1 was 50 μ N and at RMA approx. 1mN. Short wavelength filter wavelength λ s and waviness cut-off filter wavelength λ c were chosen appropriate to the features of the standard specimens.

Several measurements were carried out according to the measurement schemes that were agreed in the technical report of the round robin test. Mean value, maximum, minimum and standard deviation **s** were determined.

References for use of the calibration standards see /1/ and /2/.

Environmental conditions

The influences of the measuring set-up and of the environmental conditions were determined by roughness measurements on a smooth flat glass offering the same conditions of measurement as for the measurement standards. The Rz-value is 1,5 nm for Nanostep and 3 nm for RMA.

Uncertainty of Measurement

For the calculation of uncertainty of measurement according to GUM a model was applied, that includes the following uncertainty sources:

- uncertainty of reference calibration standard
- uncertainty of position on reference calibration standard
- contacting uncertainty
- influence of topography of measurement standard
- uncertainty of position on measurement standard
- straightness deviation of instrument's datum
- noise of instrument by environment influence
- levelling of profile for evaluation

The complete derivation is given in the enclosure: Uncertainty of measurement in the calibration of roughness standards

- /1/DKD-R 4-2: Richtlinie zum Kalibrieren von Tastschnittgeräten im Deutschen Kalibrierdienst (DKD). PTB-Mitt. 1/92, S. 23-26.
- /2/EAL G20, Calibration of Stylus Instruments for Measuring Surface Roughness European cooperation for Accreditation of Laboratories, 8/96.

Annex A: Uncertainty of measurement in the calibration of roughness standards

1 Introduction

For a tracing system according to DIN EN ISO 3274 a model is set up by which the values for the surface parameters are determined from the traced profile $z_e(x)$ via a chain of functions. For the calculation of the uncertainty of measurement in accordance with GUM, it is computed from inside to outside what effects are exerted by the uncertainty of the input quantities on the uncertainty of the result value after application of the respective function. The result then is the input quantity for the uncertainty calculation for the next function.

Value K of surface parameter P: K = P{Fc[Fs(G($z_e(x)$)]}

Function	Effect	Result
Device function :	$G(z_e(x)) = z_g(x)$	data influenced by device function
		(total profile)
λs filter function	$Fs(z_g(x)) = z_s(x)$	data influenced by λs (primary profile)
λc filter function	$Fc(z_s(x)) = z_c(x)$	data influenced by λc (roughness profile)
Parameter function	$h: P(z_c(x)) = K$	Parameter function P calculates value K of
		surface parameter <i>P</i>

In this order the functions will in the following be dealt with.

2 Device function G

2.1 Description of model

The data of the traced profile $z_e(x)$ are multiplied by a calibration factor *C* which is obtained from the calibration of the device against a calibrated depth-setting standard (reference standard) according to DIN EN ISO 5436-1 (Annex A Figure 1).

Figure 1: Depth-setting standard according to DIN EN ISO 5436-1 with six grooves and plan of points calibrated

The overall profile $z_g(x)$ covers the traced profile $z_e(x)$ (term according to DIN EN ISO 3274) as well as influences stemming from the device, its interaction with the object to be measured and the environment. The values of the overall profile $z_g(x)$ are the input data for signal processing. The following model is obtained:

$$z_{g}(x) = C \cdot [z_{e}(x) + z_{ref}(x) + z_{0}(x) + z_{pf}(x) + z_{sp}(x)] = C \cdot z_{u}$$
(1)

where

- C calibration factor
- ze profile traced
- z_g overall profile

Zref	profile of reference plane
------	----------------------------

- z_0 background noise of device
- z_{pl} plastic deformation of surface
- z_{sp} profile variation due to stylus tip deviation
- z_u uncorrected profile data

For the uncertainty of the profile points the following relation is obtained according to the product rule:

$$u^{2}(z_{a}) = u^{2}(C) \cdot z_{u}^{2} + u^{2}(z_{u}) \cdot C^{2}$$
⁽²⁾

2.2 Calibration factor

2.2.1 Model for calibration factor

The calibration factor *C* is determined from the measured depth Pt_m or D_m , respectively, and the depth Pt_n or D_n , respectively, known from the calibration certificate for the depth-setting standard. The following model is valid:

Figure 2: Profile evaluation on a depth-setting standard of type A1 (DIN EN ISO 5436 and DIN EN ISO 4287).

1-2, 5-6: profile line sections on reference plane, 3-4 profile line section in tread of groove

The quantities in the numerator and in the denominator each are uncertain so that

$$u^{2}(C) = \frac{1}{Pt_{m}^{4}} \cdot \left[Pt_{n}^{2} \cdot u^{2}(Pt_{m}) + Pt_{m}^{2} \cdot u^{2}(Pt_{n}) \right]$$
(3)

As $Pt_m \approx Pt_n$ is (C = 1), the following is obtained:

$$u^{2}(C) = \frac{1}{Pt_{m}^{2}} \cdot \left[u^{2}(Pt_{m}) + u^{2}(Pt_{n}) \right].$$

The first term of eq. 2 then is

$$u^{2}(C) \cdot z_{u}^{2} = \frac{z_{u}^{2}}{Pt_{m}^{2}} \cdot \left[u^{2}(Pt_{m}) + u^{2}(Pt_{n}) \right].$$

Here it can be seen what effect too small a calibration groove has on the uncertainty of the calibration. The depth Pt_m of the reference standard is usually selected to the same amount as the expectation value z_u of the uncorrected profile points. Therefore the

quotient
$$\frac{Z_u^2}{Pt_m^2} = 1$$
 is set and the first term of eq. 2 becomes
 $u^2(C) \cdot z_u^2 = u^2(Pt_m) + u^2(Pt_n)$. Thus eq. 2 is transformed into
 $u^2(z_g) = u^2(Pt_m) + u^2(Pt_n) + u^2(z_u)$
(4)

 $u^2(Pt_n)$ can be taken from the calibration certificate for the depth-setting standard.

2.2.2 Model for Pt_m

For the measurement of the total height of profile Pt_m the place where the groove was calibrated is not exactly met. The measured total height of profile Pt_m contains Pt_n as well as a part ΔPt (Annex A Figure 3), which is position-dependent in the y-direction, and a component *b* describing the repeatability of the tracing process.

$$Pt_m = Pt_n + \Delta Pt + b$$

The uncertainty of *Pt_m* is

$$u^2(Pt_m) = u^2(\Delta Pt) + u^2(b).$$

 $u^{2}(b)$: repeatability of tracing process on calibration groove.

Figure 3: Uncertainty in the dissemination of the measure of depth

Trace n: Trace for calibrating the groove, trace m: trace for dissemination, $a_y = y_n \cdot y_m$: deviation of trace positioning, $\Delta Pt = Pt_n - Pt_m$: deviation in determination of depth

2.3 Uncertainty of overall profile

For the uncertainty $u^2(z_g)$ of the measurement points of the overall profile the following are obtained:

 $u^{2}(z_{g}) =$

 $u^{2}(Pt_{n})$, uncertainty of reference standard (depth-setting standard) (5.1)

Euromet Project 600 – Comparison of Surface Roughness Standards	9/23
+ $u^2(\Delta Pt)$, uncertainty of transfer from reference standard	(5.2)
+ $u^2(b)$, repeatability of tracing of reference standard	(5.3)
$+u^2(z_e)$, uncertainty of obtained profile due to scatter on standard	(5.4)
+ $u^2(z_{ref})$, uncertainty of reference profile	(5.5)
$+u^{2}(z_{0})$, uncertainty due to background noise of device	(5.6)
+ $u^2(z_{pl})$, uncertainty due to insufficient knowledge of plastic deformation (5.7)	

+ $u^2(z_{sp})$, uncertainty due to insufficient knowledge of stylus tip geometry (5.8)

Chapter 3 gives numerical values or equations, respectively, for the calculation of these eight input quantities and describes the statistical properties of these quantities. As they have different effects according to the parameter to be calculated and the type of standard, the input quantities relevant to the specific case are compiled and the overall uncertainty is determined. An example of the case without λ s is given in the table in section 7.1 and of the filtering with λ s in section 7.2.

3 Determination of uncertainty of input quantities

3.1 Reference standard (depth-setting standard)

The uncertainty of measurement (U_n) of the total height of profile Pt_n of the reference standard is stated in the calibration certificate with the coverage factor k=2. This value is a statistically confirmed quantity. The empirical standard uncertainty therefore is:

$$u^2(Pt_n)=\frac{1}{4}\cdot U_n^2.$$

Typical values are $U_n = 10$ nm at a groove depth of 250 nm to $U_n = 50$ nm at a groove depth of 10 µm.

3.2 Measuring point

The determination of the groove depth in the calibration of the device does not necessarily take place at the same point as in the calibration of the groove. Due to a gradient in the direction of the groove $G = \partial Pt/\partial y$, a position-dependent uncertainty in the y-direction leads

to an uncertainty in depth measurement (Annex A Figure 3). Within $2a_y$, every point is equally probable.

$$u^{2}(\Delta Pt) = \frac{1}{3} \cdot \left(a_{y} \cdot G\right)^{2}$$

According to depth and quality of the groove, the gradient G has values between 10 nm/mm und 40 nm/mm.

3.3 Repeatability of tracing in calibration

The standard uncertainty of the mean value in the depth determination for the calibration groove at the same point be $s(\overline{Pt_m})$.

The uncertainty due to the repeatability of the tracing process in calibration is

$$u^2(b) = s^2(\overline{Pt_m}).$$

Gaussian distribution is assumed.

3.4 Topography of standard

In spite of its uniform structure in the y-direction (Annex A Figure 4), the standard also has a statistical nature.

Figure 4: Type D1 roughness standard with profile repetition, DIN EN ISO 5436-1 This manifests itself by a statistical variation of the measured parameters in dependence on x and y. For the roughness standards this is taken into account in the measuring point plan (Annex A Figure 5) by spatial staggering of the measurements in the x- and ydirections.

Figure 5: Measuring point plan for roughness standard (type D1, DIN EN ISO 5436-1)

For the number of profile sections, n = 12 is assumed. For the results Gaussian distribution is assumed.

In many evaluations the standard uncertainty of the individual values of the parameters is already frequently output. The standard deviation of the mean value $\frac{s(Rz)}{\sqrt{n}}$ can be taken

as the estimated value for the uncertainty of the value of Rz. To obtain the uncertainty of the profile points needed here, it has to be taken into account that due to the averaging algorithm of Rz the uncertainty of Rz is smaller than the uncertainty of the profile points by the "smoothing factor" S of the algorithm. This is illustrated in chapter 6.

For the uncertainty component, eq. 5.4, of the overall profile, the following is obtained:

$$u^2(z_e) = \frac{1}{S^2} \cdot \frac{1}{n} \cdot s^2(Rz).$$

3.5 Straightness deviation

The term according to eq. 5.5 contains the uncertainty influences due to deviations from straightness. The components of the long-wave deviations are dealt with in this section and those of the short-wave deviations in section 3.6.

The long-wave components of the straightness deviations are allowed for in the W-profile by the parameter *Wt*, as well as drifts during the time of measurement. A measuring section on an optical flat is measured with that part of the feed unit which is also used for the subsequent surface measurement. It must be mechanically aligned in the best possible way. The measurements are repeated five times at the same point of the standard and of the guide. The mean value *Wt*₀ from five measurements – determined at $\lambda c = 0.8$ mm – is further used. On the assumption of uniform distribution, the following is valid:

 $u^2(z_{ref}) = \frac{1}{3} (\frac{Wt_0}{2})^2.$

3.6 Background noise

When a profile is measured, the background noise produced by guiding as well as by electrical and mechanical influence quantities is directly superposed upon the measurement profile. This effect is measured separately when the noise Rz_0 is measured on a good optical flat. Experience has shown that an Rz_0 below 10 nm can be achieved on

good flats using good tracing systems. By averaging of several of these profile sections, the time variation of the background noise is also covered. This is why the R-profile of the optical flat measurement is evaluated for the determination of the term in eq. 5.6. In doing so, it has to be ensured that this measurement covers that part of the feed unit which is subsequently used for carrying out the measuring point plan on the standard. The mean value from five measurements $\overline{Rz_0}$ is further used. To obtain the uncertainty of the profile points, the "smoothing factor" of the Rz algorithm must again be taken into account. On the assumption of a uniformly distributed quantity, the following is valid:

$$u^2(z_0) = \frac{1}{S^2} \cdot \frac{1}{12} \cdot \left(\overline{Rz_0}\right)^2.$$

3.7 Plastic deformation

During tracing, plastic deformation of the surface results in dependence on material, tracing force and stylus tip radius. As long as the deformation produced during the calibration and the subsequent measurement is the same, it would be negligible. Due to inaccurate repetition of the tracing point and its spatial surface conditions (hardness, existing trace, etc.), the inexact knowledge of the plastic deformation is to be allowed for as an uncertainty component for the profile.

Experience with the usual conditions of measurement (stylus tip radius = 2 µm, tracing force = 0,7 mN, hardness of standard = 450 HV) has shown plastic deformations between the boundary values of 10 nm to 20 nm, i.e. within a span of $2a_{pl} = 10$ nm /2/. On the assumption of a uniformly distributed quantity, the following holds for the term in eq. 5.7:

$$u^2(z_{pl}) = \frac{a_{pl}^2}{3}$$

3.8 Stylus tip radius

The term in eq. 5.8 has effects in the case of standards sensitive to the stylus tip geometry, i.e., for example, standards of type D according to DIN EN ISO 5436-1. The profile traced differs from the true surface due to the finite stylus tip radius. According to DIN EN ISO 3274, this influence of the stylus tip with the nominal radius is already a component of the traced profile for further evaluation. Deviations from the stylus tip radius stated in the calibration certificate result in uncertain z-positions.

The simulation for the tracing of the same profile with different stylus tip radii yielded the relations represented in Figure 6. For Rz and Rz1max a variation of -20 nm per 1 µm of variation of the stylus tip radius and for Ra a dependence of -5 nm/µm can be seen.

Figure 6: Dependence of the parameters on the stylus tip radius

Taking the "smoothing factor" of *Rz* into account, the following is obtained:

$$\frac{\partial z}{\partial r_t} = -\frac{1}{S} \cdot \frac{20\,\mathrm{nm}}{\mathrm{\mu m}}$$

The uncertainty of the stylus tip radius effective for the measurement is estimated at $u(r_t) = 1 \ \mu m$ and uniform distribution is assumed. The input quantity r is uncertain in the range $r_{soll} \pm 0.5 \ \mu m$

$$u^{2}(z_{sp}) = \frac{1}{S^{2}} \cdot \frac{1}{3} \cdot \left(\frac{20 \text{nm}}{\mu \text{m}} \cdot 0.5 \mu \text{m}\right)^{2}.$$

A compilation of the input quantities for the case without λ s considered up to now is given in the table in section 7.1.

4 Short-wave low-pass filter for roughness

For the points z_s of the primary profile, the model in analogy to eq. 1 is valid, the reduction of the uncertainty of the λ s-filtered primary profile data according to /1/ having an effect only on the profile data z_u currently measured:

$$z_{s} = Fs(z_{g}) = C \cdot Fs(z_{u})$$

$$u^{2}(z_{s}) = u^{2}(C) \cdot Pt_{n}^{2} + f_{s}^{2} \cdot u^{2}(z_{u})$$
(6)

in the case of the ideal filter, with $f_s^2 = \frac{\Delta x}{\alpha \cdot \lambda s \cdot \sqrt{2}}$, $\Delta x =$ spacing of measuring points,

 $\alpha = \sqrt{\frac{\log 2}{\pi}} = 0,4697$ and $\lambda_s =$ cutoff wavelength of the short-wave low-pass filter.

λs [µm]	<i>∆x</i> [µm]	fs
2,5	0,5	0,55
8	1,5	0,53
8	0,5	0,31

At the values specified for λ s and at the traversing lengths specified in DIN EN ISO 4287, the effect of the short-wave filter on the profile points thus is approximately equal: The uncertainty of the profile points of the filtered profile is reduced approximately by half. A compilation of the input quantities in this case is given in the table in section 7.2.

5 Short-wave low-pass filter for waviness

After the filtering with λc , the following is valid for the points of the waviness profile:

$$u(w) = \sqrt{\frac{\Delta x}{\alpha \lambda c \sqrt{2}}} \cdot u(z_s) = f_c \cdot u(z_s)$$
 with ideal filter.

λc [µm]	f _c
250	0,055

800	0,031
2500	0,017

The following are valid: for the points of the roughness profile: $z_c = z_s - w$,

for their uncertainty: $u^2(z_c) = u^2(z_s) - (2 \cdot \sqrt{2} - 1) \cdot u^2(w) \cong u^2(z_s)$.

Due to the small value of the uncertainty of the points of the waviness profile u(w), the uncertainty of the points of the roughness profile $u(z_c)$ is practically equal to the uncertainty $u(z_s)$ of the points of the λ s-filtered profile.

6 Parameter function

The points of the roughness profile $z_c(x)$ serve to calculate the value K of the parameter according to the algorithm of the parameter. The uncertainty $u_{sys}(K)$ of a parameter can differ very strongly from the uncertainty of the profile points in dependence on their algorithm. This is described by, for example, $u_{sys}(Rz) = S(Rz) \cdot u(z_g)$, where S(Rz) is the "smoothing factor" of Rz. To show the influence of the algorithm, the effect of the algorithm of Rz is calculated as an example, uncorrelated profile data being assumed for simplification. For the averaged roughness depth Rz the following is valid:

$$R_{z} = \frac{1}{5} \cdot \sum_{i=1}^{5} (p_{i} - v_{i})$$
, where p_{i} and v_{i} are the maximum and minimum measurement values

from five partial measuring sections. According to the sum rule, the uncertainty of the parameter is :

$$u^{2}(Rz) = \sum_{i=1}^{5} \left(\frac{\partial Rz}{\partial p_{i}}\right)^{2} \cdot u^{2}(p_{i}) + \sum_{i=1}^{5} \left(\frac{\partial Rz}{\partial v_{i}}\right)^{2} \cdot u^{2}(v_{i}).$$
As $\frac{\partial Rz}{\partial p_{i}} = \frac{\partial Rz}{\partial v_{i}} = \frac{1}{5}$ is i for all,

$$u^{2}(Rz) = \frac{1}{25} \left(\sum_{i=1}^{5} u^{2}(p_{i}) + \sum_{i=1}^{5} u^{2}(v_{i})\right).$$
As the uncertainties of the peak values

$$u(p_{i}) = u(v_{i}) = u(z_{s})$$
 are equal to those of the individual values,

$$u^{2}(Rz) = \frac{10}{25} \cdot u^{2}(z_{s})$$
, or $u(Rz) = \sqrt{\frac{10}{25}} \cdot u(z_{s}) = \sqrt{\frac{10}{25}} \cdot f_{s} \cdot u(z_{k})$, respectively.

As a result of the averaging effect of the algorithm of *Rz*, the uncertainty of the result quantity is smaller than the uncertainty of the profile points by the factor $S(Rz) = \sqrt{\frac{10}{25}}$.

7 Compilation of influence quantities

7.1 Without λ s-filtering

In columns 4 and 7, typical values of the input quantities and their variance contributions are stated for a roughness standard with Rz = 3.

Table 7.1: Example of input quantitites and uncertainties, points of the profile, $u(z_g) =$

27,6 nm

Section	Input quantity catchword	Calculation of input quantity	Exemplary values	Sensitivity coefficient	Method of determination, distribution	Variance [nm ²]
3.1	Reference standard	$\frac{1}{4} \cdot U_n^2$	<i>U_n</i> = 15 nm (cal. cert.)	1	B Gaussian	56
3.2	Difference measuring point – calibration point	$\frac{1}{3} \cdot (a_y \cdot G)^2$	<i>a_y</i> = 100 μm <i>G</i> = 20 nm/mm	G	B uniform	1,3
3.3	Repeatability	$s^2(\overline{Pt_n})$	<i>s</i> = 3 nm	1	B Gaussian	9
3.4	Topography	$\frac{1}{S^2} \cdot \frac{s^2(Rz)}{n}$	<i>s</i> (<i>Rz</i>) = 50 nm	1	A Gaussian	521
3.5	Straightness deviation	$\frac{Wt_0^2}{12}$	<i>Wt</i> ₀ = 50 nm	1	B uniform	0
3.6	Background noise	$\frac{1}{S^2} \cdot \frac{1}{12} \cdot \left(\overline{Rz_0}\right)^2$	$\overline{Rz_0} = 20 \text{ nm}$	1	A uniform	83
3.7	Plastic deformation	$\frac{a_{pl}^2}{3}$	<i>a_{pl}</i> = 5 nm	1	B uniform	8,3
3.8	Stylus tip	$(1, 1, (20 nm)^2)$	<i>u</i> (<i>r_{sp}</i>) = 0,5 μm	-20 nm/mm	B uniform	83
		$\left \frac{1}{3} \cdot \frac{1}{S^2} \cdot \left(\frac{26\pi m}{\mu m} \cdot u(r_{sp})\right)\right $				
		$u^2(z_g)$				761,6

Remarks:

3.5 not applicable to R-parameters
3.7 not applicable to glass standards

If the complete equation for the systematic uncertainty component of *Rz* is formed, the following is obtained in the sum of column 3 in Table 7.1:

$$u_{sys}^{2}(Rz) = S^{2} \cdot u^{2}(z_{g}) = S^{2} \times \left[\frac{1}{4} \cdot U_{n}^{2} + \frac{1}{3} \cdot (a_{y} \cdot G)^{2} + s^{2}(\overline{Pt_{n}}) + \frac{1}{S^{2}} \cdot \frac{s^{2}(Rz)}{n} + \frac{Wt_{0}^{2}}{12} + \frac{1}{S^{2}} \cdot \frac{1}{12} \cdot (\overline{Rz_{0}})^{2} + \frac{a_{pl}^{2}}{3} + \frac{1}{3} \cdot \frac{1}{S^{2}} \cdot \frac{20nm}{\mu m} \cdot u(r_{sp})\right)^{2}]$$

$$(7)$$

As S is smaller than 1 and disregarding the input quantities which are regularly small, the following approximation can be made:

$$u_{sys}^{2}(Rz) \leq \frac{1}{4} \cdot U_{n}^{2} + \frac{s^{2}(Rz)}{n} + \frac{Rz_{0}^{2}}{12}.$$
(8)

7.2 With λ s-filtering

In columns 4 and 7 typical values of the input quantities and their variance contributions are given for a roughness standard with Rz = 3.

Table 7.2: Example of input quantities and their uncertaint	ties, points of the primary profile,
$u(z_{\rm s}) = 15 \rm nm$	

Section	Input quantity catchword	Calculation of input quantity	Exemplary value	Sensitivity coefficient	Method of determination, distribution	Variance [nm ²]
3.1	Reference standard	$\frac{1}{4} \cdot U_n^2$	U _n = 15 nm (cal.cert.)	1	B Gaussian	56
3.2	Difference measuring point – calibration point	$\frac{1}{3} \cdot (a_y \cdot G)^2$	<i>a_y</i> = 100 μm <i>G</i> = 20 nm/mm	G	B uniform	1,3
3.3	Repeatability	$s^2(\overline{Pt_n})$	<i>s</i> = 3 nm	1	B Gaussian	9
3.4	Topography	$\frac{1}{S^2} \cdot \frac{s^2(Rz)}{f_s^2 \cdot n} \cdot f_s^2$	<i>s</i> (<i>Rz</i>) = 50 nm	1	A Gaussian	130
3.5	Straightness deviation	$\frac{Wt_0^2}{12} \cdot f_s^2$	<i>Wt₀</i> = 50 nm	1	B uniform	0
3.6	Background noise	$\frac{1}{S^2} \cdot \frac{1}{12} \cdot \left(\frac{\overline{Rz_0}}{f_s}\right)^2 \cdot f_s^2$	$\overline{Rz_0} = 20 \text{ nm}$	1	A uniform	25
3.7	Plastic deformation	$\frac{a_{pl}^2}{3} \cdot f_s^2$	<i>a_{pl}</i> = 5 nm	1	B uniform	2,5
3.8	Stylus tip		<i>u</i> (<i>r_{sp}</i>) = 0,5 µm	-20 nm/mm	B uniform	2,5
		$\frac{1}{3} \cdot \frac{1}{S^2} \cdot \left(\frac{20nm}{\mu m} \cdot u(r_{sp})\right)^2$ $\cdot f_s^2$				
		$u^2(z_s)$				226,3

Remarks:

- 3.5 not applicable to R-parameters
- 3.7 not applicable to glass standards

If the complete equation for the systematic uncertainty component of *Rz* is formed, the following is obtained in the sum of column 3 in Table 7.2:

$$u_{sys}^{2}(Rz) = S^{2} \times \left[\frac{1}{4} \cdot U_{n}^{2} + \frac{1}{3} \cdot \left(a_{y} \cdot G\right)^{2} + s^{2}(\overline{Pt_{n}}) + f_{s}^{2} \times \left(\frac{1}{S^{2}} \cdot \frac{s^{2}(Rz)}{f_{s}^{2} \cdot n \cdot} + \frac{Wt_{0}^{2}}{12} + \frac{1}{S^{2}} \cdot \frac{1}{12} \cdot \left(\frac{Rz_{0}}{f_{s}}\right)^{2} + \frac{a_{\rho l}^{2}}{3} + \frac{1}{3} \cdot \frac{1}{S^{2}} \cdot \left(\frac{20nm}{\mu m} \cdot u(r_{sp})\right)^{2}\right)\right].$$
(9)

In accordance with the considerations in sections 3.4, 3.6 and 3.8, the estimated values for the uncertainties of the profile points are determined from the estimated values of the surface parameters and the smoothing effect of λ s-filtering is taken into account

As S is smaller than 1 and disregarding the input quantities which are regularly small, the following approximation can be made:

$$u_{sys}^{2}(Rz) \leq \frac{1}{4} \cdot U_{n}^{2} + \frac{s^{2}(Rz)}{n} + \frac{Rz_{0}^{2}}{12}.$$
 (10)

This compilation is the same as in eq. 8, only with the difference that here λ s-filtered estimated values are to be inserted.

8 Unknown systematic deviations

In the measuring chain systematic deviations can occur as a result of:

- the lack of conventions in the algorithms of the parameters in DIN EN ISO 4287
- permitted deviations in filters in DIN EN ISO 11562, e.g. by approximations in filter algorithms
- uncertainty due to linearity deviations of converter, bandwidth limitation for amplifier, resolution of A/D converter
- deviations of stylus tip from nominal form
- uncertainty of measuring points in the direction of feed.

For the uncertainty calculation unknown systematic deviations must therefore be taken into account for the functions. Software standards according to DIN EN ISO 5436-2 would allow these deviations to be more exactly localized. In the metrological practice, these

uncertainties are discovered by comparison measurements, for example within the scope of intercomparisons, on materialized standards according to DIN EN ISO 5436-1, with different devices and different realizations of the algorithms, if possible. The standard deviations of the mean values of the parameters serve as estimated value for the uncertainties, the averaging having been made over the participating laboratories. These uncertainties $u_v(K)$ are compiled in a table in dependence on parameter, type of standard, range of measurement and filtering and are added quadratically to the systematic uncertainty.

$$u^{2}(K) = u^{2}_{sys}(K) + u^{2}_{v}(K)$$

The reference uncertainties u_v (parameter) are stated in the table in chapter 11.

The expanded uncertainty of measurement of the parameter (coverage probability = 95%) is

$$U(K) = 2 \cdot \left[\frac{1}{4} \cdot U_n^2 + \frac{s^2(Rz)}{n} + \frac{Rz_0^2}{12} + u_v^2(K) \right]^{\frac{1}{2}}$$

This derivation confirms the calculation practised at the calibration laboratories of the DKD, which has been obtained from experience.

9 Literature

/1/ M. Krystek:

Einfluss des Wellenfilters auf die Unsicherheit eines Messergebnisses bei Rauheitsmessungen. Conference Volume of DIN Meeting "GPS 99", Mainz, 05-06 May 1999, pp. 4-1–4-11. Beuth-Verlag, ISBN 3-410-14534-6

/2/ R. Krüger-Sehm, M. Krystek:

Uncertainty Analysis of Roughness Measurement

Proceedings of X. Int. Colloquium on Surfaces, Additional papers, Chemnitz, 31/01–02/02/2000

 $E:\transfer\Koenders\Appendix_B1\Appendix_B1_PTB.doc$

10 Reference uncertainties

Table of reference uncertainties u_v for the uncertainty calculation at DKD laboratories, values in % of the measurement value, in accordance with RV 97

			Paramet	ters with λ	S						Paramet	ers withou	ut λs					
		λc in mm	Ra	Rz1max	Rz	Rk	Rpk	Rvk	Mr1	Mr2	Ra	Rz1max	Rz	Rk	Rpk	Rvk	Mr1	Mr2
Туре																		
GN	G	2,5	0,2	0,3	0,2						0,5	0,3	0,3					
	G	0,8	0,2	0,3	0,4						0,4	0,3	0,3					
	М	0,8	0,3	0,4	0,4						0,2	0,2	0,2					
	F	0,8	0,4	0,3	0,4						0,5	0,3	0,5					
	F	0,25	0,6	0,6	0,5						0,5	0,5	0,5					
Number	of labs		9								4							
RN	Gg	2,5	0,5	0,6	0,7	0,3	0,3	0,6	0,2	0,1	0,4	0,5	0,3	0,1	0,1	0,3	0,1	0,1
	G	0,8	0,5	0,6	0,5	0,3	0,5	0,5	0,2	0,3	0,5	0,5	0,4	0,2	0,1	0,1	0,1	0,1
	М	0,8	0,4	0,3	0,5	0,7	0,3	0,3	0,4	0,2	0,5	0,5	0,1	0,4	0,1	0,2	0,1	0,1
	F	0,8	0,3	0,7	0,7	0,3	0,3	0,4	0,2	0,1	1,1	0,3	0,9	0,1	0,2	0,2	0,1	0,1
Number	of labs		7								5							
SFRN	G	0,25	0,3	1,3	0,5	0,4	1,6	0,2	0,6	0,2	0,6	1,5	0,6	0,3	0,3	0,1	0,2	0,1
	М	0,25	0,3	1,2	0,8	0,5	2,1	0,3	0,4	0,1	0,4	0,8	0,7	0,4	0,2	0,2	0,1	0,1
	F	0,25	0,9	2,1	1,9	1,1	1,6	0,8	0,4	0,5	1	2,4	1,9	0,6	0,3	0,2	0,2	0,2
Number	of labs	1	6								4							

Appendix B1

Reports of SMU

EUROMET SUPPLEMENTARY COMPARISON

SURFACE TEXTURE

Project No. 600

Final Report

Elaborated by: M. Szmicskova Bratislava, December 2002

CONTENT:

1. 2. 3. 3.1 3.2 3.3 3.4

INTRODUCTION	3
STANDARDS	3
REPORT	4
INTRODUCTION OF THE ORGANISATION	4
DESCRIPTION OF THE MEASUREMENT EQUIPMENT	5
MEASUREMENTS	6
MEASUREMENT RESULTS, COMBINED STANDARD UNCERTAINTY	7
UNCERTAINTY CALCULATION AND DEGREES OF FREEDOM	7
REFERENCES	9

3.5 3.6 REFERENCES

Annex: Measurement results

PAGE

1 INTRODUCTION

Surface texture has a crucial influence onto the functional properties of devices and their individual parts. This quantity is of technical consequences, it has influence on the value of friction coefficient when two surfaces are in contact. Relief of the surface is a spacial formation, which we can measure and evaluate. In the case of SMU we are applying profile method using the contact profilometer.

Comparison measurements at the different levels of metrological assurance are being conducted in order to check a reliability and comparability of the measurement results.

This project was proposed at the EUROMET length contact persons meeting (Prague, 1999). The need of such comparison arose from the fact that the last international comparison in this field was completed in 1989 and the instrumental equipment, standards and software filtration have been improved since then. The pilot laboratories of this supplementary comparison are PTB Braunschweig and Center for Geometrical Metrology, Technical University of Denmark, Lyngby.

2 STANDARDS

In the frame of supplementary comparison (EUROMET #600 - pilot laboratories Physikalisch-Technische Bundesanstalt, Braunschweig, Germany, Center for Geometrical Metrology, Technical University of Denmark, Lyngby) the surface texture standards types C, D and A2 were delivered to the SMU.

They were packed in the special box, containing the following items:

1. Instructions in short version – 2 discs: a. Final.ZIP

b. Test smd.ZIP

- 2. Copy of the Technical protocol
- 3. Data sheet with addresses of the participants
- 4. Photographs of standards in their initial state
- 5. 8 pieces of standards:
 - 1 piece depth setting standard of type A2
 - 3 pieces roughness standards of type C3
 - 3 pieces roughness standards of type D1
 - 1 piece roughness standard of type D2

The standards were delivered from IPG Portugal. Prior to the measurement itself, the standards were inspected for the damage and compared to the photographs documenting their initial state before the circulation.

Inspection was performed by the optical microscope in a clean environment. All damages (scratches, dots and dirt) were recorded. The coordinator was informed by fax and E-mail. The following damages has been recorded:

- surface texture standards were damaged only in those parts visible on photograps made at PTB, with the exception of standard No 1.006, which was damaged significantly -; grooves on the metal part could be observed by eye.

3 Report

On the basis of instructions stated in Technical protocol Euromet Project 600 the laboratory of surface roughness SMU submits the report on measurement results to the pilot laboratory. The report contains the following parts:

- 3.1 Introduction of the organisation
- 3.2 Description of the measurement equipment
- 3.3 Measurement itself
- 3.4 Measurement results, combined standard uncertainty
- 3.5 Uncertainty calculation and degrees of freedom
- 3.6 References

3.1 INTRODUCTION OF THE ORGANISATION

Slovak Institute of Metrology (SMU) as the national metrological institution is the contributory subject founded by the Office for standardisation, metrology and testing of the Slovak Republic (UNMS SR).

Statutary organ of the institute is the director, in the case of his absence represented by the deputy director general. Competence corresponding to the individual functions follow the Organisation order, Working order, internal documents, Instructions of directors of centres and the generally valid legal documents.

Activities of the SMU are related to the solution of research problems, development, improvement and maintanace of the national standards and harmonization of their quality with standards of other national metrological institutes. Besides SMU provides metrological services on the highest required level, performs research tasks and elaborates norms. SMU has received the **Certificate of Quality Management System according to ISO**

SMU has received the **Certificate of Quality Management System according to ISO** 9001:2000 in October 11th, 2002 from the company LGA – InterCert.

3.2 DESCRIPTION OF THE MEASUREMENT EQUIPMENT

In the laboratory of surface roughness SMU, the contact profilometer TALYSURF 6 is being used for the measurement. A data transfer from the working standards to the standards of lower orders is realized by the method of direct comparison, where the calibrated and reference standards are of the same nominal values.

In the laboratory are calibrated measures and standards, while internal working procedures and corresponding national technical norms in the field of surface roughness are used.

SMU owns the following standards :

a/ type A – divided into types A_1 and A_2 :	groove depth is measured in the range
	$(0,03 \div 10) \mu m$ with $u_c = (1-3)\%$
b/ type C – divided into types C_1, C_2, C_3, C_4 :	parameter Ra is measured in the range
c/ type D :	$(0,1\div6)\mu$ m with $u_c = (3-6)\%$
	parameters Rz, Ry (Rmax) are
	measured in the range $(0,1 \div 10)\mu$ m with
	$u_c = (3 - 10)\%$

Contact profilometer TALYSURF 6, type S 112/1620 is used in the laboratory of surface roughness for the measurement of geometrical structure of surface by the contact profile method and transformation of the information about profile during the mechanical movement of the tip on the calibrated surface.

Mechanical signal generated by the stylus (sensor No 12/1620-1690 with reference plane and tip radius of 2,0 μ m) follows the relief of the measured surface. The stylus is mounted onto arm, which can rotate around the plug of the sensing system. This makes possible for the stylus to follow the profile.

Mechanical signal from the mechanical part of the contact profilometer is transformed to the electrical one and then digitalized, or the output is a graphical record of the profile. The value of force on the tip is 1 mN.

Data evaluation is being performed by the computer and programme TalyProfile 3.0.8. This programme enables the wide choice of parameters, setting of cut off, digitalization of the signal and the grafical record.

Measured values of the parameters d_m , Ra, Rz, Ry etc. are the resultant values stated from x measurement points equidistantly situated in the working aria of the calibrated standard and the expanded uncertainty of calibration U (k = 2) is valid for the whole working area. Uncertainties were estimated according TPM 0051-03 being in accordance with international standard for the uncertainty evaluation (GUM). The true value lies in the interval with probability of 95%.

The measurement system is situated on the antivibrating support.

3.3 MEASUREMENT

Preparation of the measurements:

- external inspection and checking for the labelling firstly we observed the overall appearence of standards for their mechanical damage, traces of rust, scratches
- checking of the dimensions, whether they comply with those given in Technical protocol
- preparation of the contact profilometer for the measurement, situating the standard on the table with possibility of fine displacement, choice of measuring paths
- výber rýchlosti
 1 mm/s
- choice of magnification
 5000x and 10000x
- stylus of the profilometer
 1
- standard of the profilometer
 625 μm

The temperature of contact profilometer Talysurf 6 has to be stabilized at least one our before the measurement itself. Profilometer is adjusted according to the manual. The standard being in the accessories to the profilometer is used for the adjustment.

Measurement procedure:

The reference standard and the standard to be calibrated are subsequently located on the profilometer cross table and their profiles in the chosen areas are read – according to the technical protocol (area of measurement) of the individual standards.

The standard is placed on the table by such a way that a motion of the instrument sensor is in the direction of the highest values of vertical parameters. In these sections both R_i and d_i are measured, separately for each roughness characteristic. From the measured values the mean value and its standard deviation s is calculated.

In each section of calibrated standard, three repeated measurements were carried out with corresponding determination of the given parameter.

The reference standard was calibrated before the measurement and after completion of measurement (checking of the profilometer, whether it keeps its parameters). Data evaluation is by computer and programme TalyProfile 3.0.8.

Evaluation of the measured values of parameters d, Ra, Rz, Rmax, Rk, Rpk, Rvk was done by the direct comparison, when both reference and calibrated standards had the same nominal values. The values of spatial parameters Pt, RSm and parameters reflecting the material characteritics Mr1, Mr2 are approximate.

Filtration of measured values of parameters d, Ra, Rz and Rmax was performed by the choice of Gaussian filter, Rk parameter was filtrated by the double Gaussian filtre.

Measurement conditions:

- ambient temperature was during measurements conditioned to $(20 \pm 1)^{\circ}$ C,
- relative humidity during measurements didn't exceed 65 %,
- outside the measuring period the relative humidity in the air-conditioned laboratory didn't exceed 70 %

3.4 MEASUREMENT RESULTS, COMBINED STANDARD UNCERTAINTY

Table of measured values and uncertainties – Annex No. 1

3.5 UNCERTAINTY CALCULATION AND DEGREES OF FREEDOM

Measurement uncertainty is evaluated according to TPM 0051-93. In the following table the uncertainty budget containing all components taken into account is given.

Reference standard:	serial number nominal value value given in uncertainty gi	e n the calibratio iven in the cal.	on certificate certificate	$\begin{array}{l} 0386421/2293 \\ 0,3 \ \mu m \\ d_E = 0,274 \ \mu m \\ 0,002 \ \mu m \end{array}$	
Measured values: a b c	1 0,258 μm 0,258 μm 0,263 μm	2 0,255 μm 0,26 μm 0,259 μm	3 0,266 μm 0,267 μm 0,265 μm		
	$D_{\rm E} = 0,261 \ \mu$	m	$u_{BE} = 0,00139 \ \mu m$		

Calibrated standard:	serial number nominal value type	•		0391806/2625 0,2 μm EN 806
Measured values:	1	2	3	
а	0,243 µm	0,247 µm	0,242 µm	
b	0,247 µm	0,249 µm	0,242 µm	
с	0,251 µm	0,249 µm	0,249 µm	
d	0,251 µm	0,25 µm	0,25 µm	
e	0,244 µm	0,249 µm	0,243 µm	
	$D = 0,247 \ \mu m$		$u_{\rm A} = 0$,	,000864 µm

d = d_E.
$$\frac{D}{D_E}$$
 = 0,274. $\frac{0,24706}{0,2612}$ = 0,259167 \Rightarrow 0,259 µm

UNCERTAINTY BUDGET

Quantity	Estimate	Standard	Probability	Sensitivity	Uncertainty	Degrees of
X_i	Xi	uncertainty	distribution	coefficient	contribution	freedom
		u(x _i)			$u_i(h)$ (nm)	ν_i
d	0,2 μm	0,86 nm	normal	1	0,86	14
d _E	0,274 µm	2 nm	normal	1	2	8
D _E	0,3 µm	1,4 nm	normal	1	1,4	8
Z _{ref}	0 nm	2 nm	normal	1	2	19
F	1 mN	0,05 mN	rectangular	28 nm/mN	1,4	9
Z _{tip}	0 nm	3 nm	rectangular	1	3	9

$$\begin{split} \nu_{eff} &= (n+1)[1 + u_{BX}^2 / u_{AX}^2]^2 - 2 = (67+1)[1 + 4,57^2 / 0,86^2]^2 - 2 = \\ &= 68(1 + 28,238)^2 - 2 = 58\,129 \end{split}$$

$$u_{\rm C} = \sqrt{u_A^2 + u_{BE}^2 + u_{BAE}^2 + u_{BZref}^2 + u_{BF}^2 + u_{BTip}^2} =$$

= $\sqrt{0.86^2 + 2.0^2 + 1.4^2 + 2.0^2 + 1.4^2 + 3.0^2} = 4.65 \text{ nm}$

$$U = k \cdot u_C = 2 \cdot 4,65 = 9,3 \text{ nm}$$

Notes:

D – arithmetic mean of the profile height of measured standard from n measurements

 D_E – profile height of the reference standard (comparative)

d - real profile height of the measured standard

 d_E – real profile height of the reference standard (comparative)

 $Z_{ref}-$ the slideway profile

 $F-force \ of \ the \ tip \ to \ the \ surface$

 Z_{Tip} – deviation of the tip from sphericity

 $u_{\rm A}-$ standard deviation of the arithmetic mean taken from the repeated measurements of the calibrated standard

 u_{BE-} standard uncertainty of the surface roughness parameter determination corresponding to the reference standard (comparative) – given in the calibration certificate

 $u_{AE}\xspace$ - standard deviation of the arithmetic mean taken from the repeated measurements of the reference standard

 u_{BZref} – uncertainty from the deviation from straightness of the slideway profile

 u_{BF} – uncertainty from the stylus force

 u_{BTip} – uncertainty from the deviation from sphericity of the tip

3.6 References

Related background documents, working procedures and metrological instructions on the basis of which the measurements were carried out:

Document	Title
	(all documents given bellow are in Slovak language)
ISO 4287-1	Surface roughness. Terminology. Surface and its parameters.
ISO 4287-2	Surface roughness. Terminology. Measurements of the surface
	texture parameters.
ISO 5436	Calibration patterns. Contact instruments, types, calibration
	and used patterns.
ISO 11562	Geometrical product specification (GPS). Character of the
	surface: Profile method -Metrological characteristics of the
	phase corrected filters.
ISO 12085	Geometrical product specification (GPS). Character of the
	surface: Profile method – Motive parameters.
ISO 13565-1	Geometrical product specification (GPS). Character of the
	surface: Profile method - Surfaces, the functional properties of
	which are related to the level. Part 1: Filtration and general
	measurement conditions.
ISO 13565-2	Geometrical product specification (GPS). Character of the
	surface: Profile method - Surfaces, the functional properties of
	which are related to the level. Part 1: Height characteristics by
	the linear par of the curve of material ratio.
TPM 7030-96	Surface roughness standards of type A. Technical
	requirements.
TPM 7031-96	Surface roughness standards of type A. Method of testing.
TPM 7032-97	Surface roughness standards of types C, D. Technical
	requirements.
TPM 7033-97	Surface roughness standards of types C, D. Method of testing.
TPM 0059-93	Estimation of calibration uncertainty, Parts 1 and .
PP 07/210/00	Working procedure for the calibration of surface roughness
	patterns of types C and D.
PP 08/210/00	Working procedure for the calibration of contact profilometer.
PP 09/210/00	Working procedure for the calibration of vertical
	magnification, type A.

Laboratory of surface roughness Bratislava, 20. 12. 2002

> Ing. Pavol Doršic Director of the Centra of length and time

Maria Szmicskova performed the calibration

Comments to the Draft 1 – Euromet #600

- Contact profilometer Talysurf 6 works with the programme TalyProfile 3.0.8, which was purchased in 2002 from the company Taylor-Hobson. Programme has it own parameters fixed, which can not be changed, since such a change might effect some other parameters (filtration). Our facility operates at the fixed value of speed 1 mm/s and this fact causes very quick sampling of surface points. In the case of parameters d – groove depth and standards of type D – random profile these have different parameters from the reference value.
- 2. Values of parameters Pt; RSm; Mr1 and Mr2 were measured by the instrument and their value has been influenced by the large speed of stylus
- 3. Error sources resulting from the fixed parameters of the measuring programme were not taken into account and our claimed uncertainties were underestimated.

In the following example are given parameters and results of calibration of the D type standard.

Owner of the standard: type : manufacturer: serial number:	PTB Braunsweig D PTB 99/49 686 sg
nominal values :	$Ra = 2.5 \ \mu m; Rz = 14 \ \mu m$
Conditions of measurement: temperature: speed: magnification: points: stylus tip radius	20.3 °C 1 mm/s 5000 x 12500 2 µm
length:	λc = 2500 μm; λs = 8 μm 12,5 mm

Parameters calculated on the profile Profile

```
* Parameters calculated by mean of all the sampling
lengthes.
* A microroughness filtering is used, with a ratio of
2.5 µm.
Roughness Parameters, Gaussian filter, 2.5 mm
         = 2.1 \mu m
  Ra
           Ra: Arithmetic Mean Deviation of the
roughness profile.
         = 14.4 \ \mu m
  Rmax
           Rmax: Maximum Peak-to-Valley height of the
sampling lengthes on the roughness profile.
  Rz
         = 12.8 \ \mu m
           Rz: Maximum Height of roughness profile.
Rk Parameters (ISO 13565-2), 2.5 mm
  Rk
         = 7.64 \, \mu m
           Rk: Kernel Roughness Depth.
         = 1.04 µm
  Rpk
           Rpk: Reduced Peak Height.
         = 2.97 µm
  Rvk
         Rvk: Reduced Valley Depth.
= 6.99 %
  MR1
          MR1: Upper Material Ratio.
  MR2
         = 92.6 %
           MR2: Lower Material Ratio.
```


Appendix B1

Report of SP

1 Report of The Measurements Made at SP , sweden

1.1 GENERAL

The intercomparison consisted of eight physical standards and three data files. The measurements were made according to the instructions regarding measurement positions, assessment lengths and filtering conditions, using a stylus instrument. The <u>report</u> consists of three parts: the description of the measurement set-up, a description of the uncertainty calculations and the measurement results in a separate excel-sheet.

1.2 DESCRIPTION OF MEASURING INSTRUMENT

Type of instrument Stylus instrument: RankTaylorHobson, FormTalysurf 120, inductive pic-up.

Kind of operation: moving stylus, the traverse unit is mounted at a column on a granite base.

Conditions of data collection: Vertical measurement ranges 0,1 mm and 0,02 mm were used. (Vertical resolution 3,2 nm, 0,64 nm). Scan length max 120 mm, stylus tip radius 2 μ m.

In this intercomparison we made 5 measurements (without filtering) on the depth setting standard (A2). The reported value is the mean of five measurements.

On the roughness standards (C3, D1, D2) we made 12 measurements (with filtering). The reported mean value consists of 12 measurements, each measurement of 5 sampling lengths.

Conditions of evaluation: No compensation of reference plane.

Linearity correction for the vertical transmission has been used. A manual correction of +1,5% has been made on the reported results. This is due to a difference between the measuring ranges of the instrument.

Characterisation of instrument noise and deviation of ideal behaviour: The guideway error and the instrument noise have been evaluated for different evaluation lengths.

Environment characterisation: The instrument set-up is placed on a stable table in a calm underground laboratory with a thick concrete floor. The granite base of the instrument has rubber feet vibration isolation. We use no dust and/or noise protection cover during measurements. The laboratory has a thermal stability within ± 0.3 °C during measurement cycles.

1.3 Results

All results are from stylus measurements with the FormTalysurf instrument. The results are presented in the enclosed excel-sheet. **Note:** For the specimen 8194 a change in the profile was detected at the position of measurement 4. Therefore results are presented both with and without measurement 4. Uncertainty calculations are included.

The measurands are stated for the reference temperature at 20°C.

Evaluation of datafiles (softgauges).

(This is not a service we offer to customers.)

The built in software of the formtalysurf was used for the evaluation. I order to adapt the data files to the software the following operations were performed. First we had to create datafiles with data separation (Δx) of 0,25 µm instead of 0,15 µm. This was done by linear interpolation. Second we took the x-values out of the files and recalculated the y-values into "number of steps" instead of absolute values, using our instrument resolution. Third we added a new heading to the files. Fourth we cut away 0,5 λc from each end. Then we put it into the Form-Talysurf software. When the data is processed and filtered by the software a remaining 0,5 λc is cut off from each end by the gaussian filter.

We have reported the parameter values that were produced by the software. In one case (file 7080) the software could not calculate the ISO 13565 parameters.

1.4 UNCERTAINTY

The uncertainty of the measurement has been estimated according to *the Guide to the Expression of Uncertainty in Measurement*.

For example, the step height h of the standards is expressed as a function of the input quantities X_i

$$h = f(x_i) \qquad . \tag{1}$$

The combined standard uncertainty $u_c(h)$ is the square sum of the standard uncertainties of the input quantities $u(x_i)$, each weighted by a sensitivity coefficient c_i

$$u_c^2(h) = \sum_i c_i^2 u^2(x_i)$$
 with $c_i = \frac{\partial h}{\partial x_i}$ (2)

quantity $X_{\rm i}$	esti- mate <i>x</i> _i	Uncertainty <i>u</i> (<i>x</i> _i)	prob- ability distri- bution	sensitivity coef- ficient c _i	uncertainty contribution $u_i(h)$	de- grees of free- dom v_i
Amplification	+1,5%	0,0045	Ν	h	0,0045h	50
Guideway pro- file	0	7 nm	R	1,015	7,1 nm	50
Noise	0	3 nm	Ν	1,015	*	
Surface varia- tion	0	s/√n	Ν	1,015		4
Contact de- formation	0	3 nm	R	1,015	3 nm	100
Tip radius	0	0	?		0**	
Resolution	0	0,2 nm	R	1,015	0,2 nm	100

For the type of probability distribution: N = normal; R = rectangular; T = triangular; U = U-shaped.

* The noise component is included in the estimate of the guideway error and in the estimate of the surface variation, so it was not added a third time.

** The effect of the tip radius has been taken to be negligible for these surfaces and filter conditions.

This example is for the depth setting standard. The uncertainties for the other surfaces were calculated in a similar manner.

Comment from SP

We have the following comments regarding the results from SP.

1. Our software uses the wrong definition of the Rt parameter. We think therefore that our results for this parameter should not be used in the calculation of the reference values.

2. The deviation from the reference values of the parameters Rvk and Rpk in our case seem to be slightly dependent on the roughness of the surface. We have not yet found the reason for this, but we suspect it might be a software problem.

3. We have re-evaluated the uncertainty calculations for the parameters RSm, Mr1 and Mr2. In the case of RSm, we had underestimated the effect of the resolution of the x-axis. In the case of Mr1 and Mr2, we did not take into account the effect of truncation in the software. Please find the new values in the attached excel-sheet. We think it would be appropriate to include these new uncertainty-values in draft B of the report.

Euromet 600	SP results
Uncertainties in yell	low boxes have been reevaluated.

Geom. Sta	ndard		RSm
Rub	P114A/528-RS 5	value/µm	50,03
		std. dev./nm	11
		U/nm (k=2)	50
PTB	7070/PGN10	value/µm	199,94
		std. dev./nm	20
		U/nm (k=2)	51
PTB	8194/PGN3	value/µm	119,98
		std. dev./nm	33
		U/nm (k=2)	54

Roughn.stanc	lard		Mr1/%*	Mr2/%*
very coarse	686sg	value/µm	6,6	93,6
		std. dev./nm	1,3	0,5
		U/nm (k=2)	2,1	2,0
coarse	633g	value/µm	6	81,6
		std. dev./nm	0,9	0,9
		U/nm (k=2)	2,1	2,1
fine	629f	value/µm	8,4	88,1
		std. dev./nm	0,8	0,8
		U/nm (k=2)	2,1	2,1
SFRN 150	1.006	value/µm	10,8	87,4
		std. dev./nm	1,3	1,9
		U/nm (k=2)	2,1	2,3

Appendix B1

Reports of UME

MEASUREMENT REPORT OF NATIONAL METROLOGY INSTITUTE OF TURKEY, UME

EUROMET SUPPLEMENTARY COMPARISON

SURFACE TEXTURE

Project No. 600

UME Dimensional Laboratory Tel: 0 (262) 646 63 55 / 235 Fax: 0 (262) 646 59 14

Contact: Dr. Tanfer Yandayan tanfer.yandayan@ume.tubitak.gov.tr Murat Aksulu Okhan Ganioğlu

murat.aksulu@ume.tubitak.gov.tr okhan.ganioglu@ume.tubitak.gov.tr

Contents

<u>1. Description of the Measurement Method and Instrument</u>
2. Results and Measurement Conditions
<u>3. Uncertainty Budgets of Measurements</u> 9
3.1 Step height standard with a nominal height of 200 nm - Identification (for D)
3.2 Step height standard with a nominal height of 1500 nm - Identification (for D)11
3.3 Step height standard with a nominal height of 8000 nm - Identification (for D)12
3.4 Step height standard with a nominal height of 200 nm - Identification (for Pt)
3.5 Step height standard with a nominal height of 1500 nm - Identification (for Pt)14
3.6 Step height standard with a nominal height of 8000 nm - Identification (for Pt)15
3.7 Geometric standard Rub (P114A) - Identification (for Rz, Ra, Rmax)
3.8 Geometric standard PTB (7070) - Identification (for Rz, Ra, Rmax)
3.9 Geometric standard PTB (8194) -Identification (for Rz, Ra, Rmax)
3.10 Roughness standard SFRN 150 (1,006) - Identification (for Rz, Ra, Rmax)
3.11 Roughness standard Fine (629f) - Identification (for Rz, Ra, Rmax)
3.12 Roughness standard Coarse (633g) - Identification (for Rz, Ra, Rmax)
3.13 Roughness standard Very coarse (686sg) - Identification (for Rz, Ra, Rmax)
<u>3.14 Geometric standard Rub (114A) - Identification (for RSm)</u> 23
<u>3.15 Geometric standard PTB (7070) - Identification (for RSm)</u>
<u>3.16 Geometric standard PTB (8194) - Identification (for RSm)</u> 25
3.17 Roughness standard SFRN 150 (1.006) - Identification (for Rk, Rpk, Rvk)
3.18 Roughness standard Fine (629f) - Identification (for Rk, Rpk, Rvk)
3.19 Roughness standard Coarse (633g) - Identification (for Rk, Rpk, Rvk)
3.20 Roughness standard Very coarse (686sg) - Identification (for Rk, Rpk, Rvk)
3.21 Roughness standard SFRN 150 (1.006) - Fine (629f) – Coarse (633g) – Very coarse (686sg)
- <u>Identification (for Mr₁, Mr₂)</u>
<u>APPENDIX 1</u> <u>A Model For Calculation of Uncertainty of Rk, Rpk, Rvk Parameters</u>

APPENDIX 2 Detail Explanations of All Uncertainty Calculations in EXCEL Sheets (see the file "UME-Uncertainty.xls")

1. Description of the Measurement Method and Instrument

Type of instrument: Stylus instrument - Mahr Perthometer Concept (pick up is FRW-250, drive unit is PRK, xy table is PKT electronic)

Kind of operation: Moving stylus. A comercial column is not used. Instead, drive unit is located on a table with adjustable height to reduce vibration.

Conditions data collection: Stylus tip radius 2 μ m, stylus tip angle 90°, vertical measurement range ± 25 μ m

Conditions of evaluation:Measurements are performed according to the datum of PRK drive unit. No skid is used.

Characterisation of instrument noise and deviation of ideal behaviour: A PTB calibrated optical flat is used. The optical flat is set on the x-y table and different regions of the optical flat surface are measured.

Rougness value on flat glass plate with lateral movement Rzo = $0.033 \,\mu\text{m}$ (Certificated Rz value of the optical flat is about 5 nm.) Rougness value on flat glass plate without lateral movement Rzo = 19 nm Waviness value on flat glass plate with lateral movement Wt = 30 nm Vertical resolution = Measuring range / 60000 step = 0,42 nm Horizontal resolution = Standart tracing length / up to 16000 point

Environment characterisation: No vibration isolation is used. Temperature of the laboratory is 20±0,3°C.

Standards
Roughness
Surface]
n of
ompariso
\mathbf{O}
600
Project
Euromet

5/35

onditions
~~
\mathbf{U}
Measurement
5
an
S
Result
તં

		Ŧ						lambda-c	lambda-s	Speed	Force	Sampl- dist
806								mm	ш	mm/s	mN	m
m	value/µm	0,316	0,282					1	2,67	0,1	0,9	0,1
	std. dev./nm	3,6	9,3					I	2,67	0,1	0,9	0,1
	U/nm (k=2)	40,9	20,2									
5 µm	value/µm	1,405	1,364					'	2,67	0,1	0,9	0,1
	std. dev./nm	6,8	10,0					I	2,67	0,1	0,9	0,1
	U/nm (k=2)	45,2	22,0									
mu 8	value/µm	8,399	8,363			<u> </u>			2,67	0,1	0,9	0,1
	std. dev./nm	11,8	10,8					•	2,67	0,1	0,9	0,1
	U/nm (k=2)	105,5	25,9									
		Ra	Rz	Rmax	RSm							
4A/528- RS 5	value/µm	0,505	1,593	1,599	49,723			0,25	2,5	0,1	0,9),2
	std. dev./nm	1,2	4,9	7,1	75,4			0,25	2,5	0,1	0,9),2
	U/nm (k=2)	48,6	48,6	48,6	984,3							
NPGN10	mile/ii	0 07R	0 730	0 014	108 617			つ F()	5 33	ی م	0	ע ב
	std. dev./nm	11.9	46.8	49.1	21.1			2.50	8.33	0.5	0.9	0.5
	U/nm (k=2)	142,3	142,3	142,3	3920,4							
4/PGN3	value/µm	0,901	3,096	3,113	119,149			0,80	2,67	0,5	0,9),35
	std. dev./nm	6,4	48,7	48,5	29,0			0,80	2,67	0,5	0,9),35
	U/nm (k=2)	113.9	113.9	113.9	2335.5							

	_														_			
Sampl- dist	nm	0,5	0,5		0,35	0,35		0,35	0,35		0,1	0,1		Mr2/%		89,92	87,81	
Force	мN	0,9	0,9		0,9	0,9		0,9	0,9		0,9	0,9		Mr1/%		7,43	11,56	•
Speed	mm/s	0,5	0,5		0,5	0,5		0,5	0,5		0,1	0,1		Rvk		0,25	0,10	•
lambda-s	nm	8,33	8,33		2,67	2,67		2,67	2,67		2,50	2,50		Rk	-2	0,65	0,28	
lambda-c	mm	2,50			0,80			0,80			0,25			Rpk	ISO 13565	0,14	0,07	•
Mr2/%*		92,850	0,807	4,085	81,968	0,469	5,656	88,158	0,654	9,521	83,232	4,394	43,697	Rmax	DIN 4768	1,47	0,57	1,52
Mr1/%*		6,948	1,235	0,306	6,196	0,413	0,428	8,982	0,860	0,97	12,606	0,784	6,618	Rz		1,30	0,48	1,5
Rvk*		3,110	130,3	634,4	2,529	53,2	523	0,298	7,6	136,0	0,036	6,0	72,4	Rsk		-0,28	0,00	0,01
Rpk*		1,231	125,8	634,4	0,739	52,1	523	0,137	5,7	136,0	0,029	3,1	72,4	Rt		1,47	0,63	1,52
Rk*		8,137	297,5	634,4	4,464	99,8	523	0,449	11,8	136,0	0,069	12,6	72,4	Rv		0,78	0,24	0,74
Rmax		15,534	28,9	497,6	9,041	123,0	399,7	1,421	51,5	98,1	0,175	13,0	42,8	Rp		0,52	0,24	0,76
Rz		14,300	258,1	497,6	7,608	197,8	399,7	1,255	40,7	98,1	0,138	6,1	42,8	Rq	7	0,23	0,11	0,49
Ra		2,346	32,5	497,6	1,533	8,2	399,7	0,147	2,9	98,1	0,024	1,6	42,8	Ra	ISO 4287	0,19	0,09	0,43
		∕alue/µm	std. dev./nm	J/nm (k=2)	/alue/µm	std. dev./nm	J/nm (k=2)	/alue/µm	std. dev./nm	J/nm (k=2)	/alue/µm	std. dev./nm	J/nm (k=2)			/alue/µm	/alue/µm	/alue/µm
		686sg ^			6339		1	629f			1.006					505	1001	7080
Roughn. Standard		Very soarse			Coarse			Fine			SFRN 150			Data files		file 1	ile 2	file 3

*) ISO 13565-1

6/35

Euromet Project 600 - Comparison of Surface Roughness Standards

Appendix B1 - Reports of UME

July 31st, 2003

	Coughness Standards
١	4
ر د	Surface
¢	_
	- Comparison c
ς	⊇
ç	\mathbf{S}
	Project t
F	Eurome

EXTRA MEASUREMENTS

Ra Rz Rmax Rk* Rpk*	Ra Rz Rmax Rk* Rpk*	Rz Rmax Rk* Rpk*	Rmax Rk* Rpk*	Rk* Rpk*	Rpk*		Rvk*	Mr1/%*	Mr2/%*	lambda-c	lambda-s	Speed	Force	Sampl- dist
										mm	ш	mm/s	mN	ш
isg value/µm 2,368 14,791 15,915	2,368 14,791 15,915	14,791 15,915	15,915		8,285	1,232	3,269	7,126	93,126	2,50	Lc/Ls=MAX	0,5	0,9	<u>),5</u>
std. dev./nm 29,7 302,2 50,9	29,7 302,2 50,9	302,2 50,9	50,9		223,9	102,4	217,2	1,003	0,505		Lc/Ls=MAX			
U/nm (k=2) 497,6 497,6 497,6	497,6 497,6 497,6	497,6 497,6	497,6		634,4	634,4	634,4	0,306	4,085		Lc/Ls=MAX			
3g value/µm 1,538 7,717 9,082	1,538 7,717 9,082	7,717 9,082	9,082		4,482	0,733	2,537	6,243	81,963	0,80	Lc/Ls=MAX	0,5	0,9	0,35
std. dev./nm 10,1 148,8 124,1	10,1 148,8 124,1	148,8 124,1	124,1		45,0	22,5	37,9	0,172	0,278		Lc/Ls=MAX			
U/nm (k=2) 399,7 399,7 399,7	399,7 399,7 399,7	399,7 399,7	399,7		523,0	523,0	523,0	0,428	5,656		Lc/Ls=MAX			
9f value/µm 0,148 1,277 1,451	0,148 1,277 1,451	1,277 1,451	1,451		0,457	0,136	0,292	8,593	88,235	0,80	Lc/Ls=MAX	0,5	0,9	0,35
std. dev./nm 2,5 46,4 81,2	2,5 46,4 81,2	46,4 81,2	81,2		8,6	5,6	9,0	0,479	0,354		Lc/Ls=MAX			
U/nm (k=2) 98,1 98,1 98,1	98,1 98,1 98,1	98,1 98,1	98,1		136,0	136,0	136,0	0,970	9,521		Lc/Ls=MAX			

3. Uncertainty Budgets of Measurements

A4 - Uncertainty of measurement

3.1 Step height standard with a nominal height of 200 nm - Identification (for D)

Equation used:

$$z_{k} = \left(\frac{P_{in}}{P_{imy} + b}\right) (z_{m} + z_{ref} + z_{n})$$
$$D = \frac{1}{n_{o}} \sum_{i=1}^{n_{o}} z_{koi} - \frac{1}{n_{u}} \sum_{i=1}^{n_{u}} z_{kui} + 2AF$$

Ptn:Depth of the reference setting standard known from PTB certificatePtmy:Locus dependent fraction of measured reference groove (Measured value of reference standard)b:Reproducibility of tracing of the reference groove
$$z_m$$
:Profile of test standard (Measured value of test standard) z_{ref} :Profile of reference plane (Wt value determined using optical flat) z_n :Background noise (Rz value determined using optical flat)AF:Alingnment error due to roughness and flatness error on the test depth standard n_o :Number of profile points of upper profile sections which is used to fit an upper straight line n_u :Number of profile points of lower profile sections z_{kui} :z coordinate of ith z_{kui} :z coordinate of ith

Combined uncertainty equation:

$u(D) = \sqrt{\left(\frac{1}{n_o} + \frac{1}{n_u}\right)^2 \frac{z_m^2}{P_{in}^2} \left(u^2(P_{in}) + u^2(P_{imy}) + u^2(b)\right)}$	$+\left(\frac{1}{n_o} + \frac{1}{n_u}\right) \left(u^2(z_m) + u^2(z_{ref}) + u^2(z_n) \right) + 2u^2(AF) + u^2(RES) + u^2(REP)$
--	--

quantity	estimate	uncertainty	probability	sensitivity	uncertainty	degrees of
$X_{ m i}$	xi	$u(x_i)$	distribution	coefficient	contribution	freedom
				c _i	$u_{\rm i}(d)$	v_{i}
Ptn	9870 nm	76 nm	Ν	0.0040	0.154 nm	200
Ptmy	9870 nm	2 nm	R	0.0040	0.005 nm	200
b	10 nm	10 nm	Ν	0.0040	0.040 nm	100
Zm	282 nm	5 nm	Ν	0.1414	0.707 nm	4
Z _{ref}	30 nm	15 nm	R	0.1414	1.225 nm	200
Zn	33 nm	16.50 nm	R	0.1414	1.347 nm	200
AF	10 nm	5 nm	R	1.4142	4.083 nm	200
RES	0.42 nm	0.21 nm	R	1.0000	0.121 nm	200
REP	9 nm	9 nm	N	1.0000	9.000 nm	49

N = normal; R = rectangular; T = triangular; U = U-shaped.

RES: Resolution

REP: Repeatibility

(Please see the Excel sheet)

Combined standard uncertainty:	$u_c(D)$	= 10.1 nm	
Effective degrees of freedom:	v _{eff} (I	D) = 76.6	
Expanded uncertainty:	U(D)	= 20.2 nm	with a coverage factor k=2
Laboratory: National Metrology Institute	e of Turke	ey. (UME)	
Date: 11.01.2002 Signat	ure:		

A4 - Uncertainty of measurement 3.2 Step height standard with a nominal height of 1500 nm - Identification (for D)

Equation used:

$$z_{k} = \left(\frac{P_{tn}}{P_{tmy} + b}\right) (z_{m} + z_{ref} + z_{n})$$
$$D = \frac{1}{n_{o}} \sum_{i=1}^{n_{o}} z_{koi} - \frac{1}{n_{u}} \sum_{i=1}^{n_{u}} z_{kui} + 2AF$$

`

Ptn	:	Depth of the reference setting standard known from PTB certificate
Ptmy	:	Locus dependent fraction of measured reference groove (Measured value of reference standard)
b	:	Reproducibility of tracing of the reference groove
Zm	:	Profile of test standard (Measured value of test standard)
Z _{ref}	:	Profile of reference plane (Wt value determined using optical flat)
Zn	:	Background noise (Rz value determined using optical flat)
AF	:	Alingnment error due to roughness and flatness error on the test depth standard
no	:	Number of profile points of upper profile sections which is used to fit an upper straight line
n _u	:	Number of profile points of lower profile section which is used to fit a circle at the bottom of the groove
Z _{koi}	:	z coordinate of i th point of upper profile sections
Z _{kui}	:	z coordinate of i th point of lower profile section

Combined uncertainty equation:

$u(D) = \sqrt{\left(\frac{1}{n_o} + \frac{1}{n_u}\right)^2 \frac{z_m^2}{P_{tn}^2} \left(u^2(P_{tn}) + u^2(P_{tmy}) + u^2(b)\right)}$	$+\left(\frac{1}{n_o} + \frac{1}{n_u}\right) \left(u^2(z_m) + u^2(z_{ref}) + u^2(z_n)\right) + 2u^2(AF) + u^2(RES) + u^2(REP)$
--	--

quantity	estimate	uncertainty	probability	sensitivity	uncertainty	degrees of
$X_{ m i}$	xi	$u(x_i)$	distribution	coefficient	contribution	freedom
				Ci	$u_{i}(d)$	v_i
Ptn	9870 nm	76 nm	Ν	0.020	0.743 nm	200
Ptmy	9870 nm	2 nm	R	0.020	0.023 nm	200
b	10 nm	10 nm	Ν	0.020	0.195 nm	100
Zm	1364 nm	5 nm	Ν	0.141	0.707 nm	4
Z _{ref}	30 nm	15 nm	R	0.141	1.225 nm	200
Zn	33 nm	16.50 nm	R	0.141	1.347 nm	200
AF	10 nm	5 nm	R	1.414	4.083 nm	200
RES	0.42 nm	0.21 nm	R	1.000	0.121 nm	200
REP	10 nm	10 nm	N	1.000	10.000 nm	49

N = normal; R = rectangular; T = triangular; U = U-shaped. RES: Resolution

REP: Repeatibility

(Please see the Excel sheet)

(i rease see the Excer sheet)

Combined standard uncertainty:	$u_c(D) = 11.0 \text{ nm}$	
Effective degrees of freedom:	$v_{\rm eff}\left(D\right) = 71.6$	
Expanded uncertainty:	U(D) = 22.0 nm	with a coverage factor k=2

Laboratory: .. National Metrology Institute of Turkey. (UME)

Date: 11.01.2002 Signature:....

A4 - Uncertainty of measurement

3.3 Step height standard with a nominal height of 8000 nm - Identification (for D)

Equation used:

$$z_{k} = \left(\frac{P_{tn}}{P_{tmy} + b}\right) (z_{m} + z_{ref} + z_{n})$$
$$D = \frac{1}{n_{o}} \sum_{i=1}^{n_{o}} z_{koi} - \frac{1}{n_{u}} \sum_{i=1}^{n_{u}} z_{kui} + 2AF$$

Ptn	:	Depth of the reference setting standard known from PTB certificate
Ptmy	:	Locus dependent fraction of measured reference groove (Measured value of reference standard)
b	:	Reproducibility of tracing of the reference groove
Zm	:	Profile of test standard (Measured value of test standard)
Z _{ref}	:	Profile of reference plane (Wt value determined using optical flat)
Zn	:	Background noise (Rz value determined using optical flat)
AF	:	Alingnment error due to roughness and flatness error on the test depth standard
no	:	Number of profile points of upper profile sections which is used to fit an upper straight line
n _u	:	Number of profile points of lower profile section which is used to fit a circle at the bottom of the groove
Z _{koi}	:	z coordinate of i th point of upper profile sections
Z _{kui}	:	z coordinate of i th point of lower profile section

Combined uncertainty equation:

$$u(D) = \sqrt{\left(\frac{1}{n_o} + \frac{1}{n_u}\right)^2 \frac{z_m^2}{P_m^2}} \left(u^2(P_{un}) + u^2(P_{tmy}) + u^2(b)\right) + \left(\frac{1}{n_o} + \frac{1}{n_u}\right)} \left(u^2(z_m) + u^2(z_{ref}) + u^2(z_n)\right) + 2u^2(AF) + u^2(RES) + u^2(REP)$$

quantity	estimate	uncertainty $u(x)$	probability distribution	sensitivity	uncertainty	degrees of freedom
241	λ_1	$u(x_1)$	distribution	c _i	$u_{i}(d)$	Vi
Ptn	9870 nm	76 nm	Ν	0.120	4.554 nm	200
Ptmy	9870 nm	2 nm	R	0.120	0.138 nm	200
b	10 nm	10 nm	Ν	0.120	1.198 nm	100
Zm	8363 nm	5 nm	Ν	0.141	0.707 nm	4
Z _{ref}	30 nm	15 nm	R	0.141	1.225 nm	200
Zn	33 nm	16.50 nm	R	0.141	1.347 nm	200
AF	10 nm	5 nm	R	1.414	4.083 nm	200
RES	0.42 nm	0.21 nm	R	1.000	0.121 nm	200
REP	11 nm	11 nm	N	1.000	11.000 nm	49

N = normal; R = rectangular; T = triangular; U = U-shaped. RES: Resolution REP: Repeatibility

(Please see the Excel sheet)

Combined standard uncertainty:	$u_c(D)$	= 12.9 nm	
Effective degrees of freedom:	$v_{\rm eff}$ (D	9) = 92.9	
Expanded uncertainty:	U(D)	= 25.9 nm	with a coverage factor k=2

Laboratory: .. National Metrology Institute of Turkey. (UME)

.....

Date: 11.01.2002 Signature:

A4 - Uncertainty of measurement 3.4 Step height standard with a nominal height of 200 nm - Identification (for Pt)

Equation used:

$$z_{k} = \left(\frac{P_{tn}}{P_{tmy}} + b\right) (z_{m} + z_{ref} + z_{n})$$
$$Pt = z_{ko} - z_{ku} + 2AF$$

Ptn	:	Depth of the reference setting standard known from PTB certificate
Ptmy	:	Locus dependent fraction of measured reference groove (Measured value of reference standard)
b	:	Reproducibility of tracing of the reference groove
z _m	:	Profile of test standard (Measured value of test standard)
Z _{ref}	:	Profile of reference plane (Wt value determined using optical flat)
Zn	:	Background noise (Rz value determined using optical flat)
AF	:	Alingnment error due to roughness and flatness error on the test depth standard
Z _{ko}	:	Highest z-value at the top of the profile
Z _{ku}	:	Lowest z-value at the bottom of the profile

Combined uncertainty equation:

$$u(P_{t}) = \sqrt{\frac{2z_{m}^{2}}{P_{tn}^{2}}} \left(u^{2}(P_{tn}) + u^{2}(P_{tmy}) + u^{2}(b) \right) + 2\left(u^{2}(z_{m}) + u^{2}(z_{ref}) + u^{2}(z_{n}) \right) + 2u^{2}(AF) + u^{2}(RES) + u^{2}(REP)$$

quantity	estimate	uncertainty	probability	sensitivity	uncertainty	degrees of
$X_{ m i}$	xi	$u(x_i)$	distribution	coefficient	contribution	freedom
				c _i	$u_{\rm i}(d)$	v_{i}
Ptn	9870 nm	76 nm	Ν	0.045	1.721 nm	200
Ptmy	9870 nm	2 nm	R	0.045	0.052 nm	200
b	10 nm	10 nm	Ν	0.045	0.453 nm	100
Zm	316 nm	5 nm	Ν	1.414	7.071 nm	4
Z _{ref}	30 nm	15 nm	R	1.414	12.247 nm	200
Zn	33 nm	16.50 nm	R	1.414	13.472 nm	200
AF	10 nm	5 nm	R	1.414	4.083 nm	200
RES	0.42 nm	0.21 nm	R	1.000	0.121 nm	200
REP	4 nm	4 nm	N	1.000	4.000 nm	49

N = normal; R = rectangular; T = triangular; U = U-shaped. RES: Resolution REP: Repeatibility (Please see the Excel sheet)

Combined standard uncertainty:	$u_c(Pt) = 20.4 \text{ nm}$	
Effective degrees of freedom:	$v_{\rm eff}\left(P_t\right) = 381.1$	
Expanded uncertainty:	$U(P_t) = 40.9 \text{ nm}$	with a coverage factor k=2

Laboratory: .. National Metrology Institute of Turkey. (UME)

Date: 11.01.2002 Signature:....
A4 - Uncertainty of measurement 3.5 Step height standard with a nominal height of 1500 nm - Identification (for Pt)

Equation used:

$$z_{k} = \left(\frac{P_{tn}}{P_{tmy} + b}\right)(z_{m} + z_{ref} + z_{n})$$
$$Pt = z_{ko} - z_{ku} + 2AF$$

: Depth of the reference setting standard known from PTB certificate Ptn Ptmy : Locus dependent fraction of measured reference groove (Measured value of reference standard) b : Reproducibility of tracing of the reference groove : Profile of test standard (Measured value of test standard) Zm : Profile of reference plane (Wt value determined using optical flat) Zref : Background noise (Rz value determined using optical flat) Zn AF : Alingnment error due to roughness and flatness error on the test depth standard : Highest z-value at the top of the profile Zko : Lowest z-value at the bottom of the profile Z_{ku}

Combined uncertainty equation:

$$u(P_{t}) = \sqrt{\frac{2z_{m}^{2}}{P_{tn}^{2}}} \left(u^{2}(P_{tn}) + u^{2}(P_{tmy}) + u^{2}(b) \right) + 2\left(u^{2}(z_{m}) + u^{2}(z_{ref}) + u^{2}(z_{n}) \right) + 2u^{2}(AF) + u^{2}(RES) + u^{2}(REP)$$

quantity X_i	estimate <i>x</i> _i	uncertainty $u(x_i)$	probability distribution	sensitivity coefficient	uncertainty contribution	degrees of freedom
				c _i	$u_{\rm i}(d)$	v_{i}
Ptn	9870 nm	76 nm	Ν	0.201	7.650 nm	200
Ptmy	9870 nm	2 nm	R	0.201	0.233 nm	200
b	10 nm	10 nm	Ν	0.201	2.013 nm	100
Zm	1405 nm	5 nm	Ν	1.414	7.071 nm	4
Z _{ref}	30 nm	15 nm	R	1.414	12.247 nm	200
Zn	33 nm	16.50 nm	R	1.414	13.472 nm	200
AF	10 nm	5 nm	R	1.414	4.083 nm	200
RES	0.42 nm	0.21 nm	R	1.000	0.121 nm	200
REP	7 nm	7 nm	N	1.000	7.000 nm	49

N = normal; R = rectangular; T = triangular; U = U-shaped. RES: Resolution REP: Repeatibility

(Please see the Excel sheet)

Combined standard uncertainty: $u_c(Pt) = 22.6 \text{ nm}$ Effective degrees of freedom: $v_{eff}(P_t) = 510.2$ Expanded uncertainty: $U(P_t) = 45.2 \text{ nm}$ with a c

with a coverage factor k=2

Laboratory: .. National Metrology Institute of Turkey. (UME)

3.6 Step height standard with a nominal height of 8000 nm - Identification (for Pt)

Equation used:

$$z_{k} = \left(\frac{P_{tn}}{P_{tmy} + b}\right) (z_{m} + z_{ref} + z_{n})$$
$$Pt = z_{ko} - z_{ku} + 2AF$$

Ptn : Depth of the reference setting standard known from PTB certificate Ptmy : Locus dependent fraction of measured reference groove (Measured value of reference standard) : Reproducibility of tracing of the reference groove b : Profile of test standard (Measured value of test standard) Zm : Profile of reference plane (Wt value determined using optical flat) Z_{ref} z_n : Background noise (Rz value determined using optical flat) AF : Alingnment error due to roughness and flatness error on the test depth standard : Highest z-value at the top of the profile Zko : Lowest z-value at the bottom of the profile Z_{ku}

Combined uncertainty equation:

$$u(P_t) = \sqrt{\frac{2z_m^2}{P_{tn}^2}} \left(u^2(P_{tn}) + u^2(P_{tmy}) + u^2(b) \right) + 2\left(u^2(z_m) + u^2(z_{ref}) + u^2(z_n) \right) + 2u^2(AF) + u^2(RES) + u^2(REP)$$

quantity $X_{\rm i}$	estimate x _i	uncertainty $u(x_i)$	probability distribution	sensitivity coefficient c _i	uncertainty contribution $u_i(d)$	degrees of freedom v_i
Ptn	9870 nm	76 nm	Ν	1.203	45.731 nm	200
Ptmy	9870 nm	2 nm	R	1.203	1.390 nm	200
b	10 nm	10 nm	Ν	1.203	12.034 nm	100
Zm	8399 nm	5 nm	Ν	1.414	7.071 nm	4
Z _{ref}	30 nm	15 nm	R	1.414	12.247 nm	200
Zn	33 nm	16.50 nm	R	1.414	13.472 nm	200
AF	10 nm	5 nm	R	1.414	4.083 nm	200
RES	0.42 nm	0.21 nm	R	1.000	0.121 nm	200
REP	12 nm	12 nm	N	1.000	12.000 nm	49

N = normal; R = rectangular; T = triangular; U = U-shaped.RES: Resolution

REP: Repeatibility

(Please see the Excel sheet)

```
Combined standard uncertainty:u_c(Pt) = 52.7 \text{ nm}Effective degrees of freedom:v_{eff}(P_t) = 648.8Expanded uncertainty:U(P_t) = 105.5 \text{ nm} with a coverage factor k=2
```

Laboratory: .. National Metrology Institute of Turkey. (UME)

.....

Date: 11.01.2002 Signature:.....

3.7 Geometric standard Rub (P114A) - Identification (for Rz, Ra, Rmax)

Equation used:

$$Rz_{k} = \left(\frac{P_{tn}}{P_{tmy} + b}\right)(z_{s} + z_{n} + R_{z})$$

Ptn : Depth of the reference setting standard known from PTB certificate

Ptmy : Locus dependent fraction of measured reference groove

b : Reproducibility of tracing of the reference groove

 z_s : Unknown systematic deviation. $z_s = a = Rz_{PTB} - Rz_{UME}$

z_n : Background noise

R_z : Measured Rz parameter carried out on the test standard

 Rz_k : Calibrated Rz parameter

Combined uncertainty equation:

$$u(R_{z_k}) = \sqrt{\frac{R_z^2}{P_{t_n}^2}} \left(u^2(P_{t_n}) + u^2(P_{t_my}) + u^2(b) \right) + u^2(z_s) + u^2(z_n) + u^2(R_z) + u^2(RES)$$

quantity X_{i}	estimate <i>x</i> _i	uncertainty $u(x_i)$	probability distribution	sensitivity coefficient	uncertainty contribution	degrees of freedom
				c _i	$u_{i}(d)$	v_i
Ptn	9870 nm	76 nm	Ν	0.161	6.133 nm	200
Ptmy	9870 nm	2 nm	R	0.161	0.186 nm	200
b	10 nm	10 nm	Ν	0.161	1.614 nm	100
Zs	36.1 nm	36.1 nm	R	1.000	20.842 nm	200
Zn	33 nm	16.50 nm	R	1.000	9.526 nm	200
R _z	1593 nm	5 nm	N	1.000	5.000 nm	35
RES	0.42 nm	0.21 nm	R	1.000	0.121 nm	200

N = normal; R = rectangular; T = triangular; U = U-shaped. RES: Resolution (Please see the Excel sheet)

Combined standard uncertainty:	$u_c(Rz) = 24.3 \text{ nm}$	
Effective degrees of freedom:	$v_{\rm eff}\left(Rz\right) = 345.2$	
Expanded uncertainty:	U(Rz) = 48.6 nm	with a coverage factor k=2

Laboratory: ...National Metrology Institute of Turkey. (UME)

.....

Date: 11.01.2002 Signature:....

A4 - Uncertainty of measurement 3.8 Geometric standard PTB (7070) -Identification (for Rz, Ra, Rmax)

Equation used:

$$Rz_{k} = \left(\frac{P_{in}}{P_{imy} + b}\right)(z_{s} + z_{n} + R_{z})$$

Combined uncertainty equation:

$$u(R_{z_k}) = \sqrt{\frac{R_z^2}{P_{tn}^2}} \left(u^2(P_{tn}) + u^2(P_{tmy}) + u^2(b) \right) + u^2(z_s) + u^2(z_n) + u^2(R_z) + u^2(RES)$$

quantity	estimate	uncertainty	probability	sensitivity	uncertainty	degrees of
$X_{ m i}$	Xi	$u(x_i)$	distribution	coefficient	contribution	freedom
				c _i	$u_{\rm i}(d)$	v_{i}
Ptn	9870 nm	76 nm	Ν	0.986	37.461 nm	200
Ptmy	9870 nm	2 nm	R	0.986	1.138 nm	200
b	10 nm	10 nm	Ν	0.986	9.858 nm	100
Zs	69.7 nm	69.7 nm	R	1.000	40.241 nm	200
Zn	33 nm	16.50 nm	R	1.000	9.526 nm	200
Rz	9730 nm	43 nm	Ν	1.000	43.000 nm	35
RES	0.42 nm	0.21 nm	R	1.000	0.121 nm	200

N = normal; R = rectangular; T = triangular; U = U-shaped.RES: Resolution (Please see the Excel sheet)

Combined standard uncertainty:	$u_c(Rz)$	= 71.1 nm	
Effective degrees of freedom:	$v_{\rm eff}$ (R	z) = 212.1	
Expanded uncertainty:	U(Rz)	= 142.3 nm	with a coverage factor k=2

Laboratory: ..National Metrology Institute of Turkey. (UME)

Date: 11.01.2002 Signature:.....

A4 - Uncertainty of measurement 3.9 Geometric standard PTB (8194) -Identification (for Rz, Ra, Rmax)

Equation used:

$$Rz_{k} = \left(\frac{P_{m}}{P_{tmy} + b}\right)(z_{s} + z_{n} + R_{z})$$

Ptn : Depth of the reference setting standard known from PTB certificate

Ptmy : Locus dependent fraction of measured reference groove

b : Reproducibility of tracing of the reference groove

 z_{s} : Unknown systematic deviation. z_{s} = a = Rz_{PTB} - Rz_{UME}

 z_n : Background noise

R_z : Measured Rz parameter carried out on the test standard

Rz_k : Calibrated Rz parameter

Combined uncertainty equation:

$$u(R_{z_k}) = \sqrt{\frac{R_z^2}{P_{tn}^2}} \left(u^2(P_{tn}) + u^2(P_{tmy}) + u^2(b) \right) + u^2(z_s) + u^2(z_n) + u^2(R_z) + u^2(RES)$$

quantity	estimate	uncertainty	probability	sensitivity	uncertainty	degrees of
$X_{ m i}$	x_{i}	$u(x_i)$	distribution	coefficient	contribution	freedom
				c _i	$u_{\rm i}(d)$	v_{i}
Ptn	9870 nm	76 nm	Ν	0.314	11.9 nm	200
Ptmy	9870 nm	2 nm	R	0.314	0.4 nm	200
b	10 nm	10 nm	Ν	0.314	3.1 nm	100
Zs	41.3 nm	41.3 nm	R	1.000	23.8 nm	200
Zn	33 nm	16.50 nm	R	1.000	9.5 nm	200
R _z	3096 nm	49 nm	Ν	1.000	49.0 nm	35
RES	0.42 nm	0.21 nm	R	1.000	0.121 nm	200

N = normal; R = rectangular; T = triangular; U = U-shaped. RES: Resolution (Please see the Excel sheet)

Combined standard uncertainty:

 $u_c(Rz) = 56.7 \text{ nm}$

Effective degrees of freedom:

 $v_{\rm eff}\left(Rz\right)=62.0$

Expanded uncertainty:

 $U(Rz) = 113.9 \,\mathrm{nm}$ w

with a coverage factor k=2.01

Laboratory: .. National Metrology Institute of Turkey. (UME)

.....

Date: 11.01.2002 Signature:....

A4 - Uncertainty of measurement 3.10 Roughness standard SFRN 150 (1,006) - Identification (for Rz, Ra, Rmax)

Equation used:

$$Rz_{k} = \left(\frac{P_{tn}}{P_{tmy} + b}\right)(z_{s} + z_{n} + R_{z})$$

Ptn : Depth of the reference setting standard known from PTB certificate Ptmy : Locus dependent fraction of measured reference groove : Reproducibility of tracing of the reference groove b : Unknown systematic deviation. $z_s = a = Rz_{PTB} - Rz_{UME}$ Z_S z_n : Background noise $\mathbf{R}_{\mathbf{z}}$: Measured Rz parameter carried out on the test standard : Calibrated Rz parameter Rz_k

Combined uncertainty equation:

$$u(R_{z_k}) = \sqrt{\frac{R_z^2}{P_{tn}^2}} \left(u^2(P_{tn}) + u^2(P_{tmy}) + u^2(b) \right) + u^2(z_s) + u^2(z_n) + u^2(R_z) + u^2(RES)$$

quantity	estimate	uncertainty	probability	sensitivity	uncertainty	degrees of
Λ_{i}	x_{i}	$u(x_i)$	distribution	coefficient	contribution	Ireedom
				c _i	$u_{\rm i}(d)$	v_i
Ptn	9870 nm	76 nm	Ν	0.014	0.531 nm	200
Ptmy	9870 nm	2 nm	R	0.014	0.016 nm	200
b	10 nm	10 nm	N	0.014	0.140 nm	100
Zs	31.5 nm	31.5 nm	R	1.000	18.187 nm	200
Zn	33 nm	16.50 nm	R	1.000	9.526 nm	200
R _z	138 nm	6 nm	Ν	1.000	6.000 nm	35
RES	0.42 nm	0.21 nm	R	1.000	0.121 nm	200

N = normal; R = rectangular; T = triangular; U = U-shaped.**RES:** Resolution

(Please see the Excel sheet)

Combined standard uncertainty:	$u_c(Rz) = 21.4 \text{ nm}$	
Effective degrees of freedom:	$v_{\rm eff}\left(Rz\right) = 335.3$	
Expanded uncertainty:	U(Rz) = 42.8 nm	with a coverage factor k=2

Laboratory:	National	Metrology	Institute of	Turkey (UME)
-------------	----------	-----------	--------------	--------------

.....

Date: 11.01.2002 Signature:.....

A4 - Uncertainty of measurement 3.11 Roughness standard Fine (629f) - Identification (for Rz, Ra, Rmax)

Equation used:

$$Rz_{k} = \left(\frac{P_{tn}}{P_{tmy} + b}\right)(z_{s} + z_{n} + R_{z})$$

Combined uncertainty equation:

$$u(R_{z_k}) = \sqrt{\frac{R_z^2}{P_{tn}^2}} \left(u^2(P_{tn}) + u^2(P_{tmy}) + u^2(b) \right) + u^2(z_s) + u^2(z_n) + u^2(R_z) + u^2(RES)$$

quantity X_{i}	estimate x_i	uncertainty $u(x_i)$	probability distribution	sensitivity coefficient	uncertainty contribution	degrees of freedom
				c _i	$u_{i}(d)$	v_{i}
Ptn	9870 nm	76 nm	Ν	0.127	4.832 nm	200
Ptmy	9870 nm	2 nm	R	0.127	0.147 nm	200
b	10 nm	10 nm	Ν	0.127	1.272 nm	100
Zs	35 nm	35 nm	R	1.000	20.207 nm	200
Zn	33 nm	16.50 nm	R	1.000	9.526 nm	200
R _z	1255 nm	43.1 nm	Ν	1.000	43.100 nm	35
RES	0.42 nm	0.21 nm	R	1.000	0.121 nm	200

N = normal; R = rectangular; T = triangular; U = U-shaped. RES: Resolution (Please see the Excel sheet)

Combined standard uncertainty:	$u_c(Rz) = 48.8 \text{ nm}$	
Effective degrees of freedom:	$v_{\rm eff}\left(Rz\right)=57.0$	
Expanded uncertainty:	U(Rz) = 98.1 nm	with a coverage factor k=2.01

Laboratory: .. National Metrology Institute of Turkey. (UME)

.....

Date: 11.01.2002 Signature:.....

3.12 Roughness standard Coarse (633g) - Identification (for Rz, Ra, Rmax)

Equation used:

$$Rz_{k} = \left(\frac{P_{tn}}{P_{tmy} + b}\right)(z_{s} + z_{n} + R_{z})$$

`

Ptn : Depth of the reference setting standard known from PTB certificate

Ptmy : Locus dependent fraction of measured reference groove

b : Reproducibility of tracing of the reference groove

 z_s : Unknown systematic deviation. $z_s = a = Rz_{PTB} - Rz_{UME}$

z_n : Background noise

R_z : Measured Rz parameter carried out on the test standard

 Rz_k : Calibrated Rz parameter

Combined uncertainty equation:

$$u(R_{z_k}) = \sqrt{\frac{R_z^2}{P_{tn}^2}} \left(u^2(P_{tn}) + u^2(P_{tmy}) + u^2(b) \right) + u^2(z_s) + u^2(z_n) + u^2(R_z) + u^2(RES)$$

quantity $X_{\rm i}$	estimate <i>x</i> _i	uncertainty $u(x_i)$	probability distribution	sensitivity coefficient	uncertainty contribution	degrees of freedom
				c_i	$u_{i}(a)$	Vi
Ptn	9870 nm	76 nm	Ν	0.771	29.291 nm	200
Ptmy	9870 nm	2 nm	R	0.771	0.890 nm	200
b	10 nm	10 nm	Ν	0.771	7.708 nm	100
Zs	61 nm	61 nm	R	1.000	35.218 nm	200
Zn	33 nm	16.50 nm	R	1.000	9.526 nm	200
R _z	7608 nm	192.1 nm	N	1.000	192.100 nm	35
RES	0.42 nm	0.21 nm	R	1.000	0.121 nm	200

N = normal; R = rectangular; T = triangular; U = U-shaped. RES: Resolution (Please see the Excel sheet)

Combined standard uncertainty:	$u_c(Rz)=197.9~\mathrm{nm}$	
Effective degrees of freedom:	$v_{\rm eff}\left(Rz\right)=39.4$	
Expanded uncertainty:	$U(Rz) = 399.7 \mathrm{nm}$	with a coverage factor k=2.02

Laboratory: National Metrology Institute of Turkey (UME)

.....

Date: 11.01.2002 Signature:....

A4 - Uncertainty of measurement 3.13 Roughness standard Very coarse (686sg) - Identification (for Rz, Ra, Rmax)

Equation used:

$$Rz_{k} = \left(\frac{P_{tn}}{P_{tmy} + b}\right)(z_{s} + z_{n} + R_{z})$$

Ptn	:	Depth of the reference setting standard known from PTB certificate
Ptmy	:	Locus dependent fraction of measured reference groove
b	:	Reproducibility of tracing of the reference groove
Zs	:	Unknown systematic deviation. $z_s = a = Rz_{PTB} - Rz_{UME}$
Zn	:	Background noise
Rz	:	Measured Rz parameter carried out on the test standard
Rz_k	:	Calibrated Rz parameter

Combined uncertainty equation:

$$u(R_{z_k}) = \sqrt{\frac{R_z^2}{P_{tn}^2}} \left(u^2(P_{tn}) + u^2(P_{tmy}) + u^2(b) \right) + u^2(z_s) + u^2(z_n) + u^2(R_z) + u^2(RES)$$

quantity	estimate	uncertainty	probability	sensitivity	uncertainty	degrees of
X_{i}	x_{i}	$u(x_i)$	distribution	coefficient	contribution	freedom
				ci	$u_{\rm i}(d)$	v_i
Ptn	9870 nm	76 nm	Ν	1.449	55.1 nm	200
Ptmy	9870 nm	2 nm	R	1.449	1.7 nm	200
В	10 nm	10 nm	Ν	1.449	14.5 nm	100
Zs	100 nm	100 nm	R	1.000	57.7 nm	200
Zn	33 nm	16.50 nm	R	1.000	9.5 nm	200
Rz	14300 nm	233.7 nm	Ν	1.000	233.7 nm	35
RES	0.42 nm	0.21 nm	R	1.000	0.121 nm	200

N = normal; R = rectangular; T = triangular; U = U-shaped. RES: Resolution (Please see the Excel sheet)

Combined standard uncertainty: $u_c(Rz) = 247.6 \text{ nm}$ Effective degrees of freedom: $v_{eff}(Rz) = 44.0$ Expanded uncertainty:U(Rz) = 497.6 nm with a coverage factor k=2.01

Laboratory: .. National Metrology Institute of Turkey. (UME)

.....

Date: 11.01.2002 Signature:

A4 - Uncertainty of measurement 3.14 Geometric standard Rub (114A) - Identification (for RSm)

Equation used:

$$RSm = \frac{RSm_g}{PSm_L} (Ac + a_L + a_p + a) + RSm_g$$

Ac : Accuracy of HP laser

a_L : Repeatibility of measurements on the reference standard using laser.

 a_p : Repeatibility of measurements on the reference standard using Perthometer.

a : The difference between the laser and Perthometer measurement results. $(PSm_L - PSm_p)$

PSm_L : Mean of the measured lengths of the profile elements using laser on the reference standard

PSm_p : Mean of the measured lengths of the profile elements using Perthometer on the reference standard

RSm_g : Mean of the measured lengths of the profile elements using Perthometer on the test standard

Note 1: We assume that the ratio RSm_g/PSm_L is constant.

Note 2: RSm_g is not corrected with the value "a". Instead, the value "a" is taken into account in the uncertainty budget.

Combined uncertainty equation:

$$u(RSm) = \sqrt{\frac{RSm_g^2}{PSm_L^2}} \left(u^2(Ac) + u^2(a_L) + u^2(a_P) + u^2(a) \right) + u^2(RSm_g) + u^2(RES)$$

quantity	Estimate	uncertainty	probability	sensitivity	uncertainty	degrees of
$X_{ m i}$	xi	$u(x_i)$	distribution	coefficient	contribution	freedom
				c _i	$u_{\rm i}(d)$	v_{i}
Ac	0.12 nm	0.12 nm	Ν	0.420	0.05 nm	400
a_L	1341 nm	1341 nm	Ν	0.420	76.6 nm	53
a _p	510.7 nm	510.7 nm	Ν	0.420	214.4 nm	8
a	1768 nm	1768 nm	R	0.420	428.6 nm	200
RSmg	49723 nm	75 nm	Ν	1.000	75 nm	11
RES	110 nm	55 nm	R	1.000	31.8 nm	200

N = normal; R = rectangular; T = triangular; U = U-shaped. RES: Resolution (Please see the Excel sheet)

Combined standard uncertainty:	$u_c(Rz) = 492.1 \text{ nm}$	
Effective degrees of freedom:	$v_{\rm eff}\left(Rz\right) = 134.4$	
Expanded uncertainty:	U(Rz) = 984.3 nm	with a coverage factor k=2

Laboratory: National Metrology Institute of Turkey (UME)

.....

Date: 11.01.2002 Signature:......

A4 - Uncertainty of measurement 3.15 Geometric standard PTB (7070) - Identification (for RSm)

Equation used:

$$RSm = \frac{RSm_g}{PSm_L} (Ac + a_L + a_p + a) + RSm_g$$

Ac : Accuracy of HP laser

 a_L : Repeatibility of measurements on the reference standard using laser.

a_p : Repeatibility of measurements on the reference standard using Perthometer.

a : The difference between the laser and Perthometer measurement results. (PSm_L - PSm_p)

 PSm_L : Mean of the measured lengths of the profile elements using laser on the reference standard

PSm_p : Mean of the measured lengths of the profile elements using Perthometer on the reference standard

RSm_g : Mean of the measured lengths of the profile elements using Perthometer on the test standard

Note 1: We assume that the ratio RSm_g/PSm_L is constant.

Note 2: RSm_g is not corrected with the value "a". Instead, the value "a" is taken into account in the uncertainty budget.

Combined uncertainty equation:

$$u(RSm) = \sqrt{\frac{RSm_g^2}{PSm_L^2} \left(u^2(Ac) + u^2(a_L) + u^2(a_P) + u^2(a) \right) + u^2(RSm_g) + u^2(RES)}$$

quantity X_i	Estimate x_i	uncertainty $u(x_i)$	probability distribution	sensitivity coefficient	uncertainty contribution	degrees of freedom
				c _i	$u_{\rm i}(d)$	v_{i}
Ac	0.12 nm	0.12 nm	Ν	1.677	0.2 nm	400
a_L	1341 nm	1341 nm	Ν	1.677	306.1 nm	53
a _p	510.7 nm	510.7 nm	Ν	1.677	856.6 nm	8
a	1768 nm	1768 nm	R	1.677	1712.1 nm	200
RSmg	198617 nm	21 nm	Ν	1.000	21.0 nm	11
RES	1000 nm	500 nm	R	1.000	288.7 nm	200

N = normal; R = rectangular; T = triangular; U = U-shaped.RES: Resolution (Please see the Excel sheet)

Combined standard uncertainty: $u_c(Rz) = 1960.2 \text{ nm}$ Effective degrees of freedom: $v_{eff}(Rz) = 133.7$ Expanded uncertainty:U(Rz) = 3920.4 nm with a coverage factor k=2

Laboratory: National Metrology Institute of Turkey (UME)

.....

Date: 11.01.2002 Signature:.....

July 31st, 2003

A4 - Uncertainty of measurement 3.16 Geometric standard PTB (8194) - Identification (for RSm)

Equation used:

$$RSm = \frac{RSm_g}{PSm_L} (Ac + a_L + a_p + a) + RSm_g$$

Ac : Accuracy of HP laser

a_L : Repeatibility of measurements on the reference standard using laser.

a_p : Repeatibility of measurements on the reference standard using Perthometer.

a : The difference between the laser and Perthometer measurement results. $(PSm_L - PSm_p)$

 PSm_L : Mean of the measured lengths of the profile elements using laser on the reference standard

 $\mbox{PSm}_{\mbox{p}}~$: Mean of the measured lengths of the profile elements using Perthometer on the reference standard

RSm_g : Mean of the measured lengths of the profile elements using Perthometer on the test standard

Note 1: We assume that the ratio RSm_g/PSm_L is constant. Note 2: RSm_g is not corrected with the value "a". Instead, the value "a" is taken into account in the uncertainty budget.

Combined uncertainty equation:

$$u(RSm) = \sqrt{\frac{RSm_g^2}{PSm_L^2}} \left(u^2(Ac) + u^2(a_L) + u^2(a_P) + u^2(a) \right) + u^2(RSm_g) + u^2(RES)$$

quantity	Estimate	uncertainty	probability	sensitivity	uncertainty	degrees of
$X_{ m i}$	xi	$u(x_i)$	distribution	coefficient	contribution	freedom
				c _i	$u_{\rm i}(d)$	v_{i}
Ac	0.12 nm	0.12 nm	Ν	1.006	0.12 nm	400
a_L	1341 nm	1341 nm	Ν	1.006	183.6 nm	53
a _p	510.7 nm	510.7 nm	Ν	1.006	513.8 nm	8
а	1768 nm	1768 nm	R	1.006	1027.1 nm	200
RSmg	119149 nm	29 nm	Ν	1.000	29.0 nm	11
RES	350 nm	175 nm	R	1.000	101.0 nm	200

N = normal; R = rectangular; T = triangular; U = U-shaped. RES: Resolution (Please see the Excel sheet)

Combined standard uncertainty: $u_c(Rz) = 1167.8 \text{ nm}$ Effective degrees of freedom: $v_{eff}(Rz) = 130.0$ Expanded uncertainty:U(Rz) = 2335.5 nm with a coverage factor k=2

Laboratory: National Metrology Institute of Turkey (UME)

.....

Date: 11.01.2002 Signature:

A4 - Uncertainty of measurement 3.17 Roughness standard SFRN 150 (1.006) - Identification (for Rk, Rpk, Rvk)

Equation used:

$$R_{k} = \frac{\sum_{i=1}^{N} z_{i}Mr_{i} - \frac{1}{N}\sum_{i=1}^{N} z_{i}\sum_{i=1}^{N}Mr_{i}}{\sum_{i=1}^{N}Mr_{i}^{2} - \frac{1}{N}\left(\sum_{i=1}^{N}Mr_{i}\right)^{2}}$$

 Profile height of ith point in the central region of material ratio curve
 Material ratio of ith point in the central region of material ratio curve $\mathbf{Z}_{\mathbf{i}}$

- Mri
- Ν : Number of points which are used to calculate the secant in the central region of material ratio curve using least square method.

Combined uncertainty equation:

$$u(R_k) = \sqrt{0.728u^2(z_k) + 0.00347u^2(Mr) + u^2(RES)}$$

Note 1: Please see Appendix 1 for detail explanation of above equation

Note 2: Uncertainty calculations for z_k are given in Excel sheets in Appendix 2

quantity $X_{\rm i}$	estimate x _i	uncertainty $u(x_i)$	probability distribution	sensitivity coefficient c _i	uncertainty contribution $u_i(d)$	degrees of freedom v _i
Z _k	138 nm	41.8 nm	Ν	0.853	36.209 nm	286
Mr	50 %	10 %	Ν	0.059 nm	0.006 nm	200
RES	0.42 nm	0.21 nm	R	1.000	0.121 nm	200

N = normal; R = rectangular; T = triangular; U = U-shaped.

RES: Resolution

Note: Uncertainty of Mr are not calculated. The effect of the uncertainty of Mr is very small. The difference between the combined uncertainties for u(Mr)=0 and u(Mr)=100% is less than 1%. u(Mr) is estimated to be 10%. (Please see the Excel sheet)

Combined standard uncertainty:	$u_c(Rk) = 36.2 \text{ nm}$	
Effective degrees of freedom:	$v_{\rm eff}(Rk) = 16055.3$	
Expanded uncertainty:	U(Rk) = 72.4 nm	with a coverage factor k=2

Laboratory.	National	Metrology	Institute	of Turkey	(UME)
Laboratory.	autonai	Menology	montate	of functy.	(UNIL)

••••••	•••••	
Date:	11.01.2002	 Signature:

3.18 Roughness standard Fine (629f) - Identification (for Rk, Rpk, Rvk)

Equation used:

λZ

$$R_{k} = \frac{\sum_{i=1}^{N} z_{i}Mr_{i} - \frac{1}{N}\sum_{i=1}^{N} z_{i}\sum_{i=1}^{N} Mr_{i}}{\sum_{i=1}^{N} Mr_{i}^{2} - \frac{1}{N} \left(\sum_{i=1}^{N} Mr_{i}\right)^{2}}$$

- : Profile height of i th point in the central region of material ratio curve $\mathbf{Z}_{\mathbf{i}}$
- Mr_i : Material ratio of i th point in the central region of material ratio curve
- Ν : Number of points which are used to calculate the secant in the central region of material ratio curve using least square method.

Combined uncertainty equation:

$$u(R_k) = \sqrt{0,728u^2(z_k) + 0,147u^2(Mr) + u^2(RES)}$$

Note 1: Please see Appendix 1 for detail explanation of above equation

Note 2: Uncertainty calculations for z_k are given in Excel sheets in Appendix 2

quantity $X_{\rm i}$	estimate x _i	uncertainty $u(x_i)$	probability distribution	sensitivity coefficient	uncertainty contribution u(d)	degrees of freedom
Zk	1255 nm	79.7136 nm	N	0.853	$\frac{u_1(a)}{68.012}$ nm	20.5
Mr	50 %	10 %	Ν	0.383 nm	0.038 nm	200
RES	0.42 nm	0.21 nm	R	1.000	0.121 nm	200

N = normal; R = rectangular; T = triangular; U = U-shaped.

RES: Resolution

Note: Uncertainty of Mr are not calculated. The effect of the uncertainty of Mr is very small. The difference between the combined uncertainties for u(Mr)=0 and u(Mr)=100% is less than 1%. u(Mr) is estimated to be 10%. (Please see the Excel sheet)

Combined standard uncertainty:	$u_c(Rk) = 68.0 \text{ nm}$	
Effective degrees of freedom:	$v_{\rm eff}\left(Rk\right) = 1150.8$	
Expanded uncertainty:	U(Rk) = 136.0 nm	with a coverage factor k=2

Laboratory: .. National Metrology Institute of Turkey. (UME)

.....

Date: 11.01.2002 Signature:.....

3.19 Roughness standard Coarse (633g) - Identification (for Rk, Rpk, Rvk)

Equation used:

$$R_{k} = \frac{\sum_{i=1}^{N} z_{i}Mr_{i} - \frac{1}{N}\sum_{i=1}^{N} z_{i}\sum_{i=1}^{N} Mr_{i}}{\sum_{i=1}^{N} Mr_{i}^{2} - \frac{1}{N} \left(\sum_{i=1}^{N} Mr_{i}\right)^{2}}$$

 $z_i \qquad : \ \mbox{Profile height of } i \ \mbox{th point in the central region of material ratio curve}$

- $Mr_i \quad : \ Material \ ratio \ of \ i \ th \ point \ in \ the \ central \ region \ of \ material \ ratio \ curve$
- N : Number of points which are used to calculate the secant in the central region of material ratio curve using least square method.

Combined uncertainty equation:

$$u(R_k) = \sqrt{0.728u^2(z_k) + 14.507u^2(Mr) + u^2(RES)}$$

Note 1: Please see Appendix 1 for detail explanation of above equation Note 2: Uncertainty calculations for z_k are given in Excel sheets in Appendix 2

quantity $X_{\rm i}$	estimate x _i	uncertainty $u(x_i)$	probability distribution	sensitivity coefficient c _i	uncertainty contribution <i>u</i> :(<i>d</i>)	degrees of freedom _{Vi}
Z _k	7608 nm	306.5 nm	Ν	0.853	261.5 nm	11.4
Mr	50 %	10 %	Ν	3.809 nm	0.381 nm	200
RES	0.42 nm	0.21 nm	R	1.000	0.121 nm	200

N = normal; R = rectangular; T = triangular; U = U-shaped.

RES: Resolution

Note: Uncertainty of Mr are not calculated. The effect of the uncertainty of Mr is very small. The difference between the combined uncertainties for u(Mr)=0 and u(Mr)=100% is less than 1%. u(Mr) is estimated to be 10%. (Please see the Excel sheet)

Combined standard uncertainty:	$u_c(Rk) = 261.5 \text{ nm}$	
Effective degrees of freedom:	$v_{\rm eff}\left(Rk\right) = 640.0$	
Expanded uncertainty:	U(Rk) = 523.0 nm	with a coverage factor k=2

LaboratoryNational Metrology Institute of Turkey. (UNIL)	Laboratory: .	National	Metrology	Institute of	of Turkey.	(UME)
--	---------------	----------	-----------	--------------	------------	-------

.....

Date: 11.01.2002 Signature:.....

3.20 Roughness standard Very coarse (686sg) - Identification (for Rk, Rpk, Rvk)

Equation used:

$$R_{k} = \frac{\sum_{i=1}^{N} z_{i}Mr_{i} - \frac{1}{N}\sum_{i=1}^{N} z_{i}\sum_{i=1}^{N} Mr_{i}}{\sum_{i=1}^{N} Mr_{i}^{2} - \frac{1}{N} \left(\sum_{i=1}^{N} Mr_{i}\right)^{2}}$$

- z_i : Profile height of i th point in the central region of material ratio curve
- Mr_i : Material ratio of i th point in the central region of material ratio curve
- N : Number of points which are used to calculate the secant in the central region of material ratio curve using least square method.

Combined uncertainty equation:

$$u(R_k) = \sqrt{0.728u^2(z_k) + 48.202u^2(Mr) + u^2(RES)}$$

Note 1: Please see Appendix 1 for detail explanation of above equation

Note 2: Uncertainty calculations for z_k are given in Excel sheets in Appendix 2

quantity X_i	estimate x_i	uncertainty $u(x_i)$	probability distribution	sensitivity coefficient	uncertainty contribution	degrees of freedom
				c _i	$u_{\rm i}(d)$	Vi
Z _k	14300 nm	371.8 nm	Ν	0.853	317.2 nm	11.3
Mr	50 %	10 %	Ν	6.943 nm	0.694 nm	200
RES	0.42 nm	0.21 nm	R	1.000	0.121 nm	200

N = normal; R = rectangular; T = triangular; U = U-shaped.

RES: Resolution

Note: Uncertainty of Mr are not calculated. The effect of the uncertainty of Mr is very small. The difference between the combined uncertainties for u(Mr)=0 and u(Mr)=100% is less than 1%. u(Mr) is estimated to be 10%. (Please see the Excel sheet)

Combined standard uncertainty:	$u_c(Rk) = 317.2 \text{ nm}$	
Effective degrees of freedom:	$v_{\rm eff}\left(Rk\right) = 634.4$	
Expanded uncertainty:	U(Rk) = 634.4 nm	with a coverage factor k=2

Laboratory: .. National Metrology Institute of Turkey. (UME)

.....

Date: 11.01.2002 Signature:.....

A4 - Uncertainty of measurement 3.21 Roughness standard SFRN 150 (1.006) - Fine (629f) – Coarse (633g) – Very coarse (686sg) - Identification (for Mr₁, Mr₂)

Uncertainty of Mr_1 and Mr_2 was not calculated. Instead, we assume that the relative uncertainty of Rk with respect to Rz is valid for Mr_1 and Mr_2 parameters.

Standard	Rz (nm)	U(Rk) (nm) k=2	$\frac{U(R_k)}{R_z}$	Mr ₁ (%)	U(Mr ₁) (%) k=2	Mr ₂ (%)	U(Mr ₂) (%) k=2
SFRN 150 (1.006)	138	72.4	0.525	12.606	6.618	83.232	43.697
Fine (629f)	1255	136.0	0.108	8.982	0.970	88.158	9.521
Coarse (633g)	7608	523.0	0.069	6.196	0.428	81.968	5.656
Very coarse (686sg)	14300	634.4	0.044	6.948	0.306	92.850	4.085

Laboratory: National Metrology Institute of Turkey (UME)

Date: 11.01.2002 Signature:

APPENDIX 1 A Model For Calculation of Uncertainty of Rk, Rpk, Rvk Parameters

The following uncertainty calculation is performed for Rk parameter. It can also be applied for R_{pk} and R_{vk} parameters.

According to ISO 13565-2, a line (secant) is fitted to the central region of material ratio curve in order to obtain R_k , R_{pk} and R_{vk} parameters. The length in horizontal projection of the secant is 40 %. The gradient of the secant is the smallest of the gradients of all secants which have the leng in horizontal projection th in horizontal projection 40 %.

Assumptions:

- 1) The secant AB which is fitted to the central region is on the center of the whole curve. So the abscissae of the middle point of the secant is $Mr_M = 50 \%$ ($Mr_A = 30 \%$ and $Mr_B = 70 \%$)
- 2) z ordinate of middle point M of the secant is

$$z^*_M \cong R_{vk} + \frac{R_k}{2}$$

3) Vertical measuring range of the probe MFW-250 is $\pm 25 \ \mu m$. This renge is sampled by 60000 steps. So it is assumed that at least 100 points can be used to do sampling in horizontal axis in calculation of Rk for almost all range of standards given. Therefore 100 points are used to calculate the least square best fit line.

There are N points between A and B points. 1st order polinomial (the secant) is following:

$$z^* = c_1 M r + c_2 \tag{1}$$

From the similarity of the triangles CED and AFB, following equation can be written:

 $\frac{R_k}{100\%} = \frac{z_A^* - z_B^*}{40\%}$ $z_A^*: \text{ Starting point of secant}$ $z_B^*: \text{ End point of secant}$

When we substitute Eq(1) into Eq(2) we obtain:

$$\frac{R_k}{100\%} = \frac{(c_1 M r_A + c_2) - (c_1 M r_B + c_2)}{40\%}$$

$$\frac{R_k}{100\%} = \frac{c_1(Mr_A - Mr_B) + c_2 - c_2}{40\%}$$

$$R_k = c_1 \tag{2}$$

If we can determine c_1 , Rk can be found as well as with its uncertainty. The secant can be determined (i.e. c_1 and c_2 in Eq.1) using "least square method". The main formula for least square method is written as following:

$$F = \sum_{i=1}^{N} (z_i^* - z_i)^2$$
(4)

z_i^{*}:Ordinate of i th point of fitted polynomial

z_i: Ordinate of i th point of the central region of material ratio curve

F : Sum of the square of the differences

There are two unknowns c_1 and c_2 in Eq.1 . For "F" be minimum, derivetives of F with respect to c_1 and c_2 must be zero. Thus,

$$\frac{\partial F}{\partial c_1} = 0 \qquad \Rightarrow \qquad 2\sum_{i=1}^N (c_1 M r_i + c_2 - z_i) M r_i = 0 \tag{5}$$

(2)

(3)

Euromet Project 600 - Comparison of Surface Roughness Standards

$$\frac{\partial F}{\partial c_2} = 0 \qquad \Rightarrow \qquad 2\sum_{i=1}^N (c_1 M r_i + c_2 - z_i) = 0 \tag{6}$$

If we obtain c_2 from Eq.6 and substitute into Eq.5, we obtain:

$$c_{1}\sum_{i=1}^{N}Mr_{i}^{2} + \frac{1}{N}\left[\sum_{i=1}^{N}z_{i} - c_{1}\sum_{i=1}^{N}Mr_{i}\right]\sum_{i=1}^{N}Mr_{i} - \sum_{i=1}^{N}z_{i}Mr_{i} = 0$$

After a simple arrangement we obtain:

$$R_{k} = c_{1} = \frac{\sum_{i=1}^{N} z_{i} M r_{i} - \frac{1}{N} \sum_{i=1}^{N} z_{i} \sum_{i=1}^{N} M r_{i}}{\sum_{i=1}^{N} M r_{i}^{2} - \frac{1}{N} \left(\sum_{i=1}^{N} M r_{i}\right)^{2}}$$
(7)

Combined uncertainty of R_k :

$$u^{2}(R_{k}) = \left[\sum_{i=1}^{N} \left(\frac{\partial R_{k}}{\partial z_{i}}\right)^{2}\right] u^{2}(z_{i}) + \left[\sum_{i=1}^{N} \left(\frac{\partial R_{k}}{\partial Mr_{i}}\right)^{2}\right] u^{2}(Mr_{i}) \quad (8)$$

$$u^{2}(R_{k}) = \left(\frac{Mr_{1} - \frac{1}{N}\sum_{i=1}^{N} Mr_{i}}{\sum_{i=1}^{N} Mr_{i}}\right)^{2} u^{2}(z_{1}) + \left(\frac{Mr_{2} - \frac{1}{N}\sum_{i=1}^{N} Mr_{i}}{\sum_{i=1}^{N} Mr_{i}}\right)^{2}\right)^{2} u^{2}(z_{2}) + \dots \dots$$

$$\dots + \left(\frac{\left(z_{1} - \frac{1}{N}\sum_{i=1}^{N} z_{i}\right)\left(\sum_{i=1}^{N} Mr_{i}^{2} - \frac{1}{N}\left(\sum_{i=1}^{N} Mr_{i}\right)^{2}\right)^{2} - \left(2Mr_{1} - \frac{2}{N}\sum_{i=1}^{N} Mr_{i}\right)\left(\sum_{i=1}^{N} z_{i}Mr_{i}\right)^{2}\right)^{2} u^{2}(Mr_{1}) + \dots$$

$$\dots + \left(\frac{\left(z_{2} - \frac{1}{N}\sum_{i=1}^{N} z_{i}\right)\left(\sum_{i=1}^{N} Mr_{i}^{2} - \frac{1}{N}\left(\sum_{i=1}^{N} Mr_{i}\right)^{2}\right)^{2} - \left(2Mr_{2} - \frac{2}{N}\sum_{i=1}^{N} Mr_{i}\right)\left(\sum_{i=1}^{N} z_{i}Mr_{i} - \frac{1}{N}\sum_{i=1}^{N} z_{i}\sum_{i=1}^{N} Mr_{i}\right)}{\left(\sum_{i=1}^{N} Mr_{i}^{2} - \frac{1}{N}\left(\sum_{i=1}^{N} Mr_{i}\right)^{2}\right)^{2} - \left(2Mr_{2} - \frac{2}{N}\sum_{i=1}^{N} Mr_{i}\right)\left(\sum_{i=1}^{N} z_{i}Mr_{i} - \frac{1}{N}\sum_{i=1}^{N} z_{i}\sum_{i=1}^{N} Mr_{i}}\right)^{2}u^{2}(Mr_{1}) + \dots$$

$$\dots + \left(\frac{\left(z_{2} - \frac{1}{N}\sum_{i=1}^{N} z_{i}\right)\left(\sum_{i=1}^{N} Mr_{i}^{2} - \frac{1}{N}\left(\sum_{i=1}^{N} Mr_{i}\right)^{2}\right)^{2} - \left(2Mr_{2} - \frac{2}{N}\sum_{i=1}^{N} Mr_{i}\right)\left(\sum_{i=1}^{N} z_{i}Mr_{i} - \frac{1}{N}\sum_{i=1}^{N} z_{i}\sum_{i=1}^{N} Mr_{i}}\right)^{2}u^{2}(Mr_{2}) + \dots + \left(\frac{2}{N}\sum_{i=1}^{N} Mr_{i}^{2}\right)^{2}\right)^{2} - \left(2Mr_{2} - \frac{2}{N}\sum_{i=1}^{N} Mr_{i}\right)\left(\sum_{i=1}^{N} z_{i}Mr_{i} - \frac{1}{N}\sum_{i=1}^{N} z_{i}\sum_{i=1}^{N} Mr_{i}}\right)^{2}u^{2}(Mr_{2}) + \dots + \left(\frac{2}{N}\sum_{i=1}^{N} Mr_{i}^{2}\right)\left(\sum_{i=1}^{N} Mr_{i}^{2} - \frac{1}{N}\sum_{i=1}^{N} Mr_{i}}\right)^{2}\right)^{2} - \left(2Mr_{2} - \frac{2}{N}\sum_{i=1}^{N} Mr_{i}}\right)\left(\sum_{i=1}^{N} z_{i}Mr_{i}\right)^{2}\right)^{2}u^{2}(Mr_{2}) + \dots + \left(\frac{2}{N}\sum_{i=1}^{N} Mr_{i}^{2}\right)^{2}\right)^{2}$$

Above	coefficients	are	calculated	for	4	different	roughness	standard	by	using	а	QBASIC
comput	er program.	The c	coefficients	for l	N =	= 101 poin	ts are follov	ving:				

Standard	$\sum_{i=1}^{N} \left(\frac{\partial R_k}{\partial z_i} \right)^2$	$\sum_{i=1}^{N} \left(\frac{\partial R_k}{\partial z_i} \right)^4$	$\sum_{i=1}^{N} \left(\frac{\partial R_k}{\partial Mr_i} \right)^2$	$\sum_{i=1}^{N} \left(\frac{\partial R_k}{\partial Mr_i} \right)^4$
686sg	0.728	0.00944	48.202	41.40
633g	0.728	0.00944	14.507	3.75
629f	0.728	0.00944	0.147	0.000384
1.006	0.728	0.00944	0.00347	0.000000214

Note: 4th order coefficients are used for calculation of effective degrees of freedom.

Verifying whether the extreme point of "F" function is a minimum or not

Second derivatives of F function:

$f_{c_1c_1}'' = \frac{\partial^2 F}{\partial c_1^2} = 2 \sum_{i=1}^N M r_i^2$	Always positive
$f_{c_2c_2}'' = \frac{\partial^2 F}{\partial c_1^2} = 2 N$	Always positive
$f_{c_1 c_2}'' = \frac{\partial^2 F}{\partial c_1^2} = 0$	

Discriminant:

$$D = \left(f_{c_1c_2}''\right)^2 - f_{c_1c_1}'' f_{c_2c_2}''$$

Always negative

Because $f_{c_1c_1}^{"}$ is positive, the point is real minimum.

UME

(Only part of the comment related to changes of the uncertainty)

1) We calibrated our roughness instrument by using PTB calibrated depth setting standard with six grooves. We used only the deepest groove (Pt = 9870 and D = 9820 nm). The relative uncertainty is % 0.305 . Our uncertainty for R6 groove (D = 8363 nm) of the depth standard EN 806 is 25.6 nm, our relative uncertainty is % 0.306 (Section 3.1–3.3, P:8–10 in UME Report Appendix B1 in Draft A) . As can be seen, our relative uncertainty in the comparison is equal to the uncertainty of our reference standard. This is caused by an error in the uncertainty model used for D parameter. In the model, z values of measured profile were being averaged according to the assumption of randomly distributed z-values. We applied this for the uncertainty of reference standard was systematic not random. So we can not apply averaging for the uncertainty of reference standard. The corrected uncertainty equations and the budgets for D parameters can be seen in the attachment. According to the equations in the attachment, uncertainties for D parameters were recalculated. The results are as following:

Groove R1 (D = 282 nm), U(D) = 20.2 nm (k = 2) Groove R3 (D = 1364 nm), U(D) = 24.4 nm (k = 2) Groove R6 (D = 8363 nm), U(D) = 70.8 nm (k = 2)

2) We calculated the uncertainty only for Rz parameter (Section 3.7–3.13, P:14–20 in UME Report Appendix B1 in Draft A). And we used this calculated absolute uncertainty for Ra and Rz1max in order to be on a safe side, because background noise level is high in our laboratory (Rzo = 33nm). But our uncertainties for Ra parameters seem very large when compared to other countries in the comparison. So we think that two uncertainty contributions should be changed in the budget. One of them is the systematic deviation (the difference between UME and PTB) and the other is standard deviation of the parameter on the surface. The systematic deviation may be calculated for Ra instead of Rz. Standard deviation of Ra may be used instead of Rz on the surface. The corrected model equation, the uncertainty equation and the budget can be seen in the attachment. According to the equations in the attachment, unce rtainties for Ra parameters were calculated. The results are as following:

Geometric Standard P114A	(Ra = 505 nm),	U(Ra) = 20.0 nm (k = 2)
Geometric Standard 7070	(Ra = 2978 nm),	U(Ra) = 46.0 nm (k = 2)
Geometric Standard 8194	(Ra = 901 nm),	U(Ra) = 25.2 nm (k = 2)
Roughness Standard 686sg	(Ra = 2346 nm),	U(Ra) = 73.4 nm (k = 2)
Roughness Standard 633g	(Ra = 1533 nm),	U(Ra) = 30.8 nm (k = 2)
Roughness Standard 629f	(Ra = 147 nm),	U(Ra) = 20.0 nm (k = 2)
Roughness Standard 1.006	(Ra = 24 nm),	U(Ra) = 19.4 nm (k = 2)

Appendix B2

MEASUREMENT RESULTS

P	roject 600	uro							stdd	Measureme eviation and 2k	ent values in µ k-measuncer	im , tainty in nm				
	A	B	С	D	E	F	G	Н	I	J	К	L	М	N	0	Р
1	Depth standa	rd		Pt	D							lambda-c	lambda-s	Speed	Force	Sampl-dist
2		EN 806										mm	μm	mm/s	mN	μm
3	R1	0,2 µm	value		0,285											
4			std. dev.		3,5											
5			Meas. Unc.		12											
6	R3	1,5 µm	value		1,366											
7			std. dev.		3,8											
8			Meas. Unc.		15											
9	R6	8 µm	value		8,357							1				
10			std. dev.		13											
11			Meas. Unc.		58											
12				Ī								1				
13	Geom. Standa	ard		Ra	Rz	Rmax	RSm									
14	Rub	P114A/528-RS 5	value									1				
15			std. dev.													
16			Meas. Unc.													
17	РТВ	7070/PGN10	value									1				
18			std. dev.													
19			Meas. Unc.													
20	РТВ	8194/PGN3	value									Ī				
21			std. dev.													
22			Meas. Unc.													
23												1				
24	Roughn.stand	lard		Ra	Rz	Rmax	Rk*	Rpk*	Rvk*	Mr1/%*	Mr2/%*	lambda-c	lambda-s	Speed	Force	Sampl-dist
25												mm	μm	mm/s	mN	μm
26	very coarse	686sg	value													
27			std. dev.													
28			Meas. Unc.													
29	coarse	633g	value													
30			std. dev.													
31			Meas. Unc.													
32	fine	629f	value													
33			std. dev.													
34			Meas. Unc.													
35	SFRN 150	1.006	value													
36			std. dev.													
37			Meas. Unc.													

14.12.2001

Euromet

Results and Measurement Conditions

Euromet
Project 600

Results and Measurement Conditions

Measurement values in µm,

SI	urface _A Textu	re _B	С	D	E	F	G	н	std -deviation a	J	R K	L	М	Ν	0	Р
1	Depth standar	rd		Pt	D							lambda-c	lambda-s	Speed	Force	Sampl-dist
2		EN 806										mm	μm	mm/s	mN	μm
3	R1	0,2 µm	value	0,284	0,277									0,1	0,9	0,5
4			std. dev.	2	3											
5			Meas. Unc.	10	10											
6	R3	1.5 um	value	1.360	1.358									0.1	0.9	0.5
7		2 - 1	std. dev.	0	2											
8			Meas, Unc.	10	10											
9	R6	8 um	value	8.329	8.315									0.1	0.9	0.5
10			std dev	8	10									•1.		
11			Meas, Unc.	12	12											
12																
13	Geom. Standa	ard		Ra	Rz	Rmax	RSm									
14	Rub	P114A/528-RS 5	value	0,491	1,575	1,588	49,536					0,25	2,5	0,5	0,4	0,5
15			std. dev.	2	7	10	13,42									
16			Meas. Unc.	3,97	34,07	107,26	2860									
17	РТВ	7070/PGN10	value	2,909	9,476	9,627	197,853					2,5	8	0,5	0,4	1,5
18			std. dev.	7	39	60	33									
19			Meas. Unc.	169,32	181,9	735,21	3807,69									
20	РТВ	8194/PGN3	value	0,894	3,091	3,113	118,719					0,8	2,5	0,5	0,4	0,5
21			std. dev.	7,5	50,9	55,6	46,2									
22			Meas. Unc.	27,33	105,96	215,11	6854,25									
23																
24	Roughn.stand	lard		Ra	Rz	Rmax	Rk*	Rpk*	Rvk*	Mr1/%*	Mr2/%*	lambda-c	lambda-s	Speed	Force	Sampl-dist
25												mm	μm	mm/s	mN	μm
26	very coarse	686sg	value	2,303	14,046	15,297	7,93	1,275	3,11	8,065	92,839	2,5	8	0,5	0,4	1,5
27			std. dev.	31	195	47	237	95	193	1,011	0,665					
28			Meas. Unc.	169,41	189,75	1128,65	70	30	57	0,382	0,461					
29	coarse	633g	value	1,487	7,397	8,743	4,32	0,733	2,433	6,31	81,8	0,8	2,5	0,5	0,4	0,5
30			std. dev.	9,4	195	128	66	34	46	0,221	0,347					
31			Meas. Unc.	48,17	125,28	667,3	115	112	113	0,261	0,339					
32	fine	629f	value	0,146	1,248	1,428	0,442	0,133	0,29	9,33	87,69	0,8	2,5	0,5	0,4	0,5
33			std. dev.	3	45	99	8	6	10	0,494	0,461					
34			Meas. Unc.	11,89	102,85	224,6	23	15	17	0,288	0,332					
35	SFRN 150	1.006	value	0,02352	0,13329	0,1729	0,07256	0,0261	0,02983	11,86	86,42	0,25	2,5	0,1	0,4	0,5
36			std. dev.	0,55	4,5	16,6	3,25	1,17	2,07	0,683	0,688					
37			Meas. Unc.	25,66	31,45	36,99	26	27	29	0,2	0,2					
N:	ame of conta	act person: Emilio	Prieto						Labo	ratory: CEM	(Spain)					

Phone: +34 91 8074 716

Origin of template: PTB Germany page 2 of 16 pages

	A	В	С	D	E	F	G	Н	I	J	К	L	М	Ν	0	Р
1	Depth standa	rd		Pt	D							lambda-c	lambda-s	Speed	Force	Sampl-dist
2		EN 806										mm	um	mm/s	mN	um
3	R1	0.2 µm	value/um	0.307	0.286							none	none	0.05	1	0.1
4			std. dev./nm	5	4											
5			U/nm (k=2)	34	34											
6	R3	1.5 um	value/um	1.387	1.361							none	none	0.05	1	0.1
7		1,0 µm	std. dev /nm	1,007	1,001							lione	lione	0,00		0,1
8			U/nm (k=2)	43	43											
0	P6	8 um		8 404	8 356							none	none	0.05	1	0.1
10	NO	0 µm	otd dov /pm	16	0,000							none	none	0,03		0,1
11			L/pm (k=2)	60	68											
12			0/mm (K=2)													
12	Geom Standa	ard		Ra	R7	Rmay	RSm									
10	Dub		velue/um	0.510	1.60	1.61	40					0.25	2.5	0.05		0.2
14	Rub	P114A/526-KS 5	value/µm	0,510	1,60	1,01	40					0,25	2,5	0,05		0,2
15			sta. dev./nm	25	6	11	191									
10			0/nm (k=2)	35	45	40	040									
17	ыв	7070/PGN10	value/µm	2,94	9,60	9,77	198					2,5		0,1	1	1,5
18			std. dev./nm	10	34	84	140									
19			U/nm (k=2)	55	70	84	1376									
20	РТВ	8194/PGN3	value/µm	0,901	3,07	3,09	118					0,8	2,5	0,1	1	0,5
21			std. dev./nm	10	48	50	1052	-	-			-				
22			U/nm (k=2)	51	64	65	1125									
23																
24	Roughn.stand	lard		Ra	Rz	Rmax	Rk*	Rpk*	Rvk*	Mr1/%*	Mr2/%*	lambda-c	lambda-s	Speed	Force	Sampl-dist
25												mm	μm	mm/s	mN	μm
26	very coarse	686sg	value/µm	2,34	14,3	15,8	8,20	1,21	3,25	6,7	92,8	2,5	8	0,1	1	1,5
27			std. dev./nm	19	326	91	109	53	250	0,6	0,3					
28			U/nm (k=2)	57	200	86	86	64	155	2	2				-	
29	coarse	633g	value/µm	1,52	7,45	8,88	4,47	0,70	2,46	5,8	81,9	0,8	2,5	0,05	1	0,5
30			std. dev./nm	4	88	259	19	15	19	0,1	0,2					
31			U/nm (k=2)	55	84	164	59	56	57	2	2					
32	fine	629f	value/µm	0,152	1,24	1,40	0,464	0,137	0,299	8,5	87,9	0,8	2,5	0,05	1	0,5
33			std. dev./nm	4	41	91	12	7	12	0,7	0,4					
34			U/nm (k=2)	35	51	69	39	35	39	2	2					
35	SFRN 150	1.006	value/µm	0,026	0,137	0,173	0,076	0,028	0,032	11,9	86,6	0,25	2,5	0,05	1	0,2
36			std. dev./nm	1	6	8	6	3	2	1,1	1					
37			U/nm (k=2)	15	29	29	19	14	14	2	2					

Euromet Project 600 Surface Texture

	A	в	ι L	D	E	F	G	н		J	ĸ	L	IVI	IN	0	Р
1	Depth standar	ď		Pt	D							lambda-c	lambda-s	Speed	Force	Sampl-dist
2		EN 806										mm	μm	mm/s	mN	μm
3	R1	0,2 µm	value/µm	0,195	0,174							0,06		0,1	0,75	0,03
4			std. dev./nm	7	5											
5			U/nm (k=2)	72	90											
6	R3	1,5 µm	value/µm	1,422	1,385							0,1		0,1	0,75	0,05
7			std. dev./nm	29	17											
8			U/nm (k=2)	92	120											
9	R6	8 µm	value/µm	8,353	8,328							0,2		0,1	0,75	0,1
10			std. dev./nm	21	23											
11			U/nm (k=2)	130	114											
12																
13	Geom. Standa	ard		Ra	Rz	Rmax	RSm									
14	Rub	P114A/528-RS 5	value/µm	0,499	1,580	1,598	50,2					0,25	2,5	0,5	0,75	0,13
15			std. dev./nm	2	7	11	1100									
16			U/nm (k=2)	24	128	154	12200									
17	РТВ	7070/PGN10	value/µm	2,940	9,547	9,654	200,0					2,5	8	0,5	0,75	1,3
18			std. dev./nm	10	27	52	0									
19			U/nm (k=2)	172	248	288	4400									
20	РТВ	8194/PGN3	value/µm	0,894	3,056	3,073	119,8					0,8	2,5	0,5	0,75	0,42
21			std. dev./nm	8	47	50	1700									
22			U/nm (k=2)	46	264	356	4200									
23																
24	Roughn.stand	ard		Ra	Rz	Rmax	Rk*	Rpk*	Rvk*	Mr1/%*	Mr2/%*	lambda-c	lambda-s	Speed	Force	Sampl-dist
25												mm	μm	mm/s	mN	μm
26	very coarse	686sg	value/µm	2,328	13,597	15,328	8,027	1,226	3,214	7,6	92,7	2,5	8	0,5	0,75	1,3
27			std. dev./nm	35	438	62	242	59	362	0,8	0,9					
28			U/nm (k=2)	174	354	310	1698	212	260	1,2	2,2					
29	coarse	633g	value/µm	1,513	7,302	8,941	4,359	0,863	2,619	5,5	81,7	0,8	2,5	0,5	0,75	0,42
30			std. dev./nm	23	208	133	125	65	152	0,3	0,6					
31			U/nm (k=2)	174	276	316	1694	212	176	1,0	2,2					
32	fine	629f	value/µm	0,142	1,172	1,342	0,435	0,130	0,309	8,8	88,3	0,8	2,5	0,5	0,75	0,42
33			std. dev./nm	3	55	91	9	7	18	0,6	0,7					
34			U/nm (k=2)	18	132	202	52	14	42	0,6	1,2					
35	SFRN 150	1.006	value/µm	0,025	0,146	0,176	0,074	0,031	0,034	11,6	87,1	0,25	2,5	0,5	0,75	0,13
36			std. dev./nm	1	9	14	5	5	6	1,9	1,7					
37			U/nm (k=2)	18	128	196	52	14	22	1,2	1,4				1	

Euromet

Project 600

Surface Texture

Results and Measurement Conditions

Measurement values in µm, std.-deviation and 2k-meas.-uncertainty in nm

P	roject 600								stdde	Measureme eviation and 2k	ent values in µ -measuncert	m, aintv in nm				
3	A	B	С	D	E	F	G	Н	1	J	К	L	М	N	0	Р
1	Depth standar	ď		Pt	D							lambda-c	lambda-s	Speed	Force	Sampl-dist
2		EN 806										mm	μm	mm/s	mN	μm
3	R1	0,2 µm	value/µm	0.287	0.266									0,5	<1	0.25
4			std. dev./nm	2.4	2.7											
5			U/nm (k=2)	34	12											
6	R3	1.5 um	value/um	1 379	1 355									0.5	<1	0.25
7		.,	std. dev./nm	29	2.3										· · · · ·	0,20
8			U/nm (k=2)	39	18											
9	R6	8 um	value/um	8 312	8 283									0.5	<1	0.25
10		0 pm	std dev /nm	6.8	5.8									0,0		0,20
11			U/nm (k=2)	73	47											
12			0,1111 (N=2)	10	-1/											
13	Geom. Standa	ard		Ra	Rz	Rmax	RSm									
14	Rub	P114A/528-RS 5	value/um	0 500	1 576	1 589	50.03					0.25	25	0.5	<1	0.25
15			std. dev./nm	1.5	4.8	10.7	98					0,20		0,0	· · · · ·	0,20
16			U/nm (k=2)	29	32	32	300									
17	РТВ	7070/PGN10	value/um	2.944	9.614	9.808	199.94					2.5	8	0.5	<1	0.25
18			std. dev./nm	12.4	45.5	57.6	19.6					_,_	-		· ·	-,
19			U/nm (k=2)	38	91	92	300									
20	РТВ	8194/PGN3	value/µm	0.891	3.061	3.081	119.99					0.8	2.5	0.5	<1	0.25
21			std. dev./nm	6.5	53,5	5.7	29,1									, , , , , , , , , , , , , , , , , , ,
22			U/nm (k=2)	31	42	39	300									
23																
24	Roughn.stand	ard		Ra	Rz	Rmax	Rk*	Rpk*	Rvk*	Mr1/%*	Mr2/%*	lambda-c	lambda-s	Speed	Force	Sampl-dist
25												mm	μm	mm/s	mN	μm
26	very coarse	686sg	value/µm	2,321	14,22	15,38	8,051	1,390	3,21	7,21	91,7	2,5	8	0,5	<1	0,25
27			std. dev./nm	21,1	291,8	30,0	56,2	51,7	339,2	0,37	0,54					
28			U/nm (k=2)	35	160	140	72	35	120	1	1					
29	coarse	633g	value/µm	1,500	7,473	8,752	4,371	0,833	2,735	6,5	79,5	0,8	2,5	0,5	<1	0,25
30			std. dev./nm	2,1	146,7	89,1	136,2	52,1	113,0	0,5	0,4					
31			U/nm (k=2)	32	84	86	64	35	52	1	1					
32	fine	629f	value/µm	0,147	1,252	1,423	0,456	0,162	0,302	8,3	87,5	0,8	2,5	0,5	<1	0,25
33			std. dev./nm	2,1	34,2	75,0	15,9	9,2	18,2	0,49	0,61					
34			U/nm (k=2)	30	33	40	31	30	31	2	2					
35	SFRN 150	1.006	value/µm	0,024	0,138	0,171	0,075	0,028	0,032	10,8	81,4	0,25	2,5	0,5	<1	0,25
36			std. dev./nm	0,6	3,2	9,7	3,2	2,9	4,4	1,35	1,25					
37			U/nm (k=2)	19	19	19	19	19	19	5,8	5,8					

contact person: Barbara Smereczy•ska Phone: +48 22 620 54 38 e-mail: length@gum.gov.pl

Euromet

Laboratory: Central Office of Measures (GUM), POLAND

Results and Measurement Conditions

Measurement values in µm,

28.06.2002

Results and Measurement Conditions Measurement values in µm, std.-deviation and 2k-meas.-uncertainty in nm

Date:	2001	/1	1/07
Duio.	2001		., .,

	A	В	С	D	E	F	G	Н	I	J	K	L	М	N	0	Р
1	Depth standar	d		Pt	D							lambda-c	lambda-s	Speed	Force	Sampl-dist
2		EN 806										mm	μm	mm/s	mN	μm
3	R1	0,2 µm	value	0,314	0,29									0,5	0,75	0,5
4			std. dev.	5	7											
5			Meas. Unc.	17	17											
6	R3	1,5 µm	value	1,395	1,376									0,5	0,75	0,5
7			std. dev.	5	7											
8			Meas. Unc.	30	30											
9	R6	8 µm	value	8,419	8,402									0,5	0,75	0,5
10			std. dev.	9	9											
11			Meas. Unc.	60	60											
12																
13	Geom. Standa	ard		Ra	Rz	(Rmax) Rt	RSm									
14	Rub	P114A/528-RS 5	value	0,504	1,598	1,609	50,04					0,25	2,5	0,5	0,75	0.25
15			std. dev.	1	6	12	12									
16			Meas. Unc.	16	64	65	500									
17	РТВ	7070/PGN10	value	2,962	9,735	9,767	199,98					2,5	8	0,5	0,75	0,25
18			std. dev.	14	66	66	21									
19			Meas. Unc.	89	389	391	2000									
20	РТВ	8194/PGN3	value	0,903	3,098	3,112	120,02					0,8	2,5	6 0,5	0,75	0,25
21			std. dev.	7	51	51	48									
22			Meas. Unc.	28	124	125	1200									
23																
24	Roughn.stand	ard		Ra	Rz	(Rmax) Rt	Rk*	Rpk*	Rvk*	Mr1/%*	Mr2/%*	lambda-c	lambda-s	Speed	Force	Sampl-dist
25												mm	μm	mm/s	mN	μm
26	very coarse	686sg	value	2,335	14,308	15,568	8,23	1,38	3,51	6,90	93,20	2,5	8	8 0,5	0,75	0,25
27			std. dev.	25	25	40	218	94	297	0,9	0,8					
28			Meas. Unc.	94	715	778	412	69	176	1,5	1,5					
29	coarse	633g	value	1,516	7,684	8,842	4,42	0,91	2,79	5,60	81,70	0,8	2,5	5 0,5	0,75	0,25
30			std. dev.	2	113	91	113	77	135	0,5	0,5					
31			Meas. Unc.	61	384	442	221	46	140	1,5	1,5					
32	fine	629f	value	0,146	1,299	1,512	0,46	0,14	0,32	8,40	88,40	0,8	2,5	0,5	0,75	0,25
33			std. dev.	3	34	49	15	15	12	1	0,9					
34			Meas. Unc.	8	65	76	24	10	17	1,5	1,5					
35	SFRN 150	1.006	value	0,0250	0,1460	0,2030	0,08	0,04	0,03	12,90	86,70	0,25	2,5	0,5	0,75	0,25
36			std. dev.	1	4	15	6	6	4	1,8	1,2					
37			Meas. Unc.	5,09901951	10,1138519	12,3297405	7,9649231	7,21543484	7,20347139	2	2					

Euromet
Project 600
Surface Texture

Results and Measurement Conditions Measurement values in μm, std.-deviation and 2k-meas.-uncertainty in nm

	A	В	С	D	E	F	G	Н	1	J	К	L	M	N	0	P
1	Depth standa	rd		Pt	D							lambda-c	lambda-s	Speed	Force	Sampl-dist
2		EN 806										mm	μm	mm/s	mN	μm
3	R1	0,2 µm	value/µm	0,301	0,283									0,025 / 0,002	0,03	0,1
4			std. dev./nm	9	3,2											
5			U/nm (k=2)	16	5,5											
6	R3	1,5 µm	value/µm	1,382	1,367									0,025	0,045	0,3
7			std. dev./nm	6	3,4											
8			U/nm (k=2)	27	8											
9	R6	8 µm	value/µm	8,382	8,357									0,025	0,055	0,3
10			std. dev./nm	10	9,8											
11			U/nm (k=2)	42	28											
12																
13	Geom. Standa	ard		Ra	Rz	Rmax	RSm									
14	Rub	P114A/528-RS 5	value/µm	0,508	1,596	1,61						0,25	1	0,025	0,045	1
15			std. dev./nm	1,3	5,7	15,2										
16			U/nm (k=2)	11	49	66										
17	РТВ	7070/PGN10	value/µm													
18			std. dev./nm													
19			U/nm (k=2)													
20	РТВ	8194/PGN3	value/µm													
21			std. dev./nm													
22			U/nm (k=2)													
23																
24	Roughn.stand	lard		Ra	Rz	Rmax	Rk*	Rpk*	Rvk*	Mr1/%*	Mr2/%*	lambda-c	lambda-s	Speed	Force	Sampl-dist
25												mm	μm	mm/s	mN	μm
26	very coarse	686sg	value/µm													
27			std. dev./nm													
28			U/nm (k=2)													
29	coarse	633g	value/µm													
30			std. dev./nm													
31			U/nm (k=2)													
32	fine	629f	value/µm													
33			std. dev./nm													
34			U/nm (k=2)													
35	SFRN 150	1.006	value/µm	0,0259	0,148	0,2037						0,25	1	0,025	0,025	1
36			std. dev./nm	0,8	3,7	4,4										
37			U/nm (k=2)	3	8	10										

Results and Measurement Conditions Measurement values in µm, std.-deviation and 2k-meas.-uncertainty in nm

Depth standa	rd		Pt	D							lambda-c	lambda-s***	Speed	Force	Sampl-dist***
	EN 806										mm	μm	mm/s		μm
R1	0,2 µm	value	0,34								0,08		0,1		
		std. dev.	10,00												
		Meas. Unc.	119,18												
R3	1,5 µm	value	1,49								0,08		0,1		
		std. dev.	20,00												
		Meas. Unc.	144,00												
R6	8 µm	value	8,83								0,08		0,1		
		std. dev.	20,00												
		Meas. Unc.	124,12												
Geom. Standa	ard		Ra	Rz	Rz1max	RSm									
Rup	1114A/528-RS 5	value	0,50	1,62	1,63	49,84					0,25	2,5	0,1		0,5
		std. dev.	0,00	10,00	10,00	560,00									
		Meas. Unc.	40,82	73,26	77,89	1124,51									
РТВ	7070/PGN10	value	2,96	9,69	9,85	198,41					2,5	8	0,5		1,5
		std. dev.	10,00	40,00	70,00	0,00									
		Meas. Unc.	48,3	116,05	159,79	1847,95									
РТВ	8194/PGN3	value	0,90	3,14	3,16	119,70					0,8	2,5	0,5		0,5
		std. dev.	10,00	50,00	50,00	1850,00									
		Meas. Unc.	45,46	124,37	127,15	3736,52									
Roughn.stanc	lard		Ra	Rz	Rz1max*	Rk*	Rpk*	Rvk*	Mr1* [%]	Mr2* [%]					
			-												
very coarse	686sg	value	2,37	14,75	15,86	8,25	1,29	3,30	7,31	93,04	2,5	8	0,5		1,5
		std. dev.	30,00	270,00	30,00	150,00	80,00	170,00	0,67	0,31					
		Meas. Unc.	73,26	544,67	125,57	304,41	166,23	343,75							
coarse	633g	value	1,53	7,66	9,08	4,48	0,75	2,50	6,08	81,83	0,8	2,5	0,5		0,5
		std. dev.	0,00	180,00	100,00	30,00	20,00	20,00	0,13	0,18					
		Meas. Unc.	42,03	375,59	221,28	83,27	58,88	62,18							
fine	629f	value	0,15	1,32	1,51	0,47	0,15	0,3	8,66	87,53	0,8	2,5	0,5		0,5
		std. dev.	0,00	50,00	110,00	10,00	10,00	10,00	0,46	0,40					
		Meas. Unc.	40,82	122,20	232,74	50,33	46,16	46,19							
SFRN 150	1.006	value	0,03	0,17	0,22	0,08	0,03	0,04	10,13	86,58					
		std. dev.	0,00	0,00	20,00	10,00	0,00	10,00	0,89	1,14					
		Meas. Unc.	40,41	70,24	85,05	50,33	41,63	46,19							

Ρ	roject 600								الم أمغم	Measureme	ent values in µ	m, sintu in mm				
s	urface Text	B B	С	D	E	F	G	Н	I I	J	K K	L L	М	N	0	Р
1	Depth standa	rd		Pt	D							lambda-c	lambda-s	Speed	Force	Sampl-dist
2		EN 806										mm	μm	mm/s	mN	μm
3	R1	0,2 µm	value/µm	0,321	0,304								2,5	0,5	<1	
4			std. dev./nm	17	13								2,5	0,5	<1	
5			U/nm (k=2)	20	17								2,5	0,5	<1	
6	R3	1,5 µm	value/µm	1,408	1,383								2,5	0,5	<1	
7			std. dev./nm	9	3								2,5	0,5	<1	
8			U/nm (k=2)	15	13								2,5	0,5	<1	
9	R6	8 µm	value/µm	8,37	8,347								2,5	0,5	<1	
10			std. dev./nm	12	2								2,5	0,5	<1	
11			U/nm (k=2)	24	21								2,5	0,5	<1	
12																
13	Geom. Stand	ard		Ra	Rz	Rmax	RSm									
14	Rub	P114A/528-RS 5	value/µm	0,505	1,61		49,47					0,25	2,5	0,5	<1	
15			std. dev./nm	1	6		285					0,25	2,5	0,5	<1	
16			U/nm (k=2)	10	70		166					0,25	2,5	0,5	<1	
17	РТВ	7070/PGN10	value/µm	2,96	9,63		198,6					2,5	8	0,5	<1	
18			std. dev./nm	10	30		512					2,5	8	0,5	<1	
19			U/nm (k=2)	56	397		301					2,5	8	0,5	<1	
20	РТВ	8194/PGN3	value/µm	0,904	3,1		119,1					0,8	2,5	0,5	<1	
21			std. dev./nm	8	55		1084					0,8	2,5	0,5	<1	
22			U/nm (k=2)	18	134		627					0,8	2,5	0,5	<1	
23																
24	Roughn.stand	dard		Ra	Rz	Rmax	Rk*	Rpk*	Rvk*	Mr1/%*	Mr2/%*	lambda-c	lambda-s	Speed	Force	Sampl-dist
25												mm	μm	mm/s	mN	μm
26	very coarse	686sg	value/µm	2,36	14,45		8,04	1,26	3,02	7,4	92,2	2,5	8	0,5	<1	
27			std. dev./nm	22	297		186	52	352	0,5	0,7	2,5	8	0,5	<1	
28			U/nm (k=2)	76	895		275	83	274			2,5	8	0,5	<1	
29	coarse	633g	value/µm	1,52	7,58	ļ	4,24	0,88	2,57	7,1	79,3	0,8	2,5	0,5	<1	┦───┤
30			std. dev./nm	3	188	ļ	159	144	324	0,7	1,2	0,8	2,5	0,5	<1	┦───┤
31			U/nm (k=2)	48	474		163	99	244			0,8	2,5	0,5	<1	┦───┤
32	fine	629f	value/µm	0,152	1,27	ļ	0,466	0,137	0,294	9	87,7	0,8	2,5	0,5	<1	╡────┤
33			std. dev./nm	3	47		16	12	23	0,8	0,8	0,8	2,5	0,5	<1	<u> </u>
34			U/nm (k=2)	6	85		18	12	23			0,8	2,5	0,5	<1	<u> </u>
35	SFRN 150	1.006	value/µm	0,0247	0,15		0,076	0,03	0,03	12,6	87	0,25	2,5	0,5	<1	<u> </u>
36			std. dev./nm	0,7	6		6	3	7	1	1,5	0,25	2,5	0,5	<1	<u> </u>
37			U/nm (k=2)	2,5	23		5	3,5	5			0,25	2,5	0,5	<1	

Euromet

Results and Measurement Conditions

E	uromet Project 600			Results and Measurement Conditions Measurement values in µm, std. deviation and 32-meas incertainty in pm												
S	Surface Text	ure	C			_	G		Siuu				М	N	0	
1	A Depth standa	rd		Pt	D	F	9	п	1	J	K	Lambda-c	lambda-s	Speed	Force	F Sampl-dist
2		EN 806			-							mm	um	mm/s	mN	um
2	D1	0.2	velue/um	0.200										0.5		0.05
3		0,2 μΠ	value/µm	0,299										0,5	1	0,23
4			std. dev./nm	2,123										0,5	1	0,25
5			U/nm (k=2)	50										0,5	1	0,25
6	R3	1,5 µm	value/µm	1,386										0,5	1	0,25
7			std. dev./nm	6,852										0,5	1	0,25
8			U/nm (k=2)	100										0,5	1	0,25
9	R6	8 µm	value/µm	8,349										0,5	1	0,25
10			std. dev./nm	4,042										0,5	1	0,25
11			U/nm (k=2)	300										0,5	1	0,25
12														0,5	1	0,25
13	Geom. Stand	ard		Ra	Rz	Rmax	RSm							0,5		0,25
14	Rub	P114A/528-RS 5	value/µm	0,504	1,607							0,25	2,5	0,5	1	0,25
15			std. dev./nm	0,217	6,916									0,5	1	0,25
16			U/nm (k=2)	50	150									0,5	1	0,25
17	РТВ	7070/PGN10	value/µm	2,971	9,711							2,5	8	0,5	1	0,25
18			std. dev./nm	14,474	54,451									0,5	1	0,25
19			U/nm (k=2)	200	300									0,5	1	0,25
20	РТВ	8194/PGN3	value/µm	0,905	3,087							0,8	2,5	0,5	1	0,25
21			std. dev./nm	11,708	56,450									0,5	1	0,25
22			U/nm (k=2)	100	200									0,5	1	0,25
23														0,5		0,25
24	Roughn.stand	dard		Ra	Rz	Rmax	Rk*	Rpk*	Rvk*	Mr1/%*	Mr2/%*	lambda-c	lambda-s	Speed	Force	Sampl-dist
25												mm	μm	mm/s	mN	μm
26	very coarse	686sg	value/µm	2,352	14,341							2,5	8	0,5	1	0,25
27			std. dev./nm	23,324	274,755									0,5	1	0,25
28			U/nm (k=2)	160	500									0,5	1	0,25
29	coarse	633g	value/µm	1,515	7,575							0,8	2,5	0,5	1	0,25
30		Ĭ	std. dev./nm	2,563	177,247									0,5	1	0,25
31			U/nm (k=2)	100	400									0,5	1	0,25
32	fine	629f	value/µm	0,150	1,277							0,8	2,5	0,5	1	0,25
33			std. dev./nm	2,446	45,546									0,5	1	0,25
34			U/nm (k=2)	50	100									0,5	1	0,25
35	SFRN 150	1.006	value/µm	0,026	0,155							0.25	2.5	0.5	1	0,25
36			std. dev./nm	0,603	8,521								1-	0.5	1	0,25
37			U/nm (k=2)	50	70									0,5	1	0,25

Results and Measurement Conditions Measurement values in µm,

Surface, Text	ure _B	С	D	E	F	G	Н	stddeviatio	n and 2k-mea:	suncertainty K	in nm L	М	N	0	Р
1 Depth standard			Pt	D							lambda-c	lambda-s	Speed	Force	Sampl-dist
2	EN 806										mm	μm	mm/s	mN	μm
3 R1	0,2 µm	value/µm	0,332	0,293									0,5	0,55	0,25
4		std. dev./nm	7	9											
5		U/nm (k=2)	26	23											
6 R3	1,5 µm	value/µm	1,396	1,371									0,5	0,55	0,25
7		std. dev./nm	6	10											
8		U/nm (k=2)	27	26											
9 R6	8 µm	value/µm	8,368	8,349									0,5	0,55	0,25
10		std. dev./nm	7	10											
11		U/nm (k=2)	62	61											
12															
13 Geom. Stand	lard		Ra	Rz	Rmax	RSm									
14 Rub	P114A/528-RS 5	value/µm	0,504	1,592	1,604	49,805					0,25	2,5	0,5	0,55	0,25
15		std. dev./nm	2	5	9	176									
16		U/nm (k=2)	15	58	69	1023									
17 PTB	7070/PGN10	value/µm	2,961	9,655	9,823	199,937					2,5	8	0,5	0,55	0,25
18		std. dev./nm	13	44	56	24									
19		U/nm (k=2)	35	127	151	964									
20 PTB	8194/PGN3	value/µm	0,904	3,097	3,118	118,927					0,8	2,5	0,5	0,55	0,25
21		std. dev./nm	7	53	56	1138									
22		U/nm (k=2)	20	126	138	2470									
23															
24 Roughn.stand	dard		Ra	Rz	Rmax	Rk*	Rpk*	Rvk*	Mr1/%*	Mr2/%*	lambda-c	lambda-s	Speed	Force	Sampl-dist
25			-								mm	μm	mm/s	mN	μm
26 very coarse	686sg	value/µm	2,351	14,330	15,567	8,075	1,276	3,121	7,4	92,5	2,5	8	0,5	0,55	0,25
27		std. dev./nm	24	272	36	143	66	89	0,6	0,5					
28		U/nm (k=2)	52	556	148	293	132	181	1,6	1,3					
29 coarse	633g	value/µm	1,515	7,464	8,905	4,487	0,732	2,483	5,8	81,8	0,8	2,5	0,5	0,55	0,25
30		std. dev./nm	1	174	121	26	14	25	0,1	0,1					
31		U/nm (k=2)	18	358	261	67	33	54	0,5	0,5					
32 fine	629f	value/µm	0,150	1,258	1,440	0,463	0,134	0,299	8,7	87,9	0,8	2,5	0,5	0,55	0,25
33		std. dev./nm	2	26	33	8	4	9	0,4	0,5					
34		U/nm (k=2)	15	85	103	35	17	24	1,5	1,6					
35 SFRN 150	1.006	value/µm	0,025	0,146	0,185	0,078	0,028	0,033	12,3	86,8	0,25	2,5	0,5	0,55	0,25
36		std. dev./nm	1	9	23	4	2	2	0,9	1,1					
37		U/nm (k=2)	14	59	81	31	15	16	8,6	8,7					

22.04.2003

contact person: Richard Koops Phone with country -dial: +31 15 2691642 e-mail: rkoops@nmi.nl

Laboratory: NMi VSL

Р	roject 600			Measurement values in μm , stddeviation and 2k-measuncertainty in nm													
_s	urface Text	Here B	С	D	E	F	G	н	staa	J	K-measuncer	ainty in nm	М	N	0	Р	
1	Depth standa	rd		Pt	D							lambda-c	lambda-s	Speed	Force	Sampl-dist	
2		EN 806										mm	μm	mm/s	mN	μm	
3	R1	0,2 µm	value/µm	0,298	0,283									0,009	<0.1	0,1	
4			std. dev./nm	3,5	2,8												
5			U/nm (k=2)	3,7	7,0												
6	R3	1,5 µm	value/µm	1,403	1,365									0,009	<0.1	0,17	
7			std. dev./nm	20,1	3,3												
8			U/nm (k=2)	18,1	6,2												
9	R6	8 µm	value/µm	8,549	8,351									0,02	<0.1	0,3	
10			std. dev./nm	170,4	6,3												
11			U/nm (k=2)	152,4	11,6												
12																	
13	Geom. Standa	ard		Ra	Rz	Rmax	RSm										
14	Rub	P114A/528-RS 5	value/µm	0,500	1,636	1,703	50,067					0,25	2,5	0,04	<0.1	0,5	
15			std. dev./nm	4,2	35,8	70,7	57,7										
16			U/nm (k=2)	2,7	20,7	40,8	33,3										
17	РТВ	7070/PGN10	value/µm	2,943	9,694	9,949	200,052					2,5	8	0,09	<0.1	1,5	
18			std. dev./nm	92,6	43,9	95,2	72,6										
19			U/nm (k=2)	53,5	25,4	55,0	41,9										
20	РТВ	8194/PGN3	value/µm	0,892	3,192	3,391	120,078					0,8	2,5	0,09	<0.1	0,5	
21			std. dev./nm	12,0	52,0	69,1	139,6									_	
22			U/nm (k=2)	7,0	30,1	39,9	80,6										
23																_	
24	Roughn.stand	dard		Ra	Rz	Rmax	Rk*	Rpk*	Rvk*	Mr1/%*	Mr2/%*	lambda-c	lambda-s	Speed	Force	Sampl-dist	
25												mm	μm	mm/s	mN	μm	
26	very coarse	686sg	value/µm	2,316	14,353	15,791	8,215	1,251	3,326	7,09	93,08	2,5	8	0,09	<0.1	1,5	
27			std. dev./nm	49,5	305,1	120,7	289,2	56,9	299,6	1,00	0,94						
28			U/nm (k=2)	28,6	176,2	69,7	167,0	32,9	173,0	1,44	1,43					_	
29	coarse	633g	value/µm	1,479	7,485	9,027	4,688	0,869	2,191	4,66	83,25	0,8	2,5	0,09	<0.1	0,5	
30			std. dev./nm	27,8	182,9	189,5	178,2	94,7	176,1	1,06	1,56						
31			U/nm (k=2)	16,1	105,6	109,4	102,9	54,7	101,7	1,45	1,60						
32	fine	629f	value/µm	0,156	1,236	1,545	0,464	0,136	0,289	9,17	88,03	0,8	2,5	0,09	<0.1	0,5	
33			std. dev./nm	5,5	57,1	83,9	13,1	10,2	19,7	0,74	0,51						
34			U/nm (k=2)	3,4	33,0	48,5	7,7	6,0	11,4	1,39	1,35						
35	SFRN 150	1.006	value/nm **	24,98	140,14	189,36	79,63	27,24	30,57	11,06	86,17	0,25	2,5	0,04	<0.1	0,5	
36			std. dev./nm	0,74	4,57	12,79	6,62	4,77	4,69	1,92	1,75						
37			U/nm (k=2)	1,39	3,06	7,5	4,04	3,05	3,01	1,72	1,66						

Euromet

Results and Measurement Conditions

E	uromet roiect 600				Results and Measurement Conditions Measurement values in µm,												
S	urface Text	ure							stdde	viation and 2k	-measuncert	ainty in nm					
	A	В	С	D	E	F	G	Н		J	К	L	М	N	0	Р	
1	Depth standar	rd		Pt	D							lambda-c	lambda-s	Speed	Force	Sampl-dist	
2		EN 806										mm	μm	mm/s	mN	μm	
3	R1	0,2 µm	value	0,291	0,286												
4			std. dev.	1	1												
5			Meas. Unc.	8	7												
6	R3	1,5 µm	value	1,376	1,370												
7			std. dev.	4	4												
8			Meas. Unc.	9	9												
9	R6	8 µm	value	8,39	8,36									0,05	1	0,1	
10			std. dev.	16	6												
11			Meas. Unc.	30	25												
12																	
13	Geom. Standa	ard		Ra	Rz	Rmax	RSm										
14	Rup	1114A/528-RS 5	value	0,506	1,59	1,60	50,03					0,25	2,5	0,05	0,025	0,15	
15			std. dev.	3	20	20	10										
16			Meas. Unc.	5	32	32	100										
17	РТВ	7070/PGN10	value	2,96	9,66	9,83	199,9					2,5	8	0,1	1	0,2	
18			std. dev.	30	70	90	100										
19			Meas. Unc.	89	290	295	100										
20	PTB	8194/PGN3	value	0,903	3,08	3,10	120,0					0,8	2,5	0,1	1	0,2	
21			std. dev.	7	60	70	50										
22			Meas. Unc.	36	123	124	100										
23			-														
24	Roughn.stand	lard		Ra	Rz	Rmax	Rk*	Rpk*	Rvk*	Mr1/%*	Mr2/%*	lambda-c	lambda-s	Speed	Force	Sampl-dist	
25												mm	μm	mm/s	mN	μm	
26	very coarse	686sg	value	2,35	14,3	15,6	8,18	1,20	3,11	6,9	92,5	2,5	8	0,1	1	0,2	
27			std. dev.	40	290	70	210	100	210	1,1	0,5						
28			Meas. Unc.	71	429	468	327	24	93	2	4						
29	coarse	633g	value	1,52	7,59	8,96	4,48	0,70	2,48	5,8	82,0	0,8	2,5	0,1	1	0,2	
30			std. dev.	10	240	110	50	20	40	0,3	0,3						
31			Meas. Unc.	46	304	269	179	14	74	2	4						
32	fine	629f	value	0,149	1,26	1,42	0,46	0,132	0,301	8,9	87,9	0,8	2,5	0,1	1	0,2	
33			std. dev.	4	70	90	10	6	20	0,8	0,7						
34			Meas. Unc.	7	88	85	18	3	9	2	4						
35	SFRN 150	1.006	value	0,025	0,139	0,177	0,077	0,027	0,031	12,6	86,6	0,25	2,5	0,05	0,025	0,15	
36			std. dev.	0,9	2	11	3,9	1,3	1,9	0,7	0,7						
37			Meas. Unc.	1,8	9,7	15,9	4,6	1,4	1,6	3	3						
Euromet																	

Project 600																	
Surface Texture																	

Results and Measurement Conditions Measurement values in µm, std.-deviation and 2k-meas.-uncertainty in nm

	A	В	C	D	E	F	G	Н		J	K	L	M	N	0	Р
1	Depth standa	rd		Pt	D							lambda-c	lambda-s	Speed	Force	Sampl-dist
2		EN 806										mm	μm	mm/s	mN	μm
3	R1	0,2 µm	value/µm	0,326	0,259									1	1	
4			std. dev./nm	0,8	0,9											
5			U/nm (k=2)	7,8	9,3											
6	R3	1,5 µm	value/µm	1,329	1,302									1	1	
7			std. dev./nm	0,9	1,3											
8			U/nm (k=2)	7,9	9,6											
9	R6	8 µm	value/µm	7,815	7,938									1	1	
10			std. dev./nm	10,4	1,5											
11			U/nm (k=2)	22,2	22,9											
12																
13	Geom. Standa	ard		Ra	Rz	Rmax	RSm									
14	Rub	P114A/528-RS 5	value/µm	0,55	1,571	1,59	50,202					0,25	2,5	1	1	
15			std. dev./nm	0,3	1	1,7	109,9									
16			U/nm (k=2)	21,6	9,3	9,6	220									
17	PTB	7070/PGN10	value/µm	2,964	9,721	9,888	195,8					2,5	8	1	1	
18			std. dev./nm	2,2	15,5	11,5	190									
19			U/nm (k=2)	23,3	33,4	25,2	380,1									
20	РТВ	8194/PGN3	value/µm	0,889	3,082	3,112	116,6					0,8	2,5	1	1	
21			std. dev./nm	0,9	7,9	12,4	223,4									
22			U/nm (k=2)	21,5	19,6	26,7	446,9									
23																
24	Roughn.stand	lard		Ra	Rz	Rmax	Rk*	Rpk*	Rvk*	Mr1/%*	Mr2/%*	lambda-c	lambda-s	Speed	Force	Sampl-dist
25												mm	μm	mm/s	mN	μm
26	very coarse	686sg	value/µm	2,424	13,559	14,675	8,278	1,203	2,939	7,1	92,7	2,5	8	1	1	
27			std. dev./nm	6,2	123,7	189,3	27,4	10,6	66,1	125,1	82,4					
28			U/nm (k=2)	25,8	247,6	378,7	54,7	21,9	132,3							
29	coarse	633g	value/µm	1,525	7,003	7,913	4,161	0,764	2,237	6,9	79,7	0,8	2,5	1	1	
30			std. dev./nm	4,9	26,2	53,5	24,2	15,5	47,7	89,6	211,9					
31			U/nm (k=2)	24,2	40,9	107,4	40,9	21,9	95,9							
32	fine	629f	value/µm	0,151	1,191	1,352	0,455	0,139	0,299	9,8	87,8	0,8	2,5	1	1	
33			std. dev./nm	0,5	6,6	19,2	1,8	2,9	3,5	136,2	121,4					
34			U/nm (k=2)	21,5	15,3	39,2	9,7	11,2	11,3							
35	SFRN 150	1.006	value/µm	0,0256	0,1314	0,1555	0,0977	0,0194	0,0218	5,6	94,3	0,25	2,5	1	1	
36			std. dev./nm	0,1	3,1	3,9	0,3	0,8	2,9	290	261,9					
37			U/nm (k=2)	6,9	10,6	11,7	8,7	8,8	10,5							

Results and Measurement Conditions Measurement values in µm, std.-deviation and 2k-meas.-uncertainty in nm

Depth standa	ırd		Pt	D							lambda-c	lambda-s	Speed	Force	Sampl-dist
	EN 806										mm	μm	mm/s	mN	μm
R1	0,2 µm	value/µm	0,302	0,285	j						-	-	0,5	0,7	0,25
		std. dev./nm	1,4	2,1							-	-	0,5	0,7	0,25
		U/nm (k=2)	15	15	5						-	-	0,5	0,7	0,2
R3	1,5 µm	value/µm	1,378	1,358							-	-	0,5	0,7	0,2
		std. dev./nm	4,7	2,8							-	-	0,5	0,7	0,2
		U/nm (k=2)	19	19)						-	-	0,5	0,7	0,2
R6	8 µm	value/µm	8,365	8,348							-	-	0,5	0,7	0,2
		std. dev./nm	7,3	3,9)							-	0,5	0,7	0,2
		U/nm (k=2)	77	77	,										
			1												
Geom. Stand	ard		Ra	Rz	Rmax	RSm									
Rub	P114A/528-RS 5	value/µm	0,505	1,591	1,603	50,03					0,25	2,5	0,5	0,7	0,2
		std. dev./nm	1	7	15	11									
		U/nm (k=2)	9	21	22	6									
РТВ	7070/PGN10	value/µm	2,962	9,661	9,828	199,94					2,5	8	0,5	0,7	0,2
		std. dev./nm	12	41	58	20									
		U/nm (k=2)	30	95	5 100	12	Ra	Rz	Rmax						
РТВ	8194/PGN3	value/µm	0,898	3,056	3,096	119,98	0,902	3,074	3,1		0,8	2,5	0,5	0,7	0,2
		std. dev./nm	15	73	41	33	7	. 38	40						
		U/nm (k=2)	14	55	i 42	19	12	41	42						
							without meas	urement no 4							
Roughn.stand	dard		Ra	Rz	Rmax	Rk*	Rpk*	Rvk*	Mr1/%*	Mr2/%*	lambda-c	lambda-s	Speed	Force	Sampl-dist
											mm	μm	mm/s	mN	μm
very coarse	686sg	value/µm	2,319	14,19	15,466	8,361	1,372	3,701	6,6	93,6	2,5	8	0,5	0,7	0,2
		std. dev./nm	29	164	53	216	87	. 98	1,3	0,5					
		U/nm (k=2)	30	163	146	150	61	73	0,8	0,3					
coarse	633g	value/µm	1,513	7,505	8,868	4,382	0,896	2,672	6	81,6	0,8	2,5	0,5	0,7	0,2
		std. dev./nm	2	203	90	124	76	123	0,9	0,9					
		U/nm (k=2)	16	138	98	83	50	79	0,5	0,5					
fine	629f	value/µm	0,148	1,257	1,421	0,456	0,148	0,313	8,4	88,1	0,8	2,5	0,5	0,7	0,2
		std. dev./nm	2	43	63	17	g	19	0,8	0,8					
		U/nm (k=2)	8	34	44	23	21	23	0,5	0,5					
SFRN 150	1.006	value/µm	0,027	0,158	0,203	0,085	0,031	0,037	10,8	87,4	0,25	2,5	0,5	0,7	0,25
		std. dev./nm	1,4	12	22	6	4	. 7	1,3	1,9					
		U/nm (k=2)	8,16406653	15,9167234	19,2715143	14,6569173	14,4031654	14,7923704	0,75055535	1,09696551					
-	•														

P	roject 600								stdde	Measureme eviation and 2k	ent values in µ -measuncert	m , aintv in nm				
		B B	С	D	E	F	G	Н	1	J	К	L	М	Ν	0	Р
1	Depth standa			Pt	D							lambda-c	lambda-s	Speed	Force	Sampl-dist
2		EN 806										mm	μm	mm/s	mN	μm
3	R1	0,2 µm	value/µm	0,316	0,282							-	2,67	0,1	0,9	0,1
4			std. dev./nm	3,6	9,3							-	2,67	0,1	0,9	0,1
5			U/nm (k=2)	40,9	20,2											
6	R3	1,5 µm	value/µm	1,405	1,364							-	2,67	0,1	0,9	0,1
7			std. dev./nm	6,8	10							-	2,67	0,1	0,9	0,1
8			U/nm (k=2)	45,2	22											
9	R6	8 um	value/um	8.399	8.363							-	2.67	0.1	0.9	0.1
10			std. dev./nm	11.8	10.8							-	2.67	0.1	0.9	0.1
11			U/nm (k=2)	105,5	25,9								1			
12				· · · · ·												
13	Geom. Standa			Ra	Rz	Rmax	RSm									
14	Rub	P114A/528-RS 5	value/µm	0,505	1,593	1,599	49,723					0,25	2,5	0,1	0,9	0,2
15			std. dev./nm	1,2	4,9	7,1	75,4					0,25	2,5	0,1	0,9	0,2
16			U/nm (k=2)	48,6	48,6	48,6	984,3									
17	РТВ	7070/PGN10	value/µm	2,978	9,73	9,914	198,617					2,5	8,33	0,5	0,9	0,5
18			std. dev./nm	11,9	46,8	49,1	21,1					2,5	8,33	0,5	0,9	0,5
19			U/nm (k=2)	142,3	142,3	142,3	3920,4									
20	РТВ	8194/PGN3	value/µm	0,901	3,096	3,113	119,149					0,8	2,67	0,5	0,9	0,35
21			std. dev./nm	6,4	48,7	48,5	29					0,8	2,67	0,5	0,9	0,35
22			U/nm (k=2)	113,9	113,9	113,9	2335,5									
23																
24	Roughn. Stan			Ra	Rz	Rmax	Rk*	Rpk*	Rvk*	Mr1/%*	Mr2/%*	lambda-c	lambda-s	Speed	Force	Sampl-dist
25												mm	μm	mm/s	mN	μm
26	Very coarse	686sg	value/µm	2,346	14,3	15,534	8,137	1,231	3,11	6,948	92,85	2,5	8,33	0,5	0,9	0,5
27			std. dev./nm	32,5	258,1	28,9	297,5	125,8	130,3	1,235	0,807		8,33	0,5	0,9	0,5
28			U/nm (k=2)	497,6	497,6	497,6	634,4	634,4	634,4	0,306	4,085					
29	Coarse	633g	value/µm	1,533	7,608	9,041	4,464	0,739	2,529	6,196	81,968	0,8	2,67	0,5	0,9	0,35
30			std. dev./nm	8,2	197,8	123	99,8	52,1	53,2	0,413	0,469		2,67	0,5	0,9	0,35
31			U/nm (k=2)	399,7	399,7	399,7	523	523	523	0,428	5,656					
32	Fine	629f	value/µm	0,147	1,255	1,421	0,449	0,137	0,298	8,982	88,158	0,8	2,67	0,5	0,9	0,35
33			std. dev./nm	2,9	40,7	51,5	11,8	5,7	7,6	0,86	0,654		2,67	0,5	0,9	0,35
34			U/nm (k=2)	98,1	98,1	98,1	136	136	136	0,97	9,521					
35	SFRN 150	1.006	value/µm	0,024	0,138	0,175	0,069	0,029	0,036	12,606	83,232	0,25	2,5	0,1	0,9	0,1
36			std. dev./nm	1,6	6,1	13	12,6	3,1	6	0,784	4,394		2,5	0,1	0,9	0,1
37			U/nm (k=2)	42,8	42,8	42,8	72,4	72,4	72,4	6,618	43,697					

13.11.2002

Euromet

Results and Measurement Conditions

Appendix B3

SOFTWARE RESULTS

E F S	Euromet Project 600 Surface Texture																		11.10.2
	A	В	С	D	E	F	G	Н	I	J	K	L	М	N	0	Р	Q	R	S
38	B Data files			Ra	Rq	Rp	Rv	Rt	Rsk	Rz	RSm	Rmax	Rpk	Rk	Rvk	Mr1/%	Mr2/%	lambda-c	lambda-s
39	9			ISO 4287								DIN 4768	ISO 13565-2					mm	μm
40) file 1	1001.smd	value/µm	0,087	0,108	0,235	0,24	0,632	-0,008	0,475		0,568	0,077	0,279	0,095	11,8	87,6	5	
41	l file 2	505.smd	value/µm	0,189	0,234	0,52	0,782	1,472	-0,284	1,302		1,47	0,131	0,661	0,252	6,9	90,1		
42	2 file 3	7080.smd	value/µm	0,422	0,482	0,755	0,73	1,501	0,012	1,486		1,501	0,116	1,407	0,012	10,4	99,9)	

11.10.2002

Euromet Project 600 Surface Texture

Results and Measurement Conditions Measurement values in µm, std.-deviation and 2k-meas.-uncertainty in nm

	А	В	С	D	E	F	G	Н		J	K	L	М	N	0	Р	Q	R	S
38 D	ata files			Ra	Rq	Rp	Rv	Rt	Rsk	Rz	RSm	Rmax(Rt)	Rpk	Rk	R∨k	Mr1/%	Mr2/%	lambda-c	lambda-s
39				ISO 4287								DIN 4768	ISO 13565-2					mm	μm
40 fil	e 1		value																
41 fil	e 2	505	value	0,176	0,217	0,492	0,756	1,248	-0,261	1,112		1,248	0,129	0,661	0,257	6	91	unfiltered	unfiltered
42 fil	e 3		value																

Euromet Project 600	4 .						F	Results and M Measure deviation and.	leasurement ement values i 2k-measund	Conditions n µm, certainty in nm	L							3.06.2002
Sunace Tex	В	С	D	E	F	G	Н		J	ĸ	L	М	N	0	Р	Q	R	S
38 Data files			Ra	Rq	Rp	Rv	Rt	Rsk	Rz	RSm	Rmax	Rpk	Rk	Rvk	Mr1/%	Mr2/%	lambda-c	lambda-s
39			ISO 4287								DIN 4768	ISO 13565-2	2				mm	μm
40 file 1	1001smd	value/µm	0,0869	0,1079	0,2324	0,238	0,6283	-0,009	0,4705								0,25	5 2,5
41 file 2	505smd	value/µm	0,1865	0,2306	0,5107	0,7257	1,4564	-0,258	1,2364								0,8	3 2,5
42 file 3	7080smd	value/µm	0,4238	0,4842	0,7538	0,721	1,4828	0,015	1,4748	99,80							0,25	5 2,5

Euromet Project 600							F	Results and Measure	leasurement ement values ir	Conditions								22.04.2003
Surface Text	ure B	С	D	E	F	G	H std	-deviation and	2k-measunc	^{ertaint} K in nm	L	М	N	0	Р	Q	R	S
38 Data files			Ra	Rq	Rp	Rv	Rt	Rsk	Rz	RSm	Rmax	Rpk	Rk	Rvk	Mr1/%	Mr2/%	lambda-c	lambda-s
39			ISO 4287								DIN 4768	ISO 13565-2					mm	μm
40 file 1	1001 *	value/µm	0,087	0,108	0,23	0,239	0,61	-0,014	0,47		0,61	0,066	0,264	0,096	10,4	89,5	0,25	2,5
41 file 2	505 **	value/µm	0,186	0,23	0,509	0,724	1,452	-0,258	1,233		1,419	0,13	0,64	0,244	7,4	90,3	0,8	2,5
42 file 3	7080 ***	value/µm	0,419	0,479	0,748	0,713	1,474	0,052	1,461	99,76	1,47						0,25	2,5

Euromet Project 600							l	Results and Measur	Aeasurement ement values ir 1 2k-measunc	Conditions µ µm , ertainty in nr	1							18.11.2002
Surrace Text	В	С	D	E	F	G	Н		J	ĸ	L	M	N	0	Р	Q	R	S
38 Data files			Ra	Rq	Rp	Rv	Rt	Rsk [#]	Rz	RSm	Rmax	Rpk	Rk	Rvk	Mr1/%	Mr2/%	lambda-c	lambda-s
39			ISO 4287								DIN 4768	ISO 13565-2	2				mm	μm
40 file 1	xz1001	value/µm	0,087	0,107	0,238	-0,232	0,625	0,16	0,47	65,252							0,25	5 2,5
41 file 2	xz505	value/µm	0,187	0,23	0,746	-0,496	1,422	0,24	1,242	99,21							0,8	2,5
42 file 3	xz7080	value/µm	0,423	0,483	0,725	-0,754	1,507	C	1,479	99,661							0,25	5 2,5

Euromet Project 600 Surface Text	huro						std	Results and Measur Measur deviation and.	Measurement ement values i d 2k-measund	: Conditions n μm , certainty in nm	ı							2.10.200
A	В	С	D	E	F	G	Н	I	J	K	L	М	Ν	0	Р	Q	R	S
38 Data files			Ra	Rq	Rp	Rv	Rt	Rsk	Rz	RSm	Rmax	Rpk	Rk	Rvk	Mr1/%	Mr2/%	lambda-c	lambda-s
39			ISO 4287							μm	DIN 4768	ISO 13565-2					mm	μm
40 file 1	1001	value [nm]	86,91	107,94	4 232,44	238,03	628,33	-0,162	470,47	48,88	561,37	76,65	276,42	97,05	5 11,75	87,59	0,25	5 2,5
41 file 2	505	value[nm]	187,02	2 231,05	498,26	747,64	1424,69	-0,222	1245,91	30,3	1421,99	134,68	636,93	254,13	3 7,72	89,86	6 0,8	3 2,5
42 file 3	7080	value[nm]	423,65	5 484,11	754,08	720,99	1484,21	0,014	1475,05	5 99,79	1480,35	5					0,25	5 2,5

Eu Pr Su	romet oject 600 rface Texture							std	Results and I Measure deviation and.	Measurement (ement values in I 2k-measunc	Conditions nµm, ertainty in nm								28.01.2003
	А	В	С	D	E	F	G	Н	1	J	К	L	М	N	0	Р	Q	R	S
38	Data files			Ra	Rq	Rp	Rv	Rt	Rsk	Rz	RSm	Rmax	Rpk	Rk	Rvk	Mr1/%	Mr2/%	lambda-c	lambda-s
39				ISO 4287								DIN 4768	ISO 13565-2					mm	μm
40	file 1	1001	value/µm	54,7	70,1	159	135	572	0,286	294		470	110	205	84,6	16	88,8	8 0,8	3 2,5
41	file 2	505	value/µm	120	150	346	389	1430	-0,271	736		1150	184	448	144	13,2	89,6	6 0,8	3 2,5
42	file 3	7080	value/µm	216	250	401	425	947	-0,136	827	10,6	909	125	505	627	5,89	77,3	0,8	3 2,5

Euromet Project 600 Surface Texture

Results and Measurement Conditions Measurement values in μm, std.-deviation and 2k-meas.-uncertainty in nm

Data files			Ra	Rq	Rp	Rv	Rt	Rsk	Rz	RSm	Rmax	Rpk	Rk	Rvk	Mr1/%	Mr2/%	lambda-c	lambda-s
			ISO 4287								DIN 4768	ISO 13565-2					mm	μm
file 1	1001	value/µm	0,0867	0,1077	0,2311	0,3293	0,5605	-0,0074	0,4601		0,5605	0,0761	0,2726	0,0911	10	88	0,25	2,5
file 2	505	value/µm	0,1868	0,2308	0,5237	0,8888	1,4125	-0,285	1,1983		1,4125	0,152	0,6571	0,251	8	90	0,8	2,5
file 3	7080	value/µm	0,4204	0,4805	0,7547	0,7182	1,4729	0,0138	1,4635	99,86	1,4672						0,25	2,5

Euromet Project 600 Surface Text	ture						std	Results and Measur	leasurement ement values i l 2k-measund	Conditions n µm , certainty in nm	ı							13.11.200
A	В	С	D	E	F	G	Н	I	J	K	L	М	Ν	0	Р	Q	R	S
38 Data files			Ra	Rq	Rp	Rv	Rt	Rsk	Rz	RSm	Rmax	Rpk	Rk	Rvk	Mr1/%	Mr2/%	lambda-c	lambda-s
39			ISO 4287														mm	μm
40 file 1	1001	value/µm	0,0	9 0,11	0,24	0,24	0,63	s 0	0,48	63,90	0,57	0,07	0,28	0,1	11,56	87,8	1 0,25	5 0
41 file 2	505	value/µm	0,19	9 0,23	0,52	0,78	1,47	0,28	1,3	45,98	1,47	0,14	0,65	0,25	5 7,43	89,92	2 0,8	в 0
42 file 3	7080	value/µm	0,43	3 0,49	0,76	0,74	1,52	0,01	1,5	99,92	1,52	2					0,25	5 0

Appendix C STABILITY OF STANDARDS

1 FINAL MEASUREMENTS AT PTB

	A	В	С	D	E	F	G	Н		J	K	L	М
1	Depth standar	d		Pt	D							lambda-c	lambda-s
2		EN 806										mm	μm
3	R1	0,2 µm	value	0,288	0,284								
4			std. dev.	6	6								
5			Meas. Unc.	9	7								
6	R3	1,5 µm	value	1,371	1,367								
7			std. dev.	3	3								
8			Meas. Unc.	8	5								
9	R6	8 µm	value	8,356	8,353								
10			std. dev.	7	6								
11			Meas. Unc.	13	9								
12													
13	Geom. Standa	ırd		Ra/µm	Rz/µm	Rmax/µm	RSm/µm						
14	Rup	1114A/528-RS 5	value	0,505	1,59	1,60	50,07					0,25	2,5
15			std. dev.	0,003	0,01	0,02	0,03						
16			Meas. Unc.	0,010	0,032	0,032	0,06						
17	РТВ	7070/PGN10	value	2,96	9,64	9,81	199,95					2,5	8,0
18			std. dev.	0,01	0,02	0,04	0,10						
19			Meas. Unc.	0,059	0,193	0,196	0,11						
20	ртв	8194/PGN3	value	0,900	3,08	3,10	119,98					0,8	2,5
21			std. dev.	0,007	0,05	0,06	0,11						
22			Meas. Unc.	0,018	0,062	0,062	0,12						
23													
24	Roughn.stand	ard		Ra	Rz	Rmax	Rk*	Rpk*	Rvk*	Mr1*	Mr2*	lambda-c	lambda-s
25				μm	μm	μm	μm	μm	μm	%	%	mm	μm
26	very coarse	686sg	value	2,34	14,3	15,7	8,02	1,281	3,14	7,8	92,4	2,5	8,0
27			std. dev.	0,04	0,23	0,04	0,21	0,095	0,13	1,1	0,5		
28			Meas. Unc.	0,047	0,429	0,314	0,160	0,026	0,063	2	2		
29	coarse	633g	value	1,502	7,45	8,80	4,38	0,748	2,47	6,4	81,7	0,8	2,5
30			std. dev.	0,014	0,16	0,13	0,08	0,041	0,06	0,4	0,4		
31			Meas. Unc.	0,030	0,224	0,176	0,131	0,015	0,049	2	2		
32	fine	629f	value	0,149	1,25	1,42	0,457	0,134	0,293	9,0	87,7	0,8	2,5
33			std. dev.	0,004	0,06	0,08	0,013	0,006	0,011	0,8	0,6		
34			Meas. Unc.	0,004	0,050	0,057	0,009	0,003	0,006	2	2		
35				nm	nm	nm	nm	nm	nm	%	%		
36	SFRN 150	1.006	value	25,1	138,8	178,2	76,7	27,0	31,3	12,4	86,2	0,25	2,5
37			std. dev.	0,8	3,4	17,2	3,6	1,1	2,0	0,9	0,9		
38			Meas. Unc.	0,75	6,94	14,26	3,07	1,08	0,94	2	2		

2 FIRST MEASUREMENTS AT PTB

Depth standa	rd		Pt	D							lambda-c	lambda-s	Speed
	EN 806										mm	μm	mm/s
R1	0,2 µm	value	0,291	0,286									
		std. dev.	1	1									
		Meas. Unc.	8	7									
R3	1,5 µm	value	1,376	1,370									
		std. dev.	4	4									
		Meas. Unc.	9	9									
R6	8 um	value	8.39	8.36									0.05
		std. dev.	16	6									
		Meas. Unc.	30	25									
Geom. Stand	ard		Ra	Rz	Rmax	RSm							
Rup	1114A/528-RS 5	value	0.506	1.59	1.60	50.03					0.25	2.5	0.05
		std. dev.	3	20	20	10							
		Meas. Unc.	5	32	32	100							
PTB	7070/PGN10	value	2.96	9.66	9.83	199.9					2.5	8	0.1
		std dev	30	70	90	100,0					2,0		0,1
		Meas. Unc.	89	290	295	100							
РТВ	8194/PGN3	value	0.903	3.08	3.10	120.0					0.8	2.5	0.1
		std. dev.	7	60	70	50							
		Meas. Unc.	36	123	124	100							
Roughn stand	lard		Ra	R7	Rmax	Rk*	Rok*	Rvk*	Mr1/%*	Mr2/%*	lambda-c	lambda-s	Speed
y											mm	um	mm/s
very coarse	68650	value	2.35	14.3	15.6	8 18	1 20	3 11	6.9	92.5	2.5	. 8	0.1
tory occured	occog	std dev	40	290	70	210	100	210	1.1	0.5	2,0	°	0,1
		Meas Linc	71	429	468	327	24	93	2	4			
coarse	633g	value	1.52	7 59	8.96	4 48	0.70	2 48	5.8	82.0	0.8	25	0.1
oodioo	coog	std dev	10	240	110	50	20	40	0,0	0.3	0,0	2,0	0,1
		Meas, Unc.	46	304	269	179	14	74	2	4			
fine	620f	value	0 149	1.26	1.42	0.46	0 132	0 301	80	87.9	0.8	2.5	0.1
into	0201	std. dev.	4	70	90	10	6	20	0,8	0.7	0,0	2,0	0,1
		Meas. Unc.	7	88	85	18	3	9	2	4			
SERN 150	1,006	value	0.025	0 130	0 177	0 077	0 027	0.031	12.6	86.6	0.25	25	0.05
		std. dev.	0.9	2,100	11	3.9	13	1 9	0.7	0.7	0,20	2,0	0,00
		Meas, Unc.	1.8	9.7	15.9	4.6	1,0	1,5	3	3			
	I	I	I,0	0,1	10,0	4,0	1,4	1,0				I	

3 DIFFERENCES BETWEEN LAST AND FIRST MEASUREMENTS

Depth star PI 10 <						1				r	1			
D D	Depth standa	rd		Pt	D							lambda-c	lambda-s	Speed
Ch Color		EN 806										mm	um	mm/s
R1 0.2 µm integram 4,403 4,003 <t< td=""><td></td><td>LINGOO</td><td>dxfinal-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>pm</td><td>11111//3</td></t<>		LINGOO	dxfinal-										pm	11111//3
Image: Section of the sectio	R1	0,2 µm	first/µm	-0,003	-0,002									
Mase: Unr./ml 0 7 Image: Unr./ml 0 7 Image: Unr./ml 0 0 83 15 µm indiver./ml 3 3 Image: Unr./ml 3 3 Image: Unr./ml 1ml Image: Unr./ml 1ml Image: Unr./ml 1ml Image: Unr./ml Image: Unr./ml </td <td></td> <td></td> <td>std. dev./nm</td> <td>6</td> <td>6</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>			std. dev./nm	6	6									
R3 15 µm Fradum -0.005			Meas. Unc./nm dxtinal-	9	7									
Nome: Nome: <th< td=""><td>R3</td><td>1,5 µm</td><td>first/µm</td><td>-0,005</td><td>-0,003</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>	R3	1,5 µm	first/µm	-0,005	-0,003									
Mease lunc.rum B S In the first measurements were In the first measurements were <td></td> <td></td> <td>std. dev./nm</td> <td>3</td> <td>3</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>			std. dev./nm	3	3									
Bit Bit <td></td> <td></td> <td>Meas. Unc./nm</td> <td>8</td> <td>5</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>			Meas. Unc./nm	8	5									
Induction Induction <t< td=""><td>R6</td><td>8 µm</td><td>dxfinal- first/µm</td><td>-0,034</td><td>-0,007</td><td>*) *) ma</td><td>The first measu Ide with Nanos</td><td>irements were tep U=30nm,</td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	R6	8 µm	dxfinal- first/µm	-0,034	-0,007	*) *) ma	The first measu Ide with Nanos	irements were tep U=30nm,						
Mess. Unc./nm 13 0 11 0 11 0 11 0 11 0 11 0 11 0 11 0 11 0 11 0 11 0 <td></td> <td></td> <td>std. dev./nm</td> <td></td> <td>6</td> <td>the</td> <td>e last with IM U</td> <td>=13 nm</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>			std. dev./nm		6	the	e last with IM U	=13 nm						
Cécon: Standard Raiµm Rziµm Rinavµm Rimavµm			Meas. Unc./nm	13	9									
Geom. Standard Raijum Rzajum Rmaxjum RSmijum No. No. No. Rup 1114A/528-R5.5 dxfinal-first -0,001 0,000 0,04 0.22 2.5 0.05 Mess. Unc. 0.010 0.032 0.032 0.06 2.5 8.0 0.1 PTB 7070FCN10 dxfinal-first 0.000 -0.02 0.06 2.5 8.0 0.1 Mess. Unc. 0.010 0.02 0.04 0.10 2.5 8.0 0.1 Mess. Unc. 0.059 0.193 0.160 1.1 1.831+0.026µm final 0.08 2.5 0.05 S194/PGN3 dxfinal-first -0,003 0.000 0.062 0.11 1.831+0.026µm final 0.748+0.025µm final 0					-									
Rup 1114A/528-RS dxfinal-first 0.001 0.000 0.000 0.001 0.02 0.03 Meas. Unc. 0.010 0.032 0.032 0.066 2.5 0.05 PTB 7070PGN10 dxfinal-first 0.000 0.02 0.032 0.066 2.5 8.0 0.1 Meas. Unc. 0.010 0.02 0.04 0.10 2.5 8.0 0.1 Meas. Unc. 0.069 0.198 0.11 2.5 8.0 0.1 PTB 8194/PGN3 dxfinal-first 0.000 0.060 0.02 0.11 1.001+0.050µm final 1.200+0.024µm final 0.024/0.015µm final 0.024+0.025µm final 	Geom. Standa	ard		Ra/µm	Rz/µm	Rmax/µm	RSm/µm							
Chy PT/Sector of bitmarinal Operation	Run	11144/528-RS 5	dyfinal-first	-0.001	0.000	0 000	0.04					0.25	25	0.05
Indext Outside Outside <thoutside< th=""> <thoutside< th=""> <thou< td=""><td>Nup</td><td>1114/020110-0</td><td>std dev</td><td>0.003</td><td>0.01</td><td>0.02</td><td>0.03</td><td></td><td></td><td></td><td></td><td>0,20</td><td>2,0</td><td>0,00</td></thou<></thoutside<></thoutside<>	Nup	1114/020110-0	std dev	0.003	0.01	0.02	0.03					0,20	2,0	0,00
PTB 7070/PGN0 dxfinal-first 0.000 0.032 0.032 0.000 0.032 0.000 0.01 0.02 0.04 0.01 0.02 0.04 0.01 0.02 0.03 0.04 0.03 0.04 0.03 0.04 0.03 0.04 0.03 0.04 0.03 0.04 0.03 0.04 0.03 0.04 0.03 0.04 0.03 0.			Maga Lina	0,003	0,01	0,02	0,03							
PTB 7070/PGN10 dxtmal-first 0.000 -0.02 0.04 0.10 2.5 8.0 0.1 Image: Unc. 0.01 0.02 0.04 0.10 Image: Unc. 0.05 0.10 Image: Unc. 0.05 0.11 Image: Unc. 0.000 0.00			weas. onc.	0,010	0,032	0,032	0,00							
Image: str. dev. 0.01 0.02 0.04 0.10 Image: str. dev. 0.05 0.196 0.11 Image: str. dev. 0.05 0.00 0.001 0.002 1 1200+0.022µm first 1-0.001+0.002µm first -0.001+0.0050µm difference 1000++0.029µm first -0.004+0.0050µm difference 0.001+-0.0050µm difference 0.001+-0.0050µm difference 0.001+-0.0050µm difference 0.004+-0.029µm difference 1000++0.0050µm difference 1000++0.0050µm difference 1000++0.0050µm difference 100++0.0050µm difference 100++0	РТВ	7070/PGN10	dxfinal-first	0,000	-0,02	-0,02	0,05					2,5	8,0	0,1
Meas. Unc. 0.059 0.193 0.196 0.11 0 0 0.8 2.5 0.05 PTB 8194/PGN3 dxfinal-first -0.003 0.000 0.002 0.8 2.5 0.05 std. dev. 0.007 0.05 0.06 0.11 6886sg Rpk 1.281+/-0.026µm final -0.762+/-0.024µm first -0.048+/-0.059µm difference -0.048+/-0.016µm difference -0.048+/-0.016µm diff </td <td></td> <td></td> <td>std. dev.</td> <td>0,01</td> <td>0,02</td> <td>0,04</td> <td>0,10</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>			std. dev.	0,01	0,02	0,04	0,10							
PTB 8194/PGN3 extnal-first -0,003 0,000 -0,02 0.8 2,5 0,05 Image: Std. dev. 0,007 0,05 0,06 0,11 Image: Std. dev. 0,018 0,062 0,11 Image: Std. dev. 0,018 0,062 0,12 1,281+/-0.024µm first -0,081+/-0.054µm first -0,081+/-0.054µm first -0,081+/-0.054µm first -0,048+/-0.024µm first <td></td> <td></td> <td>Meas. Unc.</td> <td>0,059</td> <td>0,193</td> <td>0,196</td> <td>0,11</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>			Meas. Unc.	0,059	0,193	0,196	0,11							
std. dev. 0,007 0.05 0.06 0,11 6686s Rpk / L281+/-0.026µm final -1.200+/-0.026µm final -0.748+/-0.056µm final -0.748+/-0.058µm final -0.748+/-0.758µm final -0.748µm final -0.748+/-0.758µm final -0.748+/-0.758µm fi	РТВ	8194/PGN3	dxfinal-first	-0,003	0,000	0,000	-0,02					0,8	2,5	0,05
Meas. Unc. 0.018 0.062 0.062 0.12 1.200+/.0.024 m first =0.081+/-0.050 µm difference 0.700+/.0.014 µm first =0.048+/-0.023 µm difference Roughn.standard Ra Rz Rmax Rk* Rpk* Rvk* Mr1* Mr2* Jambda-s Speed wery coarse 6865g dxfinal-first 0.010 0.000 0.100 -0.160 0.081 0.03 0.9 -0.1 2.5 8.0 0.1 very coarse 6865g dxfinal-first 0.004 0.23 0.04 0.21 0.095 0.13 1.1 0.5 0.01 0.010 0.002 0.062 0.063 2 2 0.1 </td <td></td> <td></td> <td>std. dev.</td> <td>0,007</td> <td>0,05</td> <td>0,06</td> <td>0,11</td> <td></td> <td>68</td> <td>6sg Rpk .281+/-0.026ur</td> <td>n final</td> <td>633g Rpk</td> <td>0 015um final</td> <td></td>			std. dev.	0,007	0,05	0,06	0,11		68	6sg Rpk .281+/-0.026ur	n final	633g Rpk	0 015um final	
Roughn.standard Ra Rz Rmax Rk* Rpk* Rk* Mr1* Mr2* Iambda-c Iambda-s Speed very coarse 686sg dxfinal-first -0,010 0,000 -0,160 0,081 0,030 0,9 -0,1 2.5 8.0 0,1 i std. dev. 0.04 0.23 0.04 0.21 0.095 0.13 1.1 0.5 - - coarse 633g dxfinal-first -0,016 0,140 0.160 0,048 0.010 0.6 0.3 0.8 2.5 0.1 coarse 633g dxfinal-first -0,016 0,13 0.06 0.44 0.23 0.04 0.21 0.095 0.13 1.1 0.5 -			Meas. Unc.	0,018	0,062	0,062	0,12		<u>-1</u>	200+/-0.024µr	<u>n first</u> m difference	<u>-0,700+/-</u>	0.014µm first	
Roughn.standard Ra Rz Rmax Rk* Rpk* Rvk* Mr1* Mr2* Iambda-c Iambda-c Iambda-s Speed very coarse 686sg dxfinal-first -0,010 0,000 0,100 -0,160 0,081 0,030 0,95 -0,1 2,5 8,0 0,1 std. dev. 0,04 0,23 0,04 0,21 0.095 0,13 1,1 0,5 0,04 0,23 0,04 0,21 0.095 0,13 1,1 0,5 <										,00117-0,030µ		=0,048+/-	-0,029µm dine	rence
very coarse 6886sg dxfinal-first um um um um um um um mm um mm um mm/s std. dev. 0.04 0.23 0.04 0.21 0.095 0.13 1.1 0.5	Roughn.stand	dard		Ra	Rz	Rmax	Rk*	Rpk*	Rvk*	Mr1*	Mr2*	lambda-c	lambda-s	Speed
very coarse 6886sg dxfinal-first -0,010 0,000 0,100 -0,160 0,081 0,030 0,9 -0,1 2,5 8,0 0,1 std. dev. 0,04 0,23 0,04 0,21 0,095 0,13 1,1 0,5				um	um	um	um	um	um	%	%	mm	um	mm/s
Correction Second	verv coarse	68650	dxfinal-first	-0 010	0 000	0 100	-0 160	0.081	0.030	0.9	-0.1	25	8.0	0.1
Std. dev. 0,047 0,23 0,047 0,21 0,045 0,13 1,1 0,3 Meas. Unc. 0,047 0,429 0,314 0,160 0,026 0,063 2 2 coarse 633g dxfinal-first -0,018 -0,110 -0,016 -0,010 0,048 -0,010 0,6 -0,3 0.8 2,5 0,1 std. dev. 0,014 0,16 0,13 0,08 0,041 0,066 0,4 0,4 0,6 -0,30 0.8 2,5 0,1 Meas. Unc. 0,030 0,224 0,176 0,131 0,015 0,049 2 2 -0.301+/.0009µm first	tory occured	0000g	atd day	0.04	0.00	0.04	0.21	0,005	0.12	11	0,5	2,0	0,0	0,1
coarse 633g dxfinal-first -0,018 -0,110 -0,010 -0,020 -0,000 -0,2 2 2 2 coarse 633g dxfinal-first -0,018 -0,110 -0,018 -0,010 0,048 -0,010 0,6 -0,3 0,8 2,5 0,11 std. dev. 0,014 0,16 0,13 0,08 0,041 0,06 0,4 0,4 0,231+/.0006µm first -0,301+/.0006µm first -0,301+/.0009µm first -0,300+/.0015 µm difference -0,008+/.015 µm difference -0,008 0,01 0,8 0,8 -0,1 -0,2 0,8 2,2 -0,1 -0,2			Maga Lina	0,04	0,23	0,04	0,21	0,035	0,10	1,1	0,5			
ccarse 633g dxmail-irrst -0,018 -0,110 -0,100 -0,018 -0,010 -0,100 -0,010 -0,010 -0,010 -0,010 -0,010 -0,010 -0,010 -0,010 -0,010 -0,010 -0,010 -0,010 -0,010 -0,010 -0,011 0,06 0,4 -0,4 -0,2 -2,2 -0,000/mint -0,203+/-0.006/mint -0,21			weas. onc.	0,047	0,429	0,314	0,100	0,020	0,003	2	2			
std. dev. 0,014 0,16 0,13 0,08 0,041 0.06 0,4 0,4 0,293+(-0.006µm final -0.301+(-0.006µm final -0.300+(-0.016µm final -0.301+(-0.006µm final -0.300+(-0.016µm final -0.3	coarse	633g	axtinal-tirst	-0,018	-0,140	-0,160	-0,100	0,048	-0,010	0,6	-0,3	0,8	Z,5 Rvk	0,1
Meas. Unc. 0.030 0.224 0.176 0.131 0.015 0.049 2 2 =0.081 rp-0.09µmmsa =0.084+.0015µmmsa			std. dev.	0,014	0,16	0,13	0,08	0,041	0,06	0,4	0,4	0,2	93+/-0,006µm	final -
fine 629f dxfinal-first 0,000 -0,010 0,000 -0,003 0,002 -0,008 0,11 -0,2 0,8 2,5 0,1 std. dev. 0,004 0,06 0,08 0,013 0,006 0,011 0,8 0,6 0,00 0,001 0,000 0,011 0,8 0,6			Meas. Unc.	0,030	0,224	0,176	0,131	0,015	0,049	2	2	=0,0	108+/-0,015µm	difference -
std. dev. 0,004 0,06 0,08 0,013 0,006 0,011 0,8 0,6 0 Meas. Unc. 0,004 0,050 0,057 0,009 0,003 0,006 2 2 1 NM nm nm nm nm nm nm 0,005	fine	629f	dxfinal-first	0,000	-0,010	0,000	-0,003	0,002	0,008	5 0,1	-0,2	0,8	2,5	0,1
Meas. Unc. 0,004 0,005 0,007 0,009 0,003 0,006 2 2 Nm nm nm nm nm nm nm % % SFRN 150 1.006 dxfinal-first 0.1 -0.2 1.2 -0.3 0.0 0.3 -0.2 -0.4 0.25 2.5 0.05 SFRN 150 1.006 dxfinal-first 0.1 -0.2 1.2 -0.3 0.0 0.3 -0.2 -0.4 0.25 2.5 0.05 std. dev. 0.8 3.4 17.2 3.6 1.1 2.0 0.9 0.9 2 2			std. dev.	0,004	0,06	0,08	0,013	0,006	0,011	0,8	0,6			
New Price nm			Meas. Unc.	0,004	0,050	0,057	0,009	0,003	0,006	2	2			
SFRN 150 1.006 dxfinal-first 0.1 -0.2 1.2 -0.3 0.0 0.3 -0.2 -0.4 0.25 2.5 0.05 std. dev. 0.8 3.4 17.2 3.6 1.1 2.0 0.9				nm	nm	nm	nm	nm	nm	%	%			
std. dev. 0.8 3.4 17.2 3.6 1.1 2.0 0.9 0.9 Meas. Unc. 0.75 6.94 14.26 3.07 1.08 0.94 2 2	SFRN 150	1.006	dxfinal-first	0,1	-0,2	1,2	-0,3	0,0	0,3	-0,2	-0,4	0,25	2,5	0,05
Meas Unc. 0.75 6.94 14.26 3.07 1.08 0.94 2 2			std. dev.	0,8	3,4	17,2	3,6	1,1	2,0	0,9	0,9			
			Meas. Unc.	0,75	6,94	14,26	3,07	1,08	0,94	2	2			

Appendix D1

Depth Setting Standard Type A

1 Depth standard EN806 R1 0,2 μm

Results of Pt

			E Measured							Depth s	standa	rd EN 80)6 R1 0,2μ	m		
Institute	Pt	untry	trum	Date	λc	λs	Speed	Force	Sampl-dist	Pt	S	U(k=2)	uc=U/2	En	DoE/ Xir	DoE/Uir
		Co	lns		mm	μm	mm/s	mN	μm	nm	nm	nm	nm		nm	nm
PTB		DE	IM	May 01						291	1	8	4	0,80	6,90	7,33
CMI	n	CZ	ΗT	Jun 01	0,06		0,1	0,75	0,03	195	7	72			102,90	71,93
CEM	n	ES	DT	Jan 03			0,1	0,9	0,5	284	2	10			13,90	9,47
ILM		IT	FTS	Aug 01			0,5	0,75	0,5	314	5	17	8,5	0,93	16,10	16,70
IMGC		IT	TS	Aug 01			0,025 / 0,0025	0,03	0,1	301	9	16	8	0,19	3,10	15,68
UME		TR	MPC	Sep 01	-	2,67	0,1	0,9	0,1	316	3,6	40,9	20,45	0,44	18,10	40,77
METAS	n	СН	FTS	Oct 01		2,5	0,5	<1		321	17	20			23,10	19,74
BEV	0	А	IM	Nov 01												
CGM		DK	FTS	Jan 02	none	none	0,05	1	0,1	307	5	34	17	0,27	9,10	33,85
MIKES		FI	FTS	Feb 02			0,500	1,000	0,250	299	2,123	50	25	0,02	1,10	49,90
GUM		PL	FTS	Apr 02			0,5	<1	0,25	287	2,4	34	17	0,32	10,90	33,85
SP		SE	FTS	May 02	-	-	0,5	0,7	0,25	302	1,4	14,522	7,2608981	0,28	4,10	14,16
NPL		UK	NS4	Jul 02			0,0	<0.1	0,1	298	3,5	3,7	1,85	0,02	0,10	1,86
IPQ		PT	S8P	Sep 02	0,08		0,1			340	10	119,18	59,59	0,35	42,10	119,14
SMU	n	CS	FTS	Nov 02			1	1		326	0,8	7,8			28,10	7,11
NMi-VSL	n	NL	FTS	Mrz 03			0,5	0,55	0,25	332	7	26			34,10	25,80
0=not mea	sur	ed							Mean	300,87	nm	X _{ref} /nm	u(X _{ref}) /nm	U(X _{ref}) /nm	R _B	n
i=incomple	ete								Stdev	33,56	nm	297,9	1,6	3,2	1,00	10

n=excluded (En>1)

	·-··· · · /
1. SMU	En = 3,02
2. CMI	En = 1,42
3. Nmi-VSL	En = 1,31
4. CEM	En = 1,26
5. METAS	En = 1,12

Depth standard EN806 0,2 μ m Pt_i±U(Pt_i), Pt_{ref}±U(Pt_{ref})(E_n<1)

CMI	Pt = (325 + -58) nm
METAS	Pt = (292 + - 19) nm
NPL	Pt = (295 + - 3,3) nm

Results of **D**

Measured								Depth standard EN 806 R1 0,2 µm								
Institute	D	untry	trum	Date	λς	λs	Speed	Force	Sampl-dist	D	S	U(k=2)	uc=U/2	En	DoE/ Xir	DoE/Uir
		Co	sul		mm	μm	mm/s	mN	μm	nm	nm	nm	nm		nm	nm
PTB		DE	IM	May 01						286	1	7	3,5	0,30	2,30	6,32
CMI	n	CZ	ΗT	Jun 01	0,06		0,1	0,75	0,03	174	5	90			109,70	89,95
CEM		ES	DT	Jan 03			0,1	0,9	0,5	277	3	10	5	0,64	6,70	9,54
ILM		IT	FTS	Aug 01			0,5	0,75	0,5	290	7	17	8,5	0,36	6,30	16,73
IMGC		IT	TS	Aug 01			0,025 / 0,0025	0,03	0,1	283	3,2	5,5	2,75	0,11	0,70	4,61
UME		TR	MPC	Sep 01	-	2,67	0,1	0,9	0,1	282	9,3	20,2	10,1	0,08	1,70	19,98
METAS	n	СН	FTS	Oct 01		2,5	0,5	<1		304	13	17			20,30	16,73
BEV		A	IM	Nov 01						285	3,5	12	6	0,11	1,30	11,62
CGM		DK	FTS	Jan 02	none	none	0,05	1	0,1	286	4	34	17	0,07	2,30	33,87
MIKES	0	FI	FTS	Feb 02			0,500	1,000	0,250							
GUM	n	PL	FTS	Apr 02			0,5	<1	0,25	266	2,7	12			17,70	11,62
SP		SE	FTS	May 02	-	-	0,5	0,7	0,25	285	2,1	14,563	7,2817076	0,09	1,30	14,25
NPL		UK	NS4	Jul 02			0,0	<0.1	0,1	283	2,8	7	3,5	0,09	0,70	6,32
IPQ	0	PT	S8P	Sep 02	0,08		0,1									
SMU	n	CS	FTS	Nov 02			1	1		259	0,9	9,3			24,70	8,80
NMi-VSL		NL	FTS	Mrz 03			0,5	0,55	0,25	293	9	23	11,5	0,40	9,30	22,80
0=not mea	sur	ed							Mean	275,21	nm	X _{ref} /nm	u(X _{ref}) /nm	U(X _{ref}) /nm	R _B	n
i=incomple	ete								Stdev	31,07	nm	283,7	1,5	3,0	0,64	10

n=excluded (En>1) 1. SMU En = 2,25 2. GUM En = 1,38

3. CMI En = 1,22 4. METAS En = 1,14

Depth standard EN806 0,2 μm D_i±U(D_i), D_{ref}±U(D_{ref})(E_n<1)

open symbol shows corrected value of

CMI	D = (290 + 72) nm
METAS	D = (288 + - 19) nm

2 Depth standard EN806 R2 1,5 μm

Results of Pt

1. SMU

2. CEM

3. METAS 4. NPL En = 4,03

En = 1,79

En = 1,28 En = 1,02

	_ a Measured									Depth st	andaro	I EN 806	6 R3 1,5µn	ı		
Institute	Pt	untry	trum	Date	λC	λs	Speed	Force	Sampl-dist	Pt	S	U(k=2)	uc=U/2	En	DoE/ Xir	DoE/Uir
		CO	Ins		mm	μm	mm/s	mN	μm	nm	nm	nm	nm		nm	nm
PTB		DE	IM	May 01						1376	4	9	4,5	0,40	4,60	5,66
CMI		CZ	HT	Jun 01	0,1		0,1	0,75	0,05	1422	29	92	46	0,45	41,40	91,73
CEM	n	ES	DT	Jan 03			0,1	0,9	0,5	1360	0	10			20,60	7,14
ILM		IT	FTS	Aug 01			0,5	0,75	0,5	1395	5	30	15	0,47	14,40	29,17
IMGC		IT	TS	Aug 01			0,025	0,045	0,3	1382	6	27	13,5	0,05	1,40	26,08
UME		TR	MPC	Sep 01	-	2,67	0,1	0,9	0,1	1405	6,8	45,2	22,6	0,53	24,40	44,65
METAS	n	CH	FTS	Oct 01		2,5	0,5	<1		1408	9	15			27,40	13,27
BEV	0	А	IM	Nov 01												
CGM		DK	FTS	Jan 02	none	none	0,05	1	0,1	1387	8	43	21,5	0,15	6,40	42,43
MIKES		FI	FTS	Feb 02			0,500	1,000	0,250	1386	6,852	100	50	0,05	5,40	99,75
GUM		PL	FTS	Apr 02			0,5	<1	0,25	1379	2,9	39	19,5	0,04	1,60	38,37
SP		SE	FTS	May 02	-	-	0,5	0,7	0,25	1378	4,7	19,336	9,6681405	0,13	2,60	18,02
NPL	n	UK	NS4	Jul 02			0,0	<0.1	0,2	1403	20,1	18,1			22,40	16,69
IPQ		PT	S8P	Sep 02	0,08		0,1			1490	20	144	72	0,76	109,40	143,83
SMU	n	CS	FTS	Nov 02			1	1		1329	0,9	7,9			51,60	3,66
NMi-VSL		NL	FTS	Mrz 03			0,5	0,55	0,25	1396	6	27	13,5	0,55	15,40	26,08
0=not mea	sur	ed	_	-	-				Mean	1393,07	nm	X _{ref} /nm	u(X _{ref}) /nm	U(X _{ref}) /nm	R _B	n
i=incomple	ete								Stdev	34,67	nm	1380,6	3,5	7,0	0,88	11

Depth standard	EN806	1,5 µm
Pt _i ±U(Pt _i), Pt _{ref}	EU(Pt _{ref})	(E _n <1)

METAS	Pt = (1375 + 40) nm
NPL	Pt = (1375 + 5,2) nm

Results of **D**

			lent	Measured						Depth st	andaro	d EN 806	6 R3 1,5µn	n		
Institute	D	untŋ	trum	Date	λc	λs	Speed	Force	Sampl-dist	D	S	U(k=2)	uc=U/2	En	DoE/ Xir	DoE/Uir
		റ്റ	Ins		mm	μm	mm/s	mN	μm	nm	nm	nm	nm		nm	nm
PTB		DE	IM	May 01						1370	4	9	4,5	0,53	5,10	8,25
CMI		CZ	ΗT	Jun 01	0,1		0,1	0,75	0,05	1385	17	120	60	0,17	20,10	119,95
CEM		ES	DT	Jan 03			0,1	0,9	0,5	1358	2	10	5	0,65	6,90	9,33
ILM		IT	FTS	Aug 01			0,5	0,75	0,5	1376	7	30	15	0,37	11,10	29,78
IMGC		IT	TS	Aug 01			0,025	0,045	0,3	1367	3,4	8	4	0,24	2,10	7,14
UME		TR	MPC	Sep 01	-	2,67	0,1	0,9	0,1	1364	10	22	11	0,04	0,90	21,70
METAS	n	СН	FTS	Oct 01		2,5	0,5	<1		1383	3	13			18,10	12,49
BEV		А	IM	Nov 01						1366	3,8	15	7,5	0,07	1,10	14,56
CGM		DK	FTS	Jan 02	none	none	0,05	1	0,1	1361	5	43	21,5	0,09	3,90	42,85
MIKES	0	FI	FTS	Feb 02			0,500	1,000	0,250							
GUM		PL	FTS	Apr 02			0,5	<1	0,25	1355	2,3	18	9	0,54	9,90	17,64
SP		SE	FTS	May 02	-	-	0,5	0,7	0,25	1358	2,8	18,913	9,4567098	0,36	6,90	18,57
NPL		UK	NS4	Jul 02			0,0	<0.1	0,2	1365	3,3	6,2	3,1	0,01	0,10	5,05
IPQ	0	PT	S8P	Sep 02	0,08		0,1									
SMU	n	CS	FTS	Nov 02			1	1		1302	1,3	9,6			62,90	8,90
NMi-VSL		NL	FTS	Mrz 03			0,5	0,55	0,25	1371	10	26	13	0,23	6,10	25,75
0=not mea	sur	ed		-					Mean	1362,93	nm	X _{ref} /nm	u(X _{ref}) /nm	U(X _{ref}) /nm	R _B	n
i=incompl	ete								Stdev	19,68	nm	1364,9	1,8	3,6	0,75	12
n=ovoludo	al / F		`													

n=excluded (En>1) 1. SMU En = 5,63

1. SMU En = 5,63 2. METAS En = 1,25

> Depth standard EN806 1,5 μm D_i±U(D_i), D_{ref}±U(D_{ref})(E_n<1)

open symbol shows corrected value of

METAS D = (1370 + -40) nm

corrected value but not shown, because only U changed UME D = (1364 + 24.4) nm

Depth standard EN806 R3 8,0 µm 3

Results of Pt

			ent	Measured						Depth st	andaro	I EN 806	6 R6 8 µm			
Institute	Pt	untry	trum	Date	λC	λs	Speed	Force	Sampl-dist	Pt	S	U(k=2)	uc=U/2	En	DoE/ Xir	DoE/Uir
		CO	lus		mm	μm	mm/s	mN	μm	nm	nm	nm	nm		nm	nm
PTB		DE	IM	May 01			0,05	1	0,1	8390	16	30	15	0,35	11,70	26,21
CMI		CZ	ΗT	Jun 01	0,2		0,1	0,75	0,1	8353	21	130	65	0,19	25,30	129,18
CEM	n	ES	DT	Jan 03			0,1	0,9	0,5	8329	8	12				
ILM		IT	FTS	Aug 01			0,5	0,75	0,5	8419	9	60	30	0,66	40,70	58,20
IMGC		IT	TS	Aug 01			0,025	0,055	0,3	8382	10	42	21	0,08	3,70	39,38
UME		TR	MPC	Sep 01	-	2,67	0,1	0,9	0,1	8399	11,8	105,5	52,75	0,19	20,70	104,48
METAS		СН	FTS	Oct 01		2,5	0,5	<1		8370	12	24	12	0,30	8,30	19,05
BEV	0	А	IM	Nov 01												
CGM		DK	FTS	Jan 02	none	none	0,05	1	0,1	8404	16	69	34,5	0,36	25,70	67,44
MIKES		FI	FTS	Feb 02			0,500	1,000	0,250	8349	4,042	300	150	0,10	29,30	299,64
GUM		PL	FTS	Apr 02			0,5	<1	0,25	8312	6,8	73	36,5	0,89	66,30	71,53
SP		SE	FTS	May 02	-	-	0,5	0,7	0,25	8365	7,3	76,9	38,45004	0,17	13,30	75,50
NPL	n	UK	NS4	Jul 02			0,0	<0.1	0,3	8549	170,4	152,4			170,70	151,70
IPQ	n	PT	S8P	Sep 02	0,08		0,1			8830	20	124,12			451,70	123,26
SMU	n	CS	FTS	Nov 02			1	1		7815	10,4	22,2			563,30	16,72
NMi-VSL		NL	FTS	Mrz 03			0,5	0,55	0,25	8368	7	62	31	0,16	10,30	60,26
0=not mea)=not measured								Mean	8375,60	nm	X _{ref} /nm	u(X _{ref}) /nm	U(X _{ref}) /nm	R _B	n
i=incompl	ete								Stdev	200,35	nm	8378,3	7,3	14,6	0,86	11
n=exclude	ed (E	in>1)													

1. SMU 2. IPQ En = 3,84 3. CEM 4. NPL En = 1,36

En = 1,10

*) DoE(Uir) for CEM cannot be calculated, since $u_i < u_{ref}$

Depth standard EN806 8 µm $Pt_i \pm U(Pt_i), Pt_{ref} \pm U(Pt_{ref})(E_n < 1)$

open symbol shows corrected value of Pt = (8365 + -14, 4) nmNPL

Results of **D**

		,	lent	Measured						Depth st	andaro	I EN 806	6 R6 8 µm			
Institute	D	untry	trum	Date	λc	λs	Speed	Force	Sampl-dist	D	s	U(k=2)	uc=U/2	En	DoE/ Xir	DoE/Uir
		Co	lns		mm	μm	mm/s	mN	μm	nm	nm	nm	nm		nm	nm
PTB		DE	IM	May 01			0,05	1	0,1	8360	6	25	12,5	0,23	6,10	23,69
CMI		CZ	ΗT	Jun 01	0,2		0,1	0,75	0,1	8328	23	114	57	0,23	25,90	113,72
CEM	n	ES	DT	Jan 03			0,1	0,9	0,5	8315	10	12			38,90	8,94
ILM		IT	FTS	Aug 01			0,5	0,75	0,5	8402	9	60	30	0,79	48,10	59,46
IMGC		IT	TS	Aug 01			0,025	0,055	0,3	8357	9,8	28	14	0,11	3,10	26,83
UME		TR	MPC	Sep 01	-	2,67	0,1	0,9	0,1	8363	10,8	25,9	12,95	0,34	9,10	24,63
METAS		СН	FTS	Oct 01		2,5	0,5	<1		8347	2	21	10,5	0,31	6,90	19,42
BEV		A	IM	Nov 01						8357	13	58	29	0,05	3,10	57,45
CGM		DK	FTS	Jan 02	none	none	0,05	1	0,1	8356	14	68	34	0,03	2,10	67,53
MIKES	0	FI	FTS	Feb 02			0,500	1,000	0,250							
GUM	n	ΡL	FTS	Apr 02			0,5	<1	0,25	8283	5,8	47			70,90	46,31
SP		SE	FTS	May 02	-	-	0,5	0,7	0,25	8348	3,9	76,546	38,272805	0,08	5,90	76,13
NPL		UK	NS4	Jul 02			0,0	<0.1	0,3	8351	6,3	11,6	5,8	0,21	2,90	8,40
IPQ	0	ΡT	S8P	Sep 02	0,08		0,1									
SMU	n	CS	FTS	Nov 02			1	1		7938	1,5	22,9			415,90	21,46
NMi-VSL		NL	FTS	Mrz 03			0,5	0,55	0,25	8349	10	61	30,5	0,08	4,90	60,47
0=not mea	asur	ed							Mean	8318,14	nm	X _{ref} /nm	u(X _{ref}) /nm	U(X _{ref}) /nm	R _B	n
i=incompl	ete								Stdev	112,61	nm	8353,9	4,0	8,0	0,66	11
n=ovelude	.d /E		۱							_			-			-

n=excluded	a (⊏n≥1)
1. SMU	En = 15,62
2. CEM	En = 1,87
2. GUM	En = 1.45

Depth standard	EN806	8 µm
D _i ±U(D _i), D _{ref} ±L	J(D _{ref})(E	"<1)

corrected value but not shown, because only U changed UME D = (8363 + 70.8) nm

Roughness Standard Type C

1. ROUGHNESS STANDARD P114A/528-RS5

Results of Ra

		`	ien	Measured						P114A	P114A	P114A	P114A	P114A	P114A	P114A
Institute	Ra	untry	strum	Date	λc	λs	Speed	Force	Sampl-dist	Ra	S	U(k=2)	uc=U/2	En	DoE/ Xir	DoE/Uir
		ů	lns		mm	μm	mm/s	mN	μm	nm	nm	nm	nm		nm	nm
PTB		DE	NS	May 01	0,25	2,5	0,05	0,025	0,15	506	3	5	2,5	0,71	3,90	4,49
CMI		CZ	HT	Jun 01	0,25	2,5	0,5	0,75	0,13	499	2	24	12	0,13	3,10	23,90
CEM	n	ES	MPC	Jul 01	0,25	2,5	0,5	0,4	0,5	491	2	3,97			11,10	3,30
ILM		IT	FTS	Aug 01	0,25	2,5	0,5	0,75	0,25	504	1	15,925	7,9626378	0,12	1,90	15,77
IMGC		IT	TS	Aug 01	0,25	1	0,025	0,045	1	508	1,3	11	5,5	0,53	5,90	10,78
UME		TR	MPC	Sep 01	0,25	2,5	0,1	0,9	0,2	505	1,2	48,6	24,3	0,06	2,90	48,55
METAS		СН	FTS	Oct 01	0,25	2,5	0,5	<1		505	1	10	5	0,28	2,90	9,75
BEV	0	А	IM	Nov 01												
CGM		DK	FTS	Jan 02	0,25	2,5	0,05	1	0,2	510	2	35	17,5	0,23	7,90	34,93
MIKES		FI	FTS	Feb 02	0,250	2,500	0,500	1,000	0,250	504	0,217	50	25	0,04	1,90	49,95
GUM		PL	FTS	Apr 02	0,25	2,5	0,5	<1	0,25	500	1,5	29	14,5	0,07	2,10	28,92
SP		SE	FTS	May 02	0,25	2,5	0,5	0,7	0,25	505	1	9,3231	4,6615544	0,30	2,90	9,06
NPL		UK	NS4	Jul 02	0,3	2,5	0,0	<0.1	0,5	500	4,2	2,7	1,35	0,60	2,10	1,57
IPQ		PT	S8P	Sep 02	0,25	2,5	0,1		0,5	500	0	40,82	20,41	0,05	2,10	40,76
SMU	n	CS	FTS	Nov 02	0,25	2,5	1	1		550	0,3	21,6			47,90	21,49
NMi-VSL		NL	FTS	Mrz 03	0,25	2,5	0,5	0,55	0,25	504	2	15	7,5	0,13	1,90	14,84
0=not me	0=not measured								Mean	506,07	nm	X _{ref} /nm	u(X _{ref}) /nm	U(X _{ref}) /nm	R _B	n
i=incomp	-incomplete								Stdev	12,96	nm	502,1	1,1	2,2	0,8	13

n=excluded (En>1) SMU excluded see Main ch 8.1

1. CEM En = 1,97

Geometry standard P114A/528-RS5 Ra_i±U(Ra_i), Ra_{ref}±U(Ra_{ref})(E_n<1)

open symbol shows corrected value of NPL Ra = (504 + -1,7) nm

Results of *Rz*

Institute Rz			nen	Measured						P114A	P114A	P114A	P114A	P114A	P114A	P114A
Institute	Rz	untr	trun	Date	λc	λs	Speed	Force	Sampl-dist	Rz	S	U(k=2)	uc=U/2	En	DoE/ Xir	DoE/Uir
		ů	lns		mm	μm	mm/s	mN	μm	nm	nm	nm	nm		nm	nm
PTB		DE	NS	May 01	0,25	2,5	0,05	0,025	0,15	1590	20	32	16	0,01	0,30	29,82
CMI		CZ	HT	Jun 01	0,25	2,5	0,5	0,75	0,13	1580	7	128	64	0,08	9,70	127,47
CEM		ES	MPC	Jul 01	0,25	2,5	0,5	0,4	0,5	1575	7	34,07	17,035	0,41	14,70	32,03
ILM		IT	FTS	Aug 01	0,25	2,5	0,5	0,75	0,25	1598	6	64,302	32,151075	0,13	8,30	63,25
IMGC		IT	TS	Aug 01	0,25	1	0,025	0,045	1	1596	5,7	49	24,5	0,13	6,30	47,61
UME		TR	MPC	Sep 01	0,25	2,5	0,1	0,9	0,2	1593	4,9	48,6	24,3	0,07	3,30	47,20
METAS		СН	FTS	Oct 01	0,25	2,5	0,5	<1		1610	6	70	35	0,29	20,30	69,03
BEV	0	А	IM	Nov 01												
CGM		DK	FTS	Jan 02	0,25	2,5	0,05	1	0,2	1602	6	45	22,5	0,26	12,30	43,48
MIKES		FI	FTS	Feb 02	0,250	2,500	0,500	1,000	0,250	1607	6,916	150	75	0,11	17,30	149,55
GUM		PL	FTS	Apr 02	0,25	2,5	0,5	<1	0,25	1576	4,8	32	16	0,40	13,70	29,82
SP		SE	FTS	May 02	0,25	2,5	0,5	0,7	0,25	1591	7	20,585	10,292438	0,06	1,30	17,01
NPL	n	UK	NS4	Jul 02	0,3	2,5	0,0	<0.1	0,5	1636	35,8	20,7			46,30	17,14
IPQ		PT	S8P	Sep 02	0,25	2,5	0,1		0,5	1620	10	73,26	36,63	0,41	30,30	72,34
SMU	n	CS	FTS	Nov 02	0,25	2,5	1	1		1571	1	9,3				
NMi-VSL		NL	FTS	Mrz 03	0,25	2,5	0,5	0,55	0,25	1592	5	58	29	0,04	2,30	56,83
0=not me)=not measured								Mean	1595,80	nm	X _{ref} /nm	u(X _{ref}) /nm	U(X _{ref}) /nm	R _B	n
i=incomp	lete								Stdev	17,61	nm	1589,7	5,8	11,6	0,5	13
n=exclud	led (En>'	1)													

SMU excluded see Main ch 8.1 1. NPL En = 1,54

DoE (Uir) for SMU cannot be calculated, since $U_i < U_{ref}$

Geometry standard P114A/528-RS5 $Rz_i \pm U(Rz_i), Rz_{ref} \pm U(Rz_{ref})(E_n < 1)$

open symbol shows corrected value of NPL Rz = (1583 + / - 3) nm

Results of *Rmax*

	×	У	ıen	Measured						P114A	P114A	P114A	P114A	P114A	P114A	P114A
Institute	max	untr	strun	Date	λc	λs	Speed	Force	Sampl-dist	Rmax	S	U(k=2)	uc=U/2	En	DoE/ Xir	DoE/Uir
	Rı	ő	lns		mm	μm	mm/s	mN	μm	nm	nm	nm	nm		nm	nm
PTB		DE	NS	May 01	0,25	2,5	0,05	0,025	0,15	1600	20	32	16	0,05	1,60	29,24
CMI		CZ	HT	Jun 01	0,25	2,5	0,5	0,75	0,13	1598	11	154	77	0,02	3,60	153,45
CEM		ES	MPC	Jul 01	0,25	2,5	0,5	0,4	0,5	1588	10	107,26	53,63	0,13	13,60	106,47
ILM		IT	FTS	Aug 01	0,25	2,5	0,5	0,75	0,25	1609	12	64,74	32,369776	0,11	7,40	63,42
IMGC		IT	TS	Aug 01	0,25	1	0,025	0,045	1	1610	15,2	66	33	0,12	8,40	64,71
UME		TR	MPC	Sep 01	0,25	2,5	0,1	0,9	0,2	1599	7,1	48,6	24,3	0,05	2,60	46,83
METAS	0	СН	FTS	Oct 01	0,25	2,5	0,5	<1								
BEV	0	A	IM	Nov 01												
CGM		DK	FTS	Jan 02	0,25	2,5	0,05	1	0,2	1611	11	46	23	0,20	9,40	44,12
MIKES	0	FI	FTS	Feb 02	0,250	2,500	0,500	1,000	0,250							
GUM		PL	FTS	Apr 02	0,25	2,5	0,5	<1	0,25	1589	10,7	32	16	0,36	12,60	29,24
SP		SE	FTS	May 02	0,25	2,5	0,5	0,7	0,25	1603	15	22,074	11,037078	0,05	1,40	17,84
NPL	n	UK	NS4	Jul 02	0,3	2,5	0,0	<0.1	0,5	1703	70,7	40,8			101,40	38,67
IPQ		PT	S8P	Sep 02	0,25	2,5	0,1		0,5	1630	10	77,89	38,945	0,36	28,40	76,80
SMU	n	CS	FTS	Nov 02	0,25	2,5	1	1		1590	1,7	9,6				
NMi-VSL		NL	FTS	Mrz 03	0,25	2,5	0,5	0,55	0,25	1604	9	69	34,5	0,03	2,40	67,76
0=not me	0=not measured								Mean	1610,31	nm	X _{ref} /nm	u(X _{ref}) /nm	U(X _{ref}) /nm	R _B	n
i=incomp	lete								Stdev	30,03	nm	1601,6	6,5	13,0	0,4	11
n=exclud	ed (En>'	1)													

SMU excluded see Main ch 8.1

DoE (Uir) for SMU cannot be calculated, since $U_{\rm i} < U_{\rm ref}$

Geometry standard P114A/528-RS5 Rmax_i±U(Rmax_i), Rmax_{ref}±U(Rmax_{ref})(E_n<1)

ILM	Rmax = (1605 + -65) nm
NPL	Rmax = (1591 + 7,6) nm

^{1.} NPL En = 2,16

Results of RSm

		У	nen	Measured						P114A	P114A	P114A	P114A	P114A	P114A	P114A
Institute	Sm	untr	strun	Date	λc	λs	Speed	Force	Sampl-dist	RSm	S	U(k=2)	uc=U/2	En	DoE/ Xir	DoE/Uir
	ĸ	ő	lns		mm	μm	mm/s	mN	μm	nm	nm	nm	nm		nm	nm
PTB		DE	NS	May 01	0,25	2,5	0,05	0,025	0,15	50030	10	100	50	0,00	0,00	99,79
CMI		CZ	HT	Jun 01	0,25	2,5	0,5	0,75	0,13	50200	1100	12200	6100	0,01	170,00	12200,00
CEM		ES	MPC	Jul 01	0,25	2,5	0,5	0,4	0,5	49536	13,42	2860	1430	0,17	494,00	2859,99
ILM		IT	FTS	Aug 01	0,25	2,5	0,5	0,75	0,25	50040	12	500,4	250,2	0,02	10,00	500,36
IMGC	0	IT	TS	Aug 01	0,25	1	0,025	0,045	1							
UME		TR	MPC	Sep 01	0,25	2,5	0,1	0,9	0,2	49723	75,4	984,3	492,15	0,31	307,00	984,28
METAS	n	СН	FTS	Oct 01	0,25	2,5	0,5	<1		49470	285	166			560,00	165,88
BEV	0	А	IM	Nov 01												
CGM	n	DK	FTS	Jan 02	0,25	2,5	0,05	1	0,2	48486	191	648			1544,00	647,97
MIKES	0	FI	FTS	Feb 02	0,250	2,500	0,500	1,000	0,250							
GUM		PL	FTS	Apr 02	0,25	2,5	0,5	<1	0,25	50030	9,8	300	150	0,00	0,00	299,93
SP		SE	FTS	May 02	0,25	2,5	0,5	0,7	0,25	50030	11	6,4	3,2	0,00	0,00	0,00
NPL	n	UK	NS4	Jul 02	0,3	2,5	0,0	<0.1	0,5	50067	57,7	33,3			37,00	32,68
IPQ		PT	S8P	Sep 02	0,25	2,5	0,1		0,5	49840	560	1124,51	562,255	0,17	190,00	1124,49
SMU	n	CS	FTS	Nov 02	0,25	2,5	1	1		50202	109,9	220			172,00	219,91
NMi-VSL		NL	FTS	Mrz 03	0,25	2,5	0,5	0,55	0,25	49805	176	1023	511,5	0,22	225,00	1022,98
0=not me	easu	red							Mean	49804,54	nm	X _{ref} /nm	u(X _{ref}) /nm	U(X _{ref}) /nm	R _B	n
i=incomp	lete								Stdev	458,41	nm	50030,0	3,2	6,4	0,3	9
n=exclud	led (En>'	1)													

n=excluded (En>1)SMUexcluded see Main ch 8.11. METASEn = 3,372. CGMEn = 2,38

3. NPL En = 1,05

Geometry standard P114A/528-RS5 RSm_i±U(RSm_i), RSm_{ref}±U(RSm_{ref})(E_n<1)

CGM	RSm = (50036 + - 6)	549) nm
METAS	RSm = (50044 + / -	28) nm
NPL	RSm = (50067 + / -	11,6) nm
SP	RSm = (50030 + / -	50) nm

2. ROUGHNESS STANDARD 7070/PGN10

Results of Ra

		×	nen	Measured						7070	7070	7070	7070	7070	7070	7070
Institute	Ra	ountr	strum	Date	λς	λs	Speed	Force	Sampl-dist	Ra	S	U(k=2)	uc=U/2	En	DoE/ Xir	DoE/Uir
		ö	sul		mm	μm	mm/s	mN	μm	nm	nm	nm	nm		nm	nm
PTB		DE	NS	May 01	2,5	8	0,1	1	0,2	2960	30	89	44,5	0,05	4,80	87,73
CMI		CZ	HT	Jun 01	2,5	8	0,5	0,75	1,3	2940	10	172	86	0,09	15,20	171,34
CEM		ES	MPC	Jul 01	2,5	8	0,5	0,4	1,5	2909	7	169,32	84,66	0,27	46,20	168,65
ILM		IT	FTS	Aug 01	2,5	8	0,5	0,75	0,25	2962	14	89,001	44,50028	0,08	6,80	87,73
IMGC	0	IT	TS	Aug 01												
UME		TR	MPC	Sep 01	2,5	8,33	0,5	0,9	0,5	2978	11,9	142,3	71,15	0,16	22,80	141,51
METAS		СН	FTS	Oct 01	2,5	8	0,5	<1		2960	10	56	28	0,08	4,80	53,95
BEV	0	А	IM	Nov 01												
CGM		DK	FTS	Jan 02	2,5	8	0,1	1	1,5	2941	10	55	27,5	0,25	14,20	52,92
MIKES		FI	FTS	Feb 02	2,500	8,000	0,500	1,000	0,250	2971	14,47	200	100	0,08	15,80	199,44
GUM		PL	FTS	Apr 02	2,5	8	0,5	<1	0,25	2944	12,4	38	19	0,27	11,20	34,91
SP		SE	FTS	May 02	2,5	8	0,5	0,7	0,25	2962	12	30,14	15,069912	0,20	6,80	26,14
NPL		UK	NS4	Jul 02	2,5	8,0	0,1	<0.1	1,5	2943	92,6	53,5	26,75	0,22	12,20	51,35
IPQ		PT	S8P	Sep 02	2,5	8	0,5		1,5	2960	10	48,3	24,15	0,09	4,80	45,91
SMU	n	CS	FTS	Nov 02	2,5	8	1	1		2964	2,2	23,3			8,80	17,83
NMi-VSL		NL	FTS	Mrz 03	2,5	8	0,5	0,55	0,25	2961	13	35	17,5	0,15	5,80	31,62
0=not me	D=not measured								Mean	2953,93	nm	X _{ref} /nm	u(X _{ref}) /nm	U(X _{ref}) /nm	R _B	n
i=incomp	incomplete								Stdev	17,23	nm	2955,2	7,5	15,0	0,4	13

n=excluded (En>1) SMU excluded see Main ch 8.1

> Geometry standard 7070/PGN10 Ra_i±U(Ra_i), Ra_{ref}±U(Ra_{ref})(E_n<1)

NPL Ra = (2951 + 7,3) nm

Results of Rz

		Y	nen	Measured						7070	7070	7070	7070	7070	7070	7070
Institute	Rz	untr	strun	Date	λς	λs	Speed	Force	Sampl-dist	Rz	S	U(k=2)	uc=U/2	En	DoE/ Xir	DoE/Uir
		с	lns		mm	μm	mm/s	mN	μm	nm	nm	nm	nm		nm	nm
PTB		DE	NS	May 01	2,5	8	0,1	1	0,2	9660	70	290	145	0,09	25,60	289,15
CMI		CZ	ΗT	Jun 01	2,5	8	0,5	0,75	1,3	9547	27	248	124	0,56	138,60	247,00
CEM	n	ES	MPC	Jul 01	2,5	8	0,5	0,4	1,5	9476	39	181,9			209,60	180,54
ILM		IT	FTS	Aug 01	2,5	8	0,5	0,75	0,25	9735	66	389,46	194,73146	0,13	49,40	388,83
IMGC	0	IT	TS	Aug 01												
UME		TR	MPC	Sep 01	2,5	8,33	0,5	0,9	0,5	9730	46,8	142,3	71,15	0,31	44,40	140,56
METAS		СН	FTS	Oct 01	2,5	8	0,5	<1		9630	30	397	198,5	0,14	55,60	396,38
BEV	0	А	IM	Nov 01												
CGM	n	DK	FTS	Jan 02	2,5	8	0,1	1	1,5	9599	34	70			86,60	66,39
MIKES		FI	FTS	Feb 02	2,500	8,000	0,500	1,000	0,250	9711	54,45	300	150	0,08	25,40	299,18
GUM		PL	FTS	Apr 02	2,5	8	0,5	<1	0,25	9614	45,5	91	45,5	0,76	71,60	88,25
SP		SE	FTS	May 02	2,5	8	0,5	0,7	0,25	9661	41	95,206	47,603235	0,25	24,60	92,58
NPL		UK	NS4	Jul 02	2,5	8,0	0,1	<0.1	1,5	9694	43,9	25,4	12,7	0,25	8,40	12,34
IPQ		PT	S8P	Sep 02	2,5	8	0,5		1,5	9690	40	116,05	58,025	0,04	4,40	113,91
SMU	n	CS	FTS	Nov 02	2,5	8	1	1		9721	15,5	33,4			35,40	24,95
NMi-VSL		NL	FTS	Mrz 03	2,5	8	0,5	0,55	0,25	9655	44	127	63,5	0,24	30,60	125,04
0=not measured								Mean	9651,64	nm	X _{ref} /nm	u(X _{ref}) /nm	U(X _{ref}) /nm	R _B	n	
i=incomp	lete								Stdev	74,07	nm	9685,6	11,1	22,2	0,7	11

n=excluded (En>1) excluded see Main ch 8.1 SMU En = 1,09 En = 1,07 1. CEM

2. CGM

Geometry standard 7070/PGN10 Rz_i±U(Rz_i), Rz_{ref}±U(Rz_{ref})(E_n<1)

open symbol shows corrected value of Rz = (9625 + 22,2) nmNPL

Results of *Rmax*

	×	У	nen	Measured						7070	7070	7070	7070	7070	7070	7070
Institute	ma	ountr	strun	Date	λς	λs	Speed	Force	Sampl-dist	Rmax	S	U(k=2)	uc=U/2	En	DoE/ Xir	DoE/Uir
	R	ö	lns		mm	μm	mm/s	mN	μm	nm	nm	nm	nm		nm	nm
PTB		DE	NS	May 01	2,5	8	0,1	1	0,2	9830	90	295	147,5	0,06	17,50	291,76
CMI		CZ	ΗT	Jun 01	2,5	8	0,5	0,75	1,3	9654	52	288	144	0,54	158,50	284,68
CEM		ES	MPC	Jul 01	2,5	8	0,5	0,4	1,5	9627	60	735,21	367,605	0,25	185,50	733,92
ILM		IT	FTS	Aug 01	2,5	8	0,5	0,75	0,25	9767	66	390,74	195,37135	0,12	45,50	388,30
IMGC	0	IT	TS	Aug 01												
UME		TR	MPC	Sep 01	2,5	8,33	0,5	0,9	0,5	9914	49,1	142,3	71,15	0,68	101,50	135,46
METAS	0	СН	FTS	Oct 01	2,5	8	0,5	<1								
BEV	0	A	IM	Nov 01												
CGM		DK	FTS	Jan 02	2,5	8	0,1	1	1,5	9773	84	84	42	0,42	39,50	71,80
MIKES	0	FI	FTS	Feb 02	2,500	8,000	0,500	1,000	0,250							
GUM		PL	FTS	Apr 02	2,5	8	0,5	<1	0,25	9808	57,6	92	46	0,04	4,50	81,01
SP		SE	FTS	May 02	2,5	8	0,5	0,7	0,25	9828	58	99,528	49,763766	0,14	15,50	89,47
NPL	n	UK	NS4	Jul 02	2,5	8,0	0,1	<0.1	1,5	9949	95,2	55			136,50	33,53
IPQ		PT	S8P	Sep 02	2,5	8	0,5		1,5	9850	70	159,79	79,895	0,23	37,50	153,73
SMU	n	CS	FTS	Nov 02	2,5	8	1	1		9888	11,5	25,2				
NMi-VSL		NL	FTS	Mrz 03	2,5	8	0,5	0,55	0,25	9823	56	151	75,5	0,07	10,50	144,57
0=not measured									Mean	9809,25	nm	X _{ref} /nm	u(X _{ref}) /nm	U(X _{ref}) /nm	R _B	n
i=incomp	lete								Stdev	95,23	nm	9812,5	21,8	43,6	0,7	10
n=excluded (En>1)																

SMUexcluded see Main ch 8.11. NPLEn = 1,29

1. NI L LI – I,

DoE (*U*ir) for SMU cannot be calculated, since $U_i < U_{ref}$

Geometry standard 7070/PGN10 Rmax_i±U(Rmax_i), Rmax_{ref}±U(Rmax_{ref})(E_n<1)

ILM	<i>Rmax</i> = (9766 +/-	391) nm
NPL	Rmax = (9780 + / -	40) nm

Results of RSm

		×	nen	Measured						7070	7070	7070	7070	7070	7070	7070
Institute	Sm	untr	strun	Date	λc	λs	Speed	Force	Sampl-dist	RSm	S	U(k=2)	uc=U/2	En	DoE/ Xir	DoE/Uir
	R	ő	lns		mm	μm	mm/s	mN	μm	nm	nm	nm	nm		nm	nm
PTB		DE	NS	May 01	2,5	8	0,1	1	0,2	199900	100	100	50	0,39	39,40	99,35
CMI		CZ	ΗT	Jun 01	2,5	8	0,5	0,75	1,3	200000	0	4400	2200	0,01	60,60	4399,99
CEM		ES	MPC	Jul 01	2,5	8	0,5	0,4	1,5	197853	33	3807,69	1903,845	0,55	2086,40	3807,67
ILM		IT	FTS	Aug 01	2,5	8	0,5	0,75	0,25	199980	21	1999,8	999,9	0,02	40,60	1999,77
IMGC	0	IT	TS	Aug 01												
UME		TR	MPC	Sep 01	2,5	8,33	0,5	0,9	0,5	198617	21,1	3920,4	1960,2	0,34	1322,40	3920,38
METAS	n	СН	FTS	Oct 01	2,5	8	0,5	<1		198600	512	301			1339,40	300,78
BEV	0	А	IM	Nov 01												
CGM	n	DK	FTS	Jan 02	2,5	8	0,1	1	1,5	197942	140	1376			1997,40	1375,95
MIKES	0	FI	FTS	Feb 02	2,500	8,000	0,500	1,000	0,250							
GUM		PL	FTS	Apr 02	2,5	8	0,5	<1	0,25	199940	19,6	300	150	0,00	0,60	299,78
SP		SE	FTS	May 02	2,5	8	0,5	0,7	0,25	199940	20	11,54701	5,7735027	0,04	0,60	1,84
NPL	n	UK	NS4	Jul 02	2,5	8,0	0,1	<0.1	1,5	200052	72,6	41,9			112,60	40,32
IPQ		ΡT	S8P	Sep 02	2,5	8	0,5		1,5	198410	0	1847,95	923,975	0,83	1529,40	1847,91
SMU	n	CS	FTS	Nov 02	2,5	8	1	1		195800	190	380,1			4139,40	379,93
NMi-VSL		NL	FTS	Mrz 03	2,5	8	0,5	0,55	0,25	199937	24	964	482	0,00	2,40	963,93
0=not me	asu	red							Mean	198997,77	nm	X _{ref} /nm	u(X _{ref}) /nm	U(X _{ref}) /nm	R _B	n
i=incomp	lete								Stdev	1286,21	nm	199939,4	5,7	11,4	0,8	9
n-ovclud	od (En>	1)													

 SMU
 excluded see Main ch 8.1

 1. METAS
 En = 4,47

 2. NPL
 En = 2,42

 3. CGM
 En = 1,45

Geometry standard 7070/PGN10 RSm_i±U(RSm_i), RSm_{ref}±U(RSm_{ref})(E_n<1)

CGM	RSm = (199960 + - 1)	376) nm
METAS	RSm = (199987 + / -	70) nm
NPL	RSm = (200049 + / -	30,2) nm
SP	RSm = (199940 + / -	51) nm

3. ROUGHNESS STANDARD 8194/PGN3

Results of Ra

		×	nen	Measured						8194	8194	8194	8194	8194	8194	8194
Institute	Ra	ountr	strum	Date	λς	λs	Speed	Force	Sampl-dist	Ra	S	U(k=2)	uc=U/2	En	DoE/ Xir	DoE/Uir
		ö	lns		mm	μm	mm/s	mN	μm	nm	nm	nm	nm		nm	nm
PTB		DE	NS	May 01	0,8	2,5	0,1	1	0,2	903	7	36	18	0,20	7,40	35,62
CMI		CZ	HT	Jun 01	0,8	2,5	0,5	0,75	0,42	894	8	46	23	0,03	1,60	45,71
CEM		ES	MPC	Jul 01	0,8	2,5	0,5	0,4	0,5	894	7,5	27,33	13,665	0,06	1,60	26,83
ILM		IT	FTS	Aug 01	0,8	2,5	0,5	0,75	0,25	903	7	27,548	13,77378	0,26	7,40	27,05
IMGC	0	IT	TS	Aug 01												
UME		TR	MPC	Sep 01	0,8	2,67	0,5	0,9	0,35	901	6,4	113,9	56,95	0,05	5,40	113,78
METAS		СН	FTS	Oct 01	0,8	2,5	0,5	<1		904	8	18	9	0,45	8,40	17,23
BEV	0	А	IM	Nov 01												
CGM		DK	FTS	Jan 02	0,8	2,5	0,1	1	0,5	901	10	51	25,5	0,11	5,40	50,73
MIKES		FI	FTS	Feb 02	0,800	2,500	0,500	1,000	0,250	905	11,71	100	50	0,09	9,40	99,86
GUM		PL	FTS	Apr 02	0,8	2,5	0,5	<1	0,25	891	6,5	31	15,5	0,15	4,60	30,56
SP		SE	FTS	May 02	0,8	2,5	0,5	0,7	0,25	898	15	14,439	7,2195693	0,16	2,40	13,47
NPL		UK	NS4	Jul 02	0,8	2,5	0,1	<0.1	0,5	892	12	7	3,5	0,41	3,60	4,69
IPQ		PT	S8P	Sep 02	0,8	2,5	0,5		0,5	900	10	45,46	22,73	0,10	4,40	45,16
SMU	n	CS	FTS	Nov 02	0,8	2,5	1	1		889	0,9	21,5			6,60	20,86
NMi-VSL		NL	FTS	Mrz 03	0,8	2,5	0,5	0,55	0,25	904	7	20	10	0,41	8,40	19,31
0=not measured							Mean	898,50	nm	X _{ref} /nm	u(X _{ref}) /nm	U(X _{ref}) /nm	R _B	n		
i=incomp	lete								Stdev	5,46	nm	895,6	2,6	5,2	0,5	13

n=excluded (En>1) SMU excluded see Main ch 8.1

open symbol shows corrected value of NPL Ra = (900 + -5, 1) nm

Results of *Rz*

		~	nen	Measured						8194	8194	8194	8194	8194	8194	8194
Institute	Rz	untr	trun	Date	λc	λs	Speed	Force	Sampl-dist	Rz	S	U(k=2)	uc=U/2	En	DoE/ Xir	DoE/Uir
		ů	lns		mm	μm	mm/s	mN	μm	nm	nm	nm	nm		nm	nm
PTB		DE	NS	May 01	0,8	2,5	0,1	1	0,2	3080	60	123	61,5	0,06	7,30	120,51
CMI		CZ	ΗT	Jun 01	0,8	2,5	0,5	0,75	0,42	3056	47	264	132	0,06	16,70	262,85
CEM		ES	MPC	Jul 01	0,8	2,5	0,5	0,4	0,5	3091	50,9	105,96	52,98	0,17	18,30	103,06
ILM		IT	FTS	Aug 01	0,8	2,5	0,5	0,75	0,25	3098	51	124,12	62,058775	0,20	25,30	121,66
IMGC	0	IT	TS	Aug 01												
UME		TR	MPC	Sep 01	0,8	2,67	0,5	0,9	0,35	3096	48,7	113,9	56,95	0,20	23,30	111,21
METAS		СН	FTS	Oct 01	0,8	2,5	0,5	<1		3100	55	134	67	0,20	27,30	131,72
BEV	0	А	IM	Nov 01												
CGM		DK	FTS	Jan 02	0,8	2,5	0,1	1	0,5	3069	48	64	32	0,05	3,70	59,08
MIKES		FI	FTS	Feb 02	0,800	2,500	0,500	1,000	0,250	3087	56,45	200	100	0,07	14,30	198,48
GUM		PL	FTS	Apr 02	0,8	2,5	0,5	<1	0,25	3061	53,5	42	21	0,24	11,70	34,04
SP		SE	FTS	May 02	0,8	2,5	0,5	0,7	0,25	3056	73	54,755	27,377424	0,28	16,70	48,92
NPL	n	UK	NS4	Jul 02	0,8	2,5	0,1	<0.1	0,5	3192	52	30,1			119,30	17,35
IPQ		PT	S8P	Sep 02	0,8	2,5	0,5		0,5	3140	50	124,37	62,185	0,53	67,30	121,91
SMU	n	CS	FTS	Nov 02	0,8	2,5	1	1		3082	7,9	19,6				
NMi-VSL		NL	FTS	Mrz 03	0,8	2,5	0,5	0,55	0,25	3097	53	126	63	0,19	24,30	123,58
0=not measured									Mean	3093,21	nm	X _{ref} /nm	u(X _{ref}) /nm	U(X _{ref}) /nm	R _B	n
i=incomp	olete								Stdev	35,92	nm	3072,7	12,3	24,6	0,5	12
n=exclud	n=excluded (En>1)															

SMU excluded see Main ch 8.1 En = 2,01

1. NPL

DoE (*U*ir) for SMU cannot be calculated, since $U_i < U_{ref}$

open symbol shows corrected value of

NPL Rz = (3080 + -29,7) nm

Results of *Rmax*

	×	Z	nen	Measured						8194	8194	8194	8194	8194	8194	8194
Institute	ma	ountr	strun	Date	λς	λs	Speed	Force	Sampl-dist	Rmax	S	U(k=2)	uc=U/2	En	DoE/ Xir	DoE/Uir
	R	ŭ	lns		mm	μm	mm/s	mN	μm	nm	nm	nm	nm		nm	nm
PTB		DE	NS	May 01	0,8	2,5	0,1	1	0,2	3100	70	124	62	0,05	6,30	121,77
CMI		CZ	HT	Jun 01	0,8	2,5	0,5	0,75	0,42	3073	50	356	178	0,06	20,70	355,23
CEM		ES	MPC	Jul 01	0,8	2,5	0,5	0,4	0,5	3113	55,6	215,11	107,555	0,09	19,30	213,83
ILM		IT	FTS	Aug 01	0,8	2,5	0,5	0,75	0,25	3112	51	124,68	62,338332	0,14	18,30	122,46
IMGC	0	IT	TS	Aug 01												
UME		TR	MPC	Sep 01	0,8	2,67	0,5	0,9	0,35	3113	48,5	113,9	56,95	0,17	19,30	111,47
METAS	0	СН	FTS	Oct 01	0,8	2,5	0,5	<1								
BEV	0	А	IM	Nov 01												
CGM		DK	FTS	Jan 02	0,8	2,5	0,1	1	0,5	3087	50	65	32,5	0,10	6,70	60,64
MIKES	0	FI	FTS	Feb 02	0,800	2,500	0,500	1,000	0,250							
GUM		PL	FTS	Apr 02	0,8	2,5	0,5	<1	0,25	3081	5,7	39	19,5	0,28	12,70	31,20
SP		SE	FTS	May 02	0,8	2,5	0,5	0,7	0,25	3096	41	42,018	21,009199	0,05	2,30	34,90
NPL	n	UK	NS4	Jul 02	0,8	2,5	0,1	<0.1	0,5	3391	69,1	39,9			297,30	32,32
IPQ		PT	S8P	Sep 02	0,8	2,5	0,5		0,5	3160	50	127,15	63,575	0,51	66,30	124,98
SMU	n	CS	FTS	Nov 02	0,8	2,5	1	1		3112	12,4	26,7			18,30	12,86
NMi-VSL		NL	FTS	Mrz 03	0,8	2,5	0,5	0,55	0,25	3118	56	138	69	0,17	24,30	136,00
0=not measured								Mean	3129,67	nm	X _{ref} /nm	u(X _{ref}) /nm	U(X _{ref}) /nm	R _B	n	
i=incomp	lete								Stdev	85,25	nm	3093,7	11,7	23,4	0,5	10

n=excluded (En>1) SMU excluded (En>1) 1. NPL En = 4 excluded see Main ch 8.1 En = 4,93

Geometry standard 8194/PGN3 Rmax_i±U(Rmax_i), Rmax_{ref}±U(Rmax_{ref})(E_n<1)

ILM	Rmax = (3105 + - 1)	124) nm
NPL	Rmax = (3097 + / -	32,3) nm
Results of RSm

		λ	nen	Measured						8194	8194	8194	8194	8194	8194	8194
Institute	Sm	ountr	strun	Date	λc	λs	Speed	Force	Sampl-dist	RSm	S	U(k=2)	uc=U/2	En	DoE/ Xir	DoE/Uir
	R	ö	lns		mm	μm	mm/s	mN	μm	nm	nm	nm	nm		nm	nm
PTB		DE	NS	May 01	0,8	2,5	0,1	1	0,2	120000	50	100	50	0,19	19,40	98,25
CMI		CZ	ΗT	Jun 01	0,8	2,5	0,5	0,75	0,42	119800	1700	4200	2100	0,04	180,60	4199,96
CEM		ES	MPC	Jul 01	0,8	2,5	0,5	0,4	0,5	118719	46,2	6854,25	3427,125	0,18	1261,60	6854,22
ILM		IT	FTS	Aug 01	0,8	2,5	0,5	0,75	0,25	120020	48	1200,2	600,1	0,03	39,40	1200,06
IMGC	0	IT	TS	Aug 01												
UME		TR	MPC	Sep 01	0,8	2,67	0,5	0,9	0,35	119149	29	2335,5	1167,75	0,36	831,60	2335,43
METAS	n	СН	FTS	Oct 01	0,8	2,5	0,5	<1		119100	1084	627			880,60	626,72
BEV	0	A	IM	Nov 01												
CGM	n	DK	FTS	Jan 02	0,8	2,5	0,1	1	0,5	117996	1052	1125			1984,60	1124,85
MIKES	0	FI	FTS	Feb 02	0,800	2,500	0,500	1,000	0,250							
GUM		ΡL	FTS	Apr 02	0,8	2,5	0,5	<1	0,25	119990	29,1	300	150	0,03	9,40	299,42
SP		SE	FTS	May 02	0,8	2,5	0,5	0,7	0,25	119980	33	19,052559	9,5262794	0,02	0,60	4,13
NPL	n	UK	NS4	Jul 02	0,8	2,5	0,1	<0.1	0,5	120078	139,6	80,6			97,40	78,42
IPQ		PT	S8P	Sep 02	0,8	2,5	0,5		0,5	119700	1850	3736,52	1868,26	0,08	280,60	3736,47
SMU	n	CS	FTS	Nov 02	0,8	2,5	1	1		116600	223,4	446,9			3380,60	446,51
NMi-VSL		NL	FTS	Mrz 03	0,8	2,5	0,5	0,55	0,25	118927	1138	2470	1235	0,43	1053,60	2469,93
0=not me	asu	red							Mean	119235,31	nm	X _{ref} /nm	u(X _{ref}) /nm	U(X _{ref}) /nm	R _B	n
i=incomp	lete								Stdev	1018,07	nm	119980,6	9,3	18,6	0,4	9
n-avelud	od (Ens	1)													

n=excluded	n=excluded (En>1)												
SMU	excluded see Main ch 8.1												
1. CGM	En = 1,77												
2. METAS	En = 1,41												
3. NPL	En = 1,12												

Geometry standard 8194/PGN3 RSm_i±U(RSm_i), RSm_{ref}±U(RSm_{ref})(E_n<1)

CGM	RSm = (119990 + - 1)	125) nm
METAS	RSm = (119955 + / -	52) nm
NPL	RSm = (120030 + / -	25,1) nm
SP	RSm = (119980 + / -	54) nm

Appendix D3

Roughness Standard Type D

1 ROUGHNESS STANDARD 686SG

Results of Ra

			ent	Measured						686sg	686sg	686sg	686sg	686sg	686sg	686sg
Institute	Ra	untry	trum	Date	λc	λs	Speed	Force	Sampl-dist	Ra	S	U(k=2)	uc=U/2	En	DoE/ Xir	DoE/Uir
		Col	sul		mm	μm	mm/s	mN	μm	nm	nm	nm	nm		nm	nm
PTB		DE	NS	May 01	2,5	8	0,1	1	0,2	2350	40	71	35,5	0,30	21,80	69,48
CMI		CZ	HT	Jun 01	2,5	8	0,5	0,75	1,3	2328	35	174	87	0,00	0,20	173,39
CEM		ES	MPC	Jul 01	2,5	8	0,5	0,4	1,5	2303	31	169,41	84,705	0,15	25,20	168,78
ILM		IT	FTS	Aug 01	2,5	8	0,5	0,75	0,25	2335	25	93,534	46,766869	0,07	6,80	92,39
IMGC	0	IT	TS	Aug 01												
UME		TR	MPC	Sep 01	2,5	8,33	0,5	0,9	0,5	2346	32,5	497,6	248,8	0,04	17,80	497,39
METAS		СН	FTS	Oct 01	2,5	8	0,5	<1		2360	22	76	38	0,41	31,80	74,58
BEV	0	А	IM	Nov 01												
CGM		DK	FTS	Jan 02	2,5	8	0,1	1	1,5	2342	19	57	28,5	0,23	13,80	55,10
MIKES		FI	FTS	Feb 02	2,500	8,000	0,500	1,000	0,250	2352	23,324	160	80	0,15	23,80	159,33
GUM		PL	FTS	Apr 02	2,5	8	0,5	<1	0,25	2321	21,1	35	17,5	0,19	7,20	31,81
SP		SE	FTS	May 02	2,5	8	0,5	0,7	0,25	2319	29	29,541	14,770426	0,28	9,20	25,68
NPL		UK	NS4	Jul 02	2,5	8,0	0,1	<0.1	1,5	2316	49,5	28,6	14,3	0,38	12,20	24,59
IPQ		ΡT	S8P	Sep 02	2,5	8	0,5		1,5	2370	30	73,26	36,63	0,56	41,80	71,79
SMU	n	CS	FTS	Nov 02	2,5	8	1	1		2424	6,2	25,8			95,80	21,27
NMi-VSL		NL	FTS	Mrz 03	2,5	8	0,5	0,55	0,25	2351	24	52	26	0,42	22,80	49,91
0=not me	0=not measured								Mean	2344,07	nm	X _{ref} /nm	u(X _{ref}) /nm	U(X _{ref}) /nm	R _B	n
i=incomp	incomplete								Stdev	29,67	nm	2328,2	7,3	14,6	0,6	13

n=excluded (En>1)

SMU excluded see Main ch 8.1

Roughness standard 686sg Ra_i±U(Ra_i), Ra_{ref}±U(Ra_{ref})(E_n<1)

open symbol shows corrected value of NPL Ra = (2345 + -12, 1) nm

Results of Rz

		,	ent	Measured						686sg	686sg	686sg	686sg	686sg	686sg	686sg
Institute	Rz	untry	trum	Date	λc	λs	Speed	Force	Sampl-dist	Rz	S	U(k=2)	uc=U/2	En	DoE/ Xir	DoE/Uir
		ပိ	sul		mm	μm	mm/s	mN	μm	nm	nm	nm	nm		nm	nm
PTB		DE	NS	May 01	2,5	8	0,1	1	0,2	14300	290	429	214,5	0,15	63,30	422,64
CMI	n	CZ	ΗT	Jun 01	2,5	8	0,5	0,75	1,3	13597	438	354			639,70	346,26
CEM		ES	MPC	Jul 01	2,5	8	0,5	0,4	1,5	14046	195	189,75	94,875	0,94	190,70	174,89
ILM		IT	FTS	Aug 01	2,5	8	0,5	0,75	0,25	14308	25	715,43	357,71712	0,10	71,30	711,64
IMGC	0	IT	TS	Aug 01												
UME		TR	MPC	Sep 01	2,5	8,33	0,5	0,9	0,5	14300	258,1	497,6	248,8	0,13	63,30	492,13
METAS		СН	FTS	Oct 01	2,5	8	0,5	<1		14450	297	895	447,5	0,24	213,30	891,97
BEV	0	А	IM	Nov 01												
CGM		DK	FTS	Jan 02	2,5	8	0,1	1	1,5	14257	326	200	100	0,10	20,30	185,97
MIKES		FI	FTS	Feb 02	2,500	8,000	0,500	1,000	0,250	14341	274,76	500	250	0,21	104,30	494,55
GUM		PL	FTS	Apr 02	2,5	8	0,5	<1	0,25	14220	291,8	160	80	0,09	16,70	142,07
SP		SE	FTS	May 02	2,5	8	0,5	0,7	0,25	14190	164	162,7	81,349766	0,26	46,70	145,10
NPL		UK	NS4	Jul 02	2,5	8,0	0,1	<0.1	1,5	14353	305,1	176,2	88,1	0,61	116,30	160,09
IPQ		PT	S8P	Sep 02	2,5	8	0,5		1,5	14750	270	544,67	272,335	0,93	513,30	539,67
SMU	n	CS	FTS	Nov 02	2,5	8	1	1		13559	123,7	247,6			677,70	236,41
NMi-VSL		NL	FTS	Mrz 03	2,5	8	0,5	0,55	0,25	14330	272	556	278	0,17	93,30	551,11
0=not me	asu	red							Mean	14214,36	nm	X _{ref} /nm	u(X _{ref}) /nm	U(X _{ref}) /nm	R _B	n
i=incomp	-incomplete									310,82	nm	14236,7	36,8	73,6	1,0	12

n=excluded (En>1) SMU excluded see Main ch 8.1

1. CMI En = 1,7

Roughness standard 686sg Rz_i±U(Rz_i), Rz_{ref}±U(Rz_{ref})(E_n<1)

CMI	Rz = (14115 + -354) nm
NPL	Rz = (14293 + -174, 1) nm

Results of Rmax

			ent	Measured						686sg	686sg	686sg	686sg	686sg	686sg	686sg
Institute	nax	untry	trum	Date	λc	λs	Speed	Force	Sampl-dist	Rmax	S	U(k=2)	uc=U/2	En	DoE/ Xir	DoE/Uir
	Rr	co	Ins		mm	μm	mm/s	mN	μm	nm	nm	nm	nm		nm	nm
PTB		DE	NS	May 01	2,5	8	0,1	1	0,2	15600	70	468	234	0,39	183,40	465,43
CMI	n	CZ	ΗT	Jun 01	2,5	8	0,5	0,75	1,3	15328	62	310			455,40	306,10
CEM		ES	MPC	Jul 01	2,5	8	0,5	0,4	1,5	15297	47	1128,7	564,325	0,43	486,40	1127,59
ILM		IT	FTS	Aug 01	2,5	8	0,5	0,75	0,25	15568	40	778,43	389,21574	0,28	215,40	776,89
IMGC	0	IT	TS	Aug 01												
UME		TR	MPC	Sep 01	2,5	8,33	0,5	0,9	0,5	15534	28,9	497,6	248,8	0,50	249,40	495,18
METAS	0	СН	FTS	Oct 01	2,5	8	0,5	<1								
BEV	0	A	IM	Nov 01												
CGM		DK	FTS	Jan 02	2,5	8	0,1	1	1,5	15755	91	86	43	0,29	28,40	70,68
MIKES	0	FI	FTS	Feb 02	2,500	8,000	0,500	1,000	0,250							
GUM	n	PL	FTS	Apr 02	2,5	8	0,5	<1	0,25	15380	30	140			403,40	131,14
SP	n	SE	FTS	May 02	2,5	8	0,5	0,7	0,25	15466	53	145,83			317,40	137,35
NPL		UK	NS4	Jul 02	2,5	8,0	0,1	<0.1	1,5	15791	120,7	69,7	34,85	0,09	7,60	49,57
IPQ		PT	S8P	Sep 02	2,5	8	0,5		1,5	15860	30	125,57	62,785	0,57	76,60	115,61
SMU	n	CS	FTS	Nov 02	2,5	8	1	1		14675	189,3	378,7			1108,40	375,52
NMi-VSL	n	NL	FTS	Mrz 03	2,5	8	0,5	0,55	0,25	15567	36	148			216,40	139,65
0=not meas	ured								Mean	15485,08	nm	X _{ref} /nm	u(X _{ref}) /nm	U(X _{ref}) /nm	R _B	n
i=incomplet	incomplete									310,99	nm	15783,4	24,5	49,0	0,9	7

 n=excluded (En>1)

 SMU
 excluded see Main ch 8.1

 1. GUM
 En = 2,16

 2. SP
 En = 1,71

 3. CMI
 En = 1,35

4. Nmi-VSL En = 1,26

Roughness standard 686sg Rmax_i±U(Rmax_i), Rmax_{ref}±U(Rmax_{ref})(E_n<1)

CMI	Rmax = (15649 + -310) nm
ILM	Rmax = (15531 + 777) nm
NPL	Rmax = (15525 + - 27, 1) nm

Results of Rk

			ent	Measured						686sg	686sg	686sg	686sg	686sg	686sg	686sg
Institute	Rk	untry	trum	Date	λc	λs	Speed	Force	Sampl-dist	Rk	S	U(k=2)	uc=U/2	En	DoE/ Xir	DoE/Uir
		Col	sul		mm	μm	mm/s	mN	μm	nm	nm	nm	nm		nm	nm
PTB		DE	NS	May 01	2,5	8	0,1	1	0,2	8180	210	327	163,5	0,16	54,40	323,31
CMI		CZ	HT	Jun 01	2,5	8	0,5	0,75	1,3	8027	242	1698	849	0,06	98,60	1697,29
CEM	n	ES	MPC	Jul 01	2,5	8	0,5	0,4	1,5	7930	237	70			195,60	49,99
ILM		IT	FTS	Aug 01	2,5	8	0,5	0,75	0,25	8230	218	411,56	205,77977	0,25	104,40	408,63
IMGC	0	IT	TS	Aug 01												
UME		TR	MPC	Sep 01	2,5	8,33	0,5	0,9	0,5	8137	297,5	634,4	317,2	0,02	11,40	632,50
METAS		CH	FTS	Oct 01	2,5	8	0,5	<1		8040	186	275	137,5	0,31	85,60	270,60
BEV	0	A	IM	Nov 01												
CGM		DK	FTS	Jan 02	2,5	8	0,1	1	1,5	8203	109	86	43	0,78	77,40	70,68
MIKES	0	FI	FTS	Feb 02	2,500	8,000	0,500	1,000	0,250							
GUM		PL	FTS	Apr 02	2,5	8	0,5	<1	0,25	8051	56,2	72	36	0,86	74,60	52,75
SP	n	SE	FTS	May 02	2,5	8	0,5	0,7	0,25	8361	216	150,36			235,40	142,15
NPL		UK	NS4	Jul 02	2,5	8,0	0,1	<0.1	1,5	8215	289,2	167	83,5	0,51	89,40	159,65
IPQ		PT	S8P	Sep 02	2,5	8	0,5		1,5	8250	150	304,41	152,205	0,40	124,40	300,44
SMU	n	CS	FTS	Nov 02	2,5	8	1	1		8278	27,4	54,7			152,40	24,31
NMi-VSL		NL	FTS	Mrz 03	2,5	8	0,5	0,55	0,25	8075	143	293	146,5	0,17	50,60	288,87
0=not me	asu	red							Mean	8152,08	nm	X _{ref} /nm	u(X _{ref}) /nm	U(X _{ref}) /nm	R _B	n
i=incomp	lete								Stdev	121,25	nm	8125,6	24,5	49,0	1,1	10

n=excluded (En>1) SMU excluded see Main ch 8.1 1. CEM En = 1,89

2. SP En = 1,35

open symbol shows corrected value of NPL Rk = (8078+/- 116,9) nm

Results of Rpk

		,	ent	Measured						686sg	686sg	686sg	686sg	686sg	686sg	686sg
Institute	ķ	untry	trum	Date	λc	λs	Speed	Force	Sampl-dist	Rpk	S	U(k=2)	uc=U/2	En	DoE/ Xir	DoE/Uir
	R	Co	lns		mm	μm	mm/s	mN	μm	nm	nm	nm	nm		nm	nm
PTB	n	DE	NS	May 01	2,5	8	0,1	1	0,2	1200	100	24			58,60	13,56
CMI		CZ	HT	Jun 01	2,5	8	0,5	0,75	1,3	1226	59	212	106	0,15	32,60	211,07
CEM		ES	MPC	Jul 01	2,5	8	0,5	0,4	1,5	1275	95	30	15	0,46	16,40	22,54
ILM	n	IT	FTS	Aug 01	2,5	8	0,5	0,75	0,25	1381	94	69,404			122,40	66,52
IMGC	0	IT	TS	Aug 01												
UME		TR	MPC	Sep 01	2,5	8,33	0,5	0,9	0,5	1231	125,8	634,4	317,2	0,04	27,60	634,09
METAS		CH	FTS	Oct 01	2,5	8	0,5	<1		1260	52	83	41,5	0,02	1,40	80,60
BEV	0	А	IM	Nov 01												
CGM		DK	FTS	Jan 02	2,5	8	0,1	1	1,5	1206	53	64	32	0,79	52,60	60,86
MIKES	0	FI	FTS	Feb 02	2,500	8,000	0,500	1,000	0,250							
GUM	n	PL	FTS	Apr 02	2,5	8	0,5	<1	0,25	1390	51,7	35			131,40	28,86
SP	n	SE	FTS	May 02	2,5	8	0,5	0,7	0,25	1372	87	60,648			113,40	57,32
NPL		UK	NS4	Jul 02	2,5	8,0	0,1	<0.1	1,5	1251	56,9	32,9	16,45	0,20	7,60	26,27
IPQ		PT	S8P	Sep 02	2,5	8	0,5		1,5	1290	80	166,23	83,115	0,19	31,40	165,05
SMU	n	CS	FTS	Nov 02	2,5	8	1	1		1203	10,6	21,9			55,60	9,36
NMi-VSL		NL	FTS	Mrz 03	2,5	8	0,5	0,55	0,25	1276	66	132	66	0,13	17,40	130,51
0=not me	asu	red							Mean	1273,92	nm	X _{ref} /nm	u(X _{ref}) /nm	U(X _{ref}) /nm	R _B	n
i=incomp	incomplete									67,57	nm	1258,6	9,9	19,8	0,8	8

n=excluded (En>1) SMU excluded see Main ch 8.1 1. GUM En = 3,21 2. SP En = 1,97 3. ILM En = 1,96 4. PTB En = 1,22

> Roughness standard 686sg Rpk_i±U(Rpk_i), Rpk_{ref}±U(Rpk_{ref})(E_n<1)

Results of Rvk

		'	ent	Measured						686sg	686sg	686sg	686sg	686sg	686sg	686sg
Institute	×	untry	trum	Date	λc	λs	Speed	Force	Sampl-dist	Rvk	S	U(k=2)	uc=U/2	En	DoE/ Xir	DoE/Uir
	Ŕ	Co	sul		mm	μm	mm/s	mN	μm	nm	nm	nm	nm		nm	nm
PTB		DE	NS	May 01	2,5	8	0,1	1	0,2	3110	210	93	46,5	0,25	25,00	83,67
CMI		CZ	HT	Jun 01	2,5	8	0,5	0,75	1,3	3214	362	260	130	0,30	79,00	256,81
CEM		ES	MPC	Jul 01	2,5	8	0,5	0,4	1,5	3110	193	57	28,5	0,36	25,00	40,01
ILM	n	IT	FTS	Aug 01	2,5	8	0,5	0,75	0,25	3514	297	175,84			379,00	171,09
IMGC	0	IT	TS	Aug 01												
UME		TR	MPC	Sep 01	2,5	8,33	0,5	0,9	0,5	3110	130,3	634,4	317,2	0,04	25,00	633,10
METAS		СН	FTS	Oct 01	2,5	8	0,5	<1		3020	352	274	137	0,42	115,00	270,98
BEV	0	A	IM	Nov 01												
CGM		DK	FTS	Jan 02	2,5	8	0,1	1	1,5	3251	250	155	77,5	0,72	116,00	149,59
MIKES	0	FI	FTS	Feb 02	2,500	8,000	0,500	1,000	0,250							
GUM		PL	FTS	Apr 02	2,5	8	0,5	<1	0,25	3210	339,2	120	60	0,59	75,00	112,92
SP	n	SE	FTS	May 02	2,5	8	0,5	0,7	0,25	3701	98	73,033			566,00	60,71
NPL	n	UK	NS4	Jul 02	2,5	8,0	0,1	<0.1	1,5	3326	299,6	173			191,00	168,17
IPQ		PT	S8P	Sep 02	2,5	8	0,5		1,5	3300	170	343,75	171,875	0,48	165,00	341,34
SMU	n	CS	FTS	Nov 02	2,5	8	1	1		2939	66,1	132,3			196,00	125,92
NMi-VSL		NL	FTS	Mrz 03	2,5	8	0,5	0,55	0,25	3121	89	181	90,5	0,08	14,00	176,39
0=not me	asu	red							Mean	3225,08	nm	X _{ref} /nm	u(X _{ref}) /nm	U(X _{ref}) /nm	R _B	n
i=incomp	incomplete								Stdev	204,38	nm	3135,0	20,3	40,6	0,9	9

n=excluded (En>1) SMU excluded see Main ch 8.1 1. SP En = 5,21 2. ILM En = 1,95 3. NPL En = 1,02

Roughness standard 686sg Rvk_i±U(Rvk_i), Rvk_{ref}±U(Rvk_{ref})(E_n<1)

open symbol shows corrected value of NPL *Rvk* = (3220+/- 202,6) nm 7/33

		,	ent	Measured						686sg	686sg	686sg	686sg	686sg	686sg	686sg
Institute	<u>-</u>	untry	trum	Date	λc	λs	Speed	Force	Sampl-dist	Mr1	S	U(k=2)	uc=U/2	En	DoE/ Xir	DoE/Uir
	Ĩ	ပိ	sul		mm	μm	mm/s	mN	μm	%	%	%	%		%	%
PTB		DE	NS	May 01	2,5	8	0,1	1	0,2	6,9	1,1	2	1	0,05	0,10	1,99
CMI		CZ	ΗT	Jun 01	2,5	8	0,5	0,75	1,3	7,6	0,8	1,2	0,6	0,49	0,60	1,18
CEM	n	ES	MPC	Jul 01	2,5	8	0,5	0,4	1,5	8,065	1,011	0,382			1,07	0,33
ILM		IT	FTS	Aug 01	2,5	8	0,5	0,75	0,25	6,9	0,9	1,5	0,75	0,07	0,10	1,49
IMGC	0	IT	TS	Aug 01												
UME		TR	MPC	Sep 01	2,5	8,33	0,5	0,9	0,5	6,948	1,235	0,306	0,153	0,14	0,05	0,23
METAS	i	СН	FTS	Oct 01	2,5	8	0,5	<1		7,4	0,5					
BEV	0	А	IM	Nov 01												
CGM		DK	FTS	Jan 02	2,5	8	0,1	1	1,5	6,7	0,6	2	1	0,15	0,30	1,99
MIKES	0	FI	FTS	Feb 02	2,500	8,000	0,500	1,000	0,250							
GUM		PL	FTS	Apr 02	2,5	8	0,5	<1	0,25	7,21	0,37	1	0,5	0,21	0,21	0,98
SP		SE	FTS	May 02	2,5	8	0,5	0,7	0,25	6,6	1,3	0,751	0,375278	0,51	0,40	0,72
NPL		UK	NS4	Jul 02	2,5	8,0	0,1	<0.1	1,5	7,09	1	1,44	0,72	0,06	0,09	1,43
IPQ	i	ΡT	S8P	Sep 02	2,5	8	0,5		1,5	7,31	0,67					
SMU	n	CS	FTS	Nov 02	2,5	8	1	1		7,1	125,1					
NMi-VSL		NL	FTS	Mrz 03	2,5	8	0,5	0,55	0,25	7,4	0,6	1,6	0,8	0,25	0,40	1,59
0=not me	asu	red							Mean	7,17	%	X _{ref} /%	u(X _{ref}) /%	U(X _{ref}) /%	R _B	n
i=incomp	incomplete								Stdev	0,39	%	7,0	0,1	0,2	0,6	9
			4.													

n=excluded (En>1) SMU excluded see Main ch 8.1 1. CEM En = 1,77

9,5 9 Mr1_i±U(Mr1_i), Mr1_{ref}±U(Mr1_{ref})(E_n<1) /% 8,5 8 7,5 \bigcirc 7 6,5 6 T 5,5 5 РТВ CMI CEM IMGC METAS BEV CGM MIKES NPL IPQ SMU NMi-ILM UME GUM SP VSL Institute

Roughness standard 686sg Mr1_i±U(Mr1_i), Mr1_{ref}±U(Mr1_{ref})(E_n<1)

NPL	Mr1 = (7,55 +/- 1,4) %	6
CGM	Mr1 = (6,6 +/- 2,1 %	6

		/	lent	Measured						686sg	686sg	686sg	686sg	686sg	686sg	686sg
Institute	5	untry	trum	Date	λc	λs	Speed	Force	Sampl-dist	Mr2	S	U(k=2)	uc=U/2	En	DoE/ Xir	DoE/Uir
	Mr	ပိ	lns		mm	μm	mm/s	mN	μm	%	%	%	%		%	%
PTB		DE	NS	May 01	2,5	8	0,1	1	0,2	92,5	0,5	4	2	0,20	0,80	3,99
CMI		CZ	HT	Jun 01	2,5	8	0,5	0,75	1,3	92,7	0,9	2,2	1,1	0,27	0,60	2,19
CEM		ES	MPC	Jul 01	2,5	8	0,5	0,4	1,5	92,839	0,665	0,461	0,2305	0,92	0,46	0,42
ILM		IT	FTS	Aug 01	2,5	8	0,5	0,75	0,25	93,2	0,8	1,5	0,75	0,07	0,10	1,49
IMGC	0	IT	TS	Aug 01												
UME		TR	MPC	Sep 01	2,5	8,33	0,5	0,9	0,5	92,85	0,807	4,085	2,0425	0,11	0,45	4,08
METAS	i	CH	FTS	Oct 01	2,5	8	0,5	<1		92,2	0,7					
BEV	0	A	IM	Nov 01												
CGM		DK	FTS	Jan 02	2,5	8	0,1	1	1,5	92,8	0,3	2	1	0,25	0,50	1,99
MIKES	0	FI	FTS	Feb 02	2,500	8,000	0,500	1,000	0,250							
GUM	n	PL	FTS	Apr 02	2,5	8	0,5	<1	0,25	91,7	0,54	1			1,60	0,98
SP		SE	FTS	May 02	2,5	8	0,5	0,7	0,25	93,6	0,5	0,289	0,144338	0,85	0,30	0,21
NPL		UK	NS4	Jul 02	2,5	8,0	0,1	<0.1	1,5	93,08	0,94	1,43	0,715	0,15	0,22	1,42
IPQ	i	PT	S8P	Sep 02	2,5	8	0,5		1,5	93,04	0,31					
SMU	n	CS	FTS	Nov 02	2,5	8	1	1		92,7	82,4					
NMi-VSL		NL	FTS	Mrz 03	2,5	8	0,5	0,55	0,25	92,5	0,5	1,3	0,65	0,61	0,80	1,28
0=not me	asu	red							Mean	92,75	%	X _{ref} /%	u(X _{ref}) /%	U(X _{ref}) /%	R _B	n
i=incomp	lete								Stdev	0,47	%	93,3	0,1	0,2	1,2	9

(En>1) SMU excluded see Main ch 8.1

1. GUM En = 1,47

Roughness standard 686sg $Mr2_i \pm U(Mr2_i), Mr2_{ref} \pm U(Mr2_{ref})(E_n < 1)$

NPL	<i>Mr2</i> = (92,62 +/- 1,39) %
SP	<i>Mr2</i> = (93,6 +/- 2,0) %

2 ROUGHNESS STANDARD 633G

Results of Ra

			ent	Measured						633g	633g	633g	633g	633g	633g	633g
Institute	Ra	untry	trum	Date	λc	λs	Speed	Force	Sampl-dist	Ra	S	U(k=2)	uc=U/2	En	DoE/ Xir	DoE/Uir
		රි	lns		mm	μm	mm/s	mN	μm	nm	nm	nm	nm		nm	nm
PTB		DE	NS	May 01	0,8	2,5	0,1	1	0,2	1520	10	46	23	0,15	7,00	44,99
CMI		CZ	HT	Jun 01	0,8	2,5	0,5	0,75	0,42	1513	23	174	87	0,00	0,00	173,73
CEM		ES	MPC	Jul 01	0,8	2,5	0,5	0,4	0,5	1487	9,4	48,17	24,085	0,53	26,00	47,20
ILM		IT	FTS	Aug 01	0,8	2,5	0,5	0,75	0,25	1516	2	60,846	30,422893	0,05	3,00	60,08
IMGC	0	IT	TS	Aug 01												
UME		TR	MPC	Sep 01	0,8	2,67	0,5	0,9	0,35	1533	8,2	399,7	199,85	0,05	20,00	399,58
METAS		СН	FTS	Oct 01	0,8	2,5	0,5	<1		1520	3	48	24	0,14	7,00	47,03
BEV	0	А	IM	Nov 01												
CGM		DK	FTS	Jan 02	0,8	2,5	0,05	1	0,5	1515	4	55	27,5	0,04	2,00	54,16
MIKES		FI	FTS	Feb 02	0,800	2,500	0,500	1,000	0,250	1515	2,563	100	50	0,02	2,00	99,54
GUM		ΡL	FTS	Apr 02	0,8	2,5	0,5	<1	0,25	1500	2,1	32	16	0,39	13,00	30,53
SP		SE	FTS	May 02	0,8	2,5	0,5	0,7	0,25	1513	2	15,897	7,9485222	0,00	0,00	12,67
NPL	n	UK	NS4	Jul 02	0,8	2,5	0,1	<0.1	0,5	1479	27,8	16,1			34,00	12,92
IPQ		ΡT	S8P	Sep 02	0,8	2,5	0,5		0,5	1530	0	42,03	21,015	0,39	17,00	40,92
SMU	n	CS	FTS	Nov 02	0,8	2,5	1	1		1525	4,9	24,2			12,00	22,21
NMi-VSL		NL	FTS	Mrz 03	0,8	2,5	0,5	0,55	0,25	1515	1	18	9	0,10	2,00	15,23
0=not me	easu	red							Mean	1512,93	nm	X _{ref} /nm	u(X _{ref}) /nm	U(X _{ref}) /nm	R _B	n
i=incomp	lete								Stdev	15,07	nm	1513,0	4,8	9,6	0,5	12

n=excluded (En>1) SMU excluded see Main ch 8.1

1. NPL En = 1,38

Roughness standard 633g Ra_i±U(Ra_i), Ra_{ref}±U(Ra_{ref})(E_n<1)

open symbol shows corrected value of NPL Ra = (1515 +/- 1,8) nm

Results of Rz

			ent	Measured						633g	633g	633g	633g	633g	633g	633g
Institute	Rz	untry	trum	Date	λc	λs	Speed	Force	Sampl-dist	Rz	S	U(k=2)	uc=U/2	En	DoE/ Xir	DoE/Uir
		Co	Ins		mm	μm	mm/s	mN	μm	nm	nm	nm	nm		nm	nm
PTB		DE	NS	May 01	0,8	2,5	0,1	1	0,2	7590	240	304	152	0,39	120,10	301,00
CMI		CZ	HT	Jun 01	0,8	2,5	0,5	0,75	0,42	7302	208	276	138	0,60	167,90	272,69
CEM		ES	MPC	Jul 01	0,8	2,5	0,5	0,4	0,5	7397	195	125,28	62,64	0,55	72,90	117,81
ILM		IT	FTS	Aug 01	0,8	2,5	0,5	0,75	0,25	7684	113	384,26	192,13188	0,55	214,10	381,90
IMGC	0	IT	TS	Aug 01												
UME		TR	MPC	Sep 01	0,8	2,67	0,5	0,9	0,35	7608	197,8	399,7	199,85	0,34	138,10	397,42
METAS		СН	FTS	Oct 01	0,8	2,5	0,5	<1		7580	188	474	237	0,23	110,10	472,08
BEV	0	А	IM	Nov 01												
CGM		DK	FTS	Jan 02	0,8	2,5	0,05	1	0,5	7450	88	84	42	0,21	19,90	72,40
MIKES		FI	FTS	Feb 02	0,800	2,500	0,500	1,000	0,250	7575	177,25	400	200	0,26	105,10	397,73
GUM		PL	FTS	Apr 02	0,8	2,5	0,5	<1	0,25	7473	146,7	84	42	0,03	3,10	72,40
SP		SE	FTS	May 02	0,8	2,5	0,5	0,7	0,25	7505	203	138,29	69,142517	0,24	35,10	131,56
NPL		UK	NS4	Jul 02	0,8	2,5	0,1	<0.1	0,5	7485	182,9	105,6	52,8	0,13	15,10	96,63
IPQ		PT	S8P	Sep 02	0,8	2,5	0,5		0,5	7660	180	375,59	187,795	0,50	190,10	373,17
SMU	n	CS	FTS	Nov 02	0,8	2,5	1	1		7003	26,2	40,9				
NMi-VSL		NL	FTS	Mrz 03	0,8	2,5	0,5	0,55	0,25	7464	174	358	179	0,02	5,90	355,46
0=not me	asu	red							Mean	7484,00	nm	X _{ref} /nm	u(X _{ref}) /nm	U(X _{ref}) /nm	R _B	n
i=incomp	lete	_							Stdev	173,04	nm	7469,9	21,3	42,6	0,8	13

n=excluded (En>1) SMU excluded see Main ch 8.1

Roughness standard 633g Rz_i±U(Rz_i), Rz_{ref}±U(Rz_{ref})(E_n<1)

open symbol shows corrected value of NPL Rz = (7418 +/- 88,6) nm

Results of Rmax

		'	ent	Measured						633g	633g	633g	633g	633g	633g	633g
Institute	nax	untry	trum	Date	λς	λs	Speed	Force	Sampl-dist	Rmax	S	U(k=2)	uc=U/2	En	DoE/ Xir	DoE/Uir
	R	Co	lns		mm	μm	mm/s	mN	μm	nm	nm	nm	nm		nm	nm
PTB		DE	NS	May 01	0,8	2,5	0,1	1	0,2	8960	110	269	134,5	0,07	20,20	262,67
CMI		CZ	ΗT	Jun 01	0,8	2,5	0,5	0,75	0,42	8941	133	316	158	0,00	1,20	310,63
CEM		ES	MPC	Jul 01	0,8	2,5	0,5	0,4	0,5	8743	128	667,3	333,65	0,29	196,80	664,77
ILM		IT	FTS	Aug 01	0,8	2,5	0,5	0,75	0,25	8842	91	442,16	221,07771	0,22	97,80	438,33
IMGC	0	IT	TS	Aug 01												
UME		TR	MPC	Sep 01	0,8	2,67	0,5	0,9	0,35	9041	123	399,7	199,85	0,25	101,20	395,47
METAS	0	CH	FTS	Oct 01	0,8	2,5	0,5	<1								
BEV	0	A	IM	Nov 01												
CGM		DK	FTS	Jan 02	0,8	2,5	0,05	1	0,5	8883	259	164	82	0,33	56,80	153,40
MIKES	0	FI	FTS	Feb 02	0,800	2,500	0,500	1,000	0,250							
GUM	n	ΡL	FTS	Apr 02	0,8	2,5	0,5	<1	0,25	8752	89,1	86			187,80	63,50
SP		SE	FTS	May 02	0,8	2,5	0,5	0,7	0,25	8868	90	97,79	48,895182	0,63	71,80	78,73
NPL		UK	NS4	Jul 02	0,8	2,5	0,1	<0.1	0,5	9027	189,5	109,4	54,7	0,70	87,20	92,76
IPQ		PT	S8P	Sep 02	0,8	2,5	0,5		0,5	9080	100	221,28	110,64	0,61	140,20	213,54
SMU	n	CS	FTS	Nov 02	0,8	2,5	1	1		7913	53,5	107,4			1026,80	90,39
NMi-VSL		NL	FTS	Mrz 03	0,8	2,5	0,5	0,55	0,25	8905	121	261	130,5	0,13	34,80	254,47
0=not me	asu	red							Mean	8829,58	nm	X _{ref} /nm	u(X _{ref}) /nm	U(X _{ref}) /nm	R _B	n
i=incomp	lete								Stdev	307,43	nm	8939,8	29,0	58,0	0,9	10
n=excluded (En>1)																

SMU excluded see Main ch 8.1 1. GUM En = 1,31

Roughness standard 633g Rmax_i±U(Rmax_i), Rmax_{ref}±U(Rmax_{ref})(E_n<1)

ILM	<i>Rmax</i> = (8821 +/-441) nm
NPL	<i>Rmax</i> = (8868 +/- 73) nm

Results of Rk

			ent	Measured						633g	633g	633g	633g	633g	633g	633g
Institute	Rk	untry	trum	Date	λc	λs	Speed	Force	Sampl-dist	Rk	S	U(k=2)	uc=U/2	En	DoE/ Xir	DoE/Uir
		Col	sul		mm	μm	mm/s	mN	μm	nm	nm	nm	nm		nm	nm
PTB		DE	NS	May 01	0,8	2,5	0,1	1	0,2	4480	50	179	89,5	0,27	48,30	176,60
CMI		CZ	HT	Jun 01	0,8	2,5	0,5	0,75	0,42	4359	125	1694	847	0,04	72,70	1693,75
CEM		ES	MPC	Jul 01	0,8	2,5	0,5	0,4	0,5	4320	66	115	57,5	0,94	111,70	111,23
ILM		IT	FTS	Aug 01	0,8	2,5	0,5	0,75	0,25	4416	113	220,91	110,45547	0,07	15,70	218,97
IMGC	0	IT	TS	Aug 01												
UME		TR	MPC	Sep 01	0,8	2,67	0,5	0,9	0,35	4464	99,8	523	261,5	0,06	32,30	522,18
METAS	n	СН	FTS	Oct 01	0,8	2,5	0,5	<1		4240	159	163			191,70	160,36
BEV	0	A	IM	Nov 01												
CGM		DK	FTS	Jan 02	0,8	2,5	0,05	1	0,5	4466	19	59	29,5	0,52	34,30	51,27
MIKES	0	FI	FTS	Feb 02	0,800	2,500	0,500	1,000	0,250							
GUM		PL	FTS	Apr 02	0,8	2,5	0,5	<1	0,25	4371	136,2	64	32	0,86	60,70	56,95
SP		SE	FTS	May 02	0,8	2,5	0,5	0,7	0,25	4382	124	83,068	41,53423	0,56	49,70	77,77
NPL	n	UK	NS4	Jul 02	0,8	2,5	0,1	<0.1	0,5	4688	178,2	102,9			256,30	98,67
IPQ		PT	S8P	Sep 02	0,8	2,5	0,5		0,5	4480	30	83,27	41,635	0,55	48,30	77,98
SMU	n	CS	FTS	Nov 02	0,8	2,5	1	1		4161	24,2	40,9			270,70	28,64
NMi-VSL		NL	FTS	Mrz 03	0,8	2,5	0,5	0,55	0,25	4487	26	67	33,5	0,76	55,30	60,30
0=not mea	sure	ed							Mean	4408,77	nm	X _{ref} /nm	u(X _{ref}) /nm	U(X _{ref}) /nm	R _B	n
i=incomple	ete								Stdev	130,06	nm	4431,7	14,6	29,2	1,3	10
n=ovcludo																

n=excluded (En>1) SMU excluded see Main ch 8.1 1. NPL En = 2,28

2. METAS En = 1,12

Roughness standard 633g Rk_i±U(Rk_i), Rk_{ref}±U(Rk_{ref})(E_n<1)

open symbol shows corrected value of NPL Rk = (4579 +/- 41,9) nm

Results of Rpk

			ent	Measured						633g	633g	633g	633g	633g	633g	633g
Institute	k	untry	trum	Date	λς	λs	Speed	Force	Sampl-dist	Rpk	s	U(k=2)	uc=U/2	En	DoE/ Xir	DoE/Uir
	R	ပိ	sul		mm	μm	mm/s	mN	μm	nm	nm	nm	nm		nm	nm
PTB		DE	NS	May 01	0,8	2,5	0,1	1	0,2	700	20	14	7	0,41	7,60	6,87
CMI		CZ	HT	Jun 01	0,8	2,5	0,5	0,75	0,42	863	65	212	106	0,73	155,40	211,65
CEM		ES	MPC	Jul 01	0,8	2,5	0,5	0,4	0,5	733	34	112	56	0,23	25,40	111,33
ILM	n	IT	FTS	Aug 01	0,8	2,5	0,5	0,75	0,25	906	77	45,838			198,40	44,18
IMGC	0	IT	TS	Aug 01												
UME		TR	MPC	Sep 01	0,8	2,67	0,5	0,9	0,35	739	52,1	523	261,5	0,06	31,40	522,86
METAS	n	СН	FTS	Oct 01	0,8	2,5	0,5	<1		880	144	99			172,40	98,25
BEV	0	A	IM	Nov 01												
CGM		DK	FTS	Jan 02	0,8	2,5	0,05	1	0,5	702	15	56	28	0,10	5,60	54,65
MIKES	0	FI	FTS	Feb 02	0,800	2,500	0,500	1,000	0,250							
GUM	n	PL	FTS	Apr 02	0,8	2,5	0,5	<1	0,25	833	52,1	35			125,40	32,80
SP	n	SE	FTS	May 02	0,8	2,5	0,5	0,7	0,25	896	76	49,6			188,40	48,08
NPL	n	UK	NS4	Jul 02	0,8	2,5	0,1	<0.1	0,5	869	94,7	54,7			161,40	53,32
IPQ		PT	S8P	Sep 02	0,8	2,5	0,5		0,5	750	20	58,88	29,44	0,71	42,40	57,60
SMU	n	CS	FTS	Nov 02	0,8	2,5	1	1		764	15,5	21,9			56,40	18,19
NMi-VSL		NL	FTS	Mrz 03	0,8	2,5	0,5	0,55	0,25	732	14	33	16,5	0,69	24,40	30,66
0=not mea	sure	ed							Mean	797,46	nm	X _{ref} /nm	u(X _{ref}) /nm	U(X _{ref}) /nm	R _B	n
i=incomple	ete								Stdev	77,90	nm	707,6	6,1	12,2	1,1	7

 SMU
 excluded see Main ch 8.1

 1. ILM
 En = 3,39

 2. SP
 En = 3,12

3. GUM En = 2,82 4. NPL En = 2,71

5. METAS En = 1,70

Roughness standard 633g Rpk_i±U(Rpk_i), Rpk_{ref}±U(Rpk_{ref})(E_n<1)

 $\# \ open \ symbol \ shows \ corrected \ value \ of$

NPL *Rpk* = (680+/- 20,1) nm

Results of Rvk

		~	ent	Measured						633g	633g	633g	633g	633g	633g	633g
Institute	¥	untry	trum	Date	λc	λs	Speed	Force	Sampl-dist	Rvk	S	U(k=2)	uc=U/2	En	DoE/ Xir	DoE/Uir
	R	co	sul		mm	μm	mm/s	mN	μm	nm	nm	nm	nm		nm	nm
PTB		DE	NS	May 01	0,8	2,5	0,1	1	0,2	2480	40	74	37	0,03	2,60	68,25
CMI		CZ	HT	Jun 01	0,8	2,5	0,5	0,75	0,42	2619	152	176	88	0,76	136,40	173,66
CEM		ES	MPC	Jul 01	0,8	2,5	0,5	0,4	0,5	2433	46	113	56,5	0,43	49,60	109,32
ILM	n	IT	FTS	Aug 01	0,8	2,5	0,5	0,75	0,25	2794	135	139,88			311,40	136,92
IMGC	0	IT	TS	Aug 01												
UME		TR	MPC	Sep 01	0,8	2,67	0,5	0,9	0,35	2529	53,2	523	261,5	0,09	46,40	522,22
METAS		CH	FTS	Oct 01	0,8	2,5	0,5	<1		2570	324	244	122	0,36	87,40	242,32
BEV	0	А	IM	Nov 01												
CGM		DK	FTS	Jan 02	0,8	2,5	0,05	1	0,5	2462	19	57	28,5	0,32	20,60	49,31
MIKES	0	FI	FTS	Feb 02	0,800	2,500	0,500	1,000	0,250							
GUM	n	PL	FTS	Apr 02	0,8	2,5	0,5	<1	0,25	2735	113	52			252,40	43,43
SP	n	SE	FTS	May 02	0,8	2,5	0,5	0,7	0,25	2672	123	78,642			189,40	73,26
NPL	n	UK	NS4	Jul 02	0,8	2,5	0,1	<0.1	0,5	2191	176,1	101,7			291,60	97,60
IPQ		PT	S8P	Sep 02	0,8	2,5	0,5		0,5	2500	20	62,18	31,09	0,25	17,40	55,21
SMU	n	CS	FTS	Nov 02	0,8	2,5	1	1		2237	47,7	95,9			245,60	91,54
NMi-VSL		NL	FTS	Mrz 03	0,8	2,5	0,5	0,55	0,25	2483	25	54	27	0,01	0,40	45,80
0=not me	asu	red		-					Mean	2515,77	nm	X _{ref} /nm	u(X _{ref}) /nm	U(X _{ref}) /nm	R _B	n
i=incomp	lete								Stdev	173,01	nm	2482,6	14,3	28,6	0,8	8

n=excluded (En>1) SMU excluded see Main ch 8.1

3. ILM En = 1,96 4. SP En = 2,01

3200 Rvk_i±U(Rvk_i), Rvk_{ref}±U(Rvk_{ref})(E_n<1) /nm 3000 2800 Ī ļ 2600 2400 ð 2200 2000 РТВ CMI CEM ILM IMGC UME METAS BEV CGM MIKES GUM SP NPL IPQ SMU NMi-VSL Institute

Roughness standard 633g Rvk_i±U(Rvk_i), Rvk_{ref}±U(Rvk_{ref})(E_n<1)

open symbol shows corrected value of NPL Rvk = (2263 +/- 31,3) nm

^{1.} GUM En = 3,41 2. NPL En = 2,89

			ent	Measured						633g	633g	633g	633g	633g	633g	633g
Institute	7	untry	trum	Date	λc	λs	Speed	Force	Sampl-dist	Mr1	s	U(k=2)	uc=U/2	En	DoE/ Xir	DoE/Uir
	Ē	ပိ	sul		mm	μm	mm/s	mN	μm	%	%	%	%		%	%
PTB		DE	NS	May 01	0,8	2,5	0,1	1	0,2	5,8	0,3	2	1	0,15	0,30	1,99
CMI		CZ	HT	Jun 01	0,8	2,5	0,5	0,75	0,42	5,5	0,3	1	0,5	0,59	0,60	0,98
CEM		ES	MPC	Jul 01	0,8	2,5	0,5	0,4	0,5	6,31	0,221	0,261	0,1305	0,64	0,21	0,17
ILM		IT	FTS	Aug 01	0,8	2,5	0,5	0,75	0,25	5,6	0,5	1,5	0,75	0,33	0,50	1,49
IMGC	0	IT	TS	Aug 01												
UME		TR	MPC	Sep 01	0,8	2,67	0,5	0,9	0,35	6,196	0,413	0,428	0,214	0,20	0,10	0,38
METAS	i	CH	FTS	Oct 01	0,8	2,5	0,5	<1		7,1	0,7					
BEV	0	A	IM	Nov 01												
CGM		DK	FTS	Jan 02	0,8	2,5	0,05	1	0,5	5,8	0,1	2	1	0,15	0,30	1,99
MIKES	0	FI	FTS	Feb 02	0,800	2,500	0,500	1,000	0,250							
GUM		PL	FTS	Apr 02	0,8	2,5	0,5	<1	0,25	6,5	0,5	1	0,5	0,39	0,40	0,98
SP		SE	FTS	May 02	0,8	2,5	0,5	0,7	0,25	6	0,9	0,52	0,259808	0,18	0,10	0,48
NPL		UK	NS4	Jul 02	0,8	2,5	0,1	<0.1	0,5	4,66	1,06	1,45	0,725	0,98	1,44	1,44
IPQ	i	PT	S8P	Sep 02	0,8	2,5	0,5		0,5	6,08	0,13					
SMU	n	CS	FTS	Nov 02	0,8	2,5	1	1		6,9	89,6					
NMi-VSL		NL	FTS	Mrz 03	0,8	2,5	0,5	0,55	0,25	5,8	0,1	0,5	0,25	0,56	0,30	0,46
0=not me	asu	red							Mean	6,02	%	X _{ref} /%	u(X _{ref}) /%	U(X _{ref}) /%	R _B	n
i=incomp	lete								Stdev	0,63	%	6,1	0,1	0,2	1,1	10

n=excluded (En>1) SMU excluded see Main ch 8.1

9 3 РТВ IMGC UME METAS NPL SMU CMI CEM ILM BEV CGM MIKES GUM SP IPQ NMi-VSL Institute

Roughness standard 633g Mr1_i±U(Mr1_i), Mr1_{ref}±U(Mr1_{ref})(E_n<1)

NPL	<i>Mr1</i> = (5,17	+/- 1,33) %
SP	<i>Mr1</i> = (6,0	+/- 2,1) %

		,	ent	Measured						633g	633g	633g	633g	633g	633g	633g
Institute	5	untry	trum	Date	λc	λs	Speed	Force	Sampl-dist	Mr2	S	U(k=2)	uc=U/2	En	DoE/ Xir	DoE/Uir
	Mr	Co	lns		mm	μm	mm/s	mN	μm	%	%	%	%		%	%
PTB		DE	NS	May 01	0,8	2,5	0,1	1	0,2	82	0,3	4	2	0,05	0,20	3,99
CMI		CZ	HT	Jun 01	0,8	2,5	0,5	0,75	0,42	81,7	0,6	2,2	1,1	0,05	0,10	2,19
CEM		ES	MPC	Jul 01	0,8	2,5	0,5	0,4	0,5	81,8	0,347	0,339	0,1695	0,00	0,00	0,27
ILM		IT	FTS	Aug 01	0,8	2,5	0,5	0,75	0,25	81,7	0,5	1,5	0,75	0,07	0,10	1,49
IMGC	0	IT	TS	Aug 01												
UME		TR	MPC	Sep 01	0,8	2,67	0,5	0,9	0,35	81,968	0,469	5,656	2,828	0,03	0,17	5,65
METAS	i	СН	FTS	Oct 01	0,8	2,5	0,5	<1		79,3	1,2					
BEV	0	А	IM	Nov 01												
CGM		DK	FTS	Jan 02	0,8	2,5	0,05	1	0,5	81,9	0,2	2	1	0,05	0,10	1,99
MIKES	0	FI	FTS	Feb 02	0,800	2,500	0,500	1,000	0,250							
GUM	n	ΡL	FTS	Apr 02	0,8	2,5	0,5	<1	0,25	79,5	0,4	1			2,30	0,98
SP		SE	FTS	May 02	0,8	2,5	0,5	0,7	0,25	81,6	0,9	0,52	0,259808	0,36	0,20	0,48
NPL		UK	NS4	Jul 02	0,8	2,5	0,1	<0.1	0,5	83,25	1,56	1,6	0,8	0,90	1,45	1,59
IPQ	i	PT	S8P	Sep 02	0,8	2,5	0,5		0,5	81,83	0,18					
SMU	n	CS	FTS	Nov 02	0,8	2,5	1	1		79,7	211,9					
NMi-VSL		NL	FTS	Mrz 03	0,8	2,5	0,5	0,55	0,25	81,8	0,1	0,5	0,25	0,00	0,00	0,46
0=not me	0=not measured								Mean	81,39	%	X _{ref} /%	u(X _{ref}) /%	U(X _{ref}) /%	R _B	n
i=incomp	lete	_							Stdev	1,15	%	81,8	0,1	0,2	0,7	9

n=excluded (En>1) SMU excluded see Main ch 8.1

1. GUM En = 2,16

Roughness standard 633g Mr2_i±U(Mr2_i), Mr2_{ref}±U(Mr2_{ref})(E_n<1)

NPL	Mr2 = (82, 85)	+/- 1,42) nm
SP	<i>Mr2</i> = (81,6	+/- 2,1) nm

3 **ROUGHNESS STANDARD 629F**

Results of Ra

			ent	Measured						629f	629f	629f	629f	629f	629f	629f
Institute	Ra	untry	trum	Date	λc	λs	Speed	Force	Sampl-dist	Ra	S	U(k=2)	uc=U/2	En	DoE/ Xir	DoE/Uir
		ပိ	lns		mm	μm	mm/s	mN	μm	nm	nm	nm	nm		nm	nm
PTB		DE	NS	May 01	0,8	2,5	0,1	1	0,2	149	4	7	3,5	0,43	3,20	6,58
CMI		CZ	HT	Jun 01	0,8	2,5	0,5	0,75	0,42	142	3	18	9	0,56	10,20	17,84
CEM		ES	MPC	Jul 01	0,8	2,5	0,5	0,4	0,5	146	3	11,89	5,945	0,51	6,20	11,65
ILM		IT	FTS	Aug 01	0,8	2,5	0,5	0,75	0,25	146	3	7,688	3,8440083	0,77	6,20	7,30
IMGC	0	IT	TS	Aug 01												
UME		TR	MPC	Sep 01	0,8	2,67	0,5	0,9	0,35	147	2,9	98,1	49,05	0,05	5,20	98,07
METAS		СН	FTS	Oct 01	0,8	2,5	0,5	<1		152	3	6	3	0,03	0,20	5,50
BEV	0	A	IM	Nov 01												
CGM		DK	FTS	Jan 02	0,8	2,5	0,05	1	0,5	152	4	35	17,5	0,01	0,20	34,92
MIKES		FI	FTS	Feb 02	0,800	2,500	0,500	1,000	0,250	150	2,446	50	25	0,04	2,20	49,94
GUM		PL	FTS	Apr 02	0,8	2,5	0,5	<1	0,25	147	2,1	30	15	0,17	5,20	29,90
SP		SE	FTS	May 02	0,8	2,5	0,5	0,7	0,25	148	2	8,3107	4,1553447	0,49	4,20	7,96
NPL		UK	NS4	Jul 02	0,8	2,5	0,1	<0.1	0,5	156	5,5	3,4	1,7	0,91	3,80	2,41
IPQ		PT	S8P	Sep 02	0,8	2,5	0,5		0,5	150	0	40,82	20,41	0,05	2,20	40,75
SMU	n	CS	FTS	Nov 02	0,8	2,5	1	1		151	0,5	21,5			1,20	21,37
NMi-VSL		NL	FTS	Mrz 03	0,8	2,5	0,5	0,55	0,25	150	2	15	7,5	0,14	2,20	14,81
0=not me	0=not measured								Mean	149,00	nm	X _{ref} /nm	u(X _{ref}) /nm	U(X _{ref}) /nm	R _B	n
i=incomp	lete								Stdev	3,40	nm	152,2	1,2	2,4	1,0	13

n=excluded (En>1) SMU exclu excluded see Main ch 8.1

> Roughness standard 629f Ra_i±U(Ra_i), Ra_{ref}±U(Ra_{ref})(E_n<1)

Results of Rz

			ent	Measured						629f	629f	629f	629f	629f	629f	629f
Institute	Rz	untry	trum	Date	λc	λs	Speed	Force	Sampl-dist	Rz	S	U(k=2)	uc=U/2	En	DoE/ Xir	DoE/Uir
		Ō	sul		mm	μm	mm/s	mN	μm	nm	nm	nm	nm		nm	nm
PTB		DE	NS	May 01	0,8	2,5	0,1	1	0,2	1260	70	88	44	0,09	7,80	86,61
CMI		CZ	ΗT	Jun 01	0,8	2,5	0,5	0,75	0,42	1172	55	132	66	0,60	80,20	131,07
CEM		ES	MPC	Jul 01	0,8	2,5	0,5	0,4	0,5	1248	45	102,85	51,425	0,04	4,20	101,66
ILM		IT	FTS	Aug 01	0,8	2,5	0,5	0,75	0,25	1299	34	65,326	32,663062	0,70	46,80	63,44
IMGC	0	IT	TS	Aug 01												
UME		TR	MPC	Sep 01	0,8	2,67	0,5	0,9	0,35	1255	40,7	98,1	49,05	0,03	2,80	96,85
METAS		СН	FTS	Oct 01	0,8	2,5	0,5	<1		1270	47	85	42,5	0,21	17,80	83,56
BEV	0	A	IM	Nov 01												
CGM		DK	FTS	Jan 02	0,8	2,5	0,05	1	0,5	1235	41	51	25,5	0,32	17,20	48,56
MIKES		FI	FTS	Feb 02	0,800	2,500	0,500	1,000	0,250	1277	45,546	100	50	0,25	24,80	98,78
GUM		PL	FTS	Apr 02	0,8	2,5	0,5	<1	0,25	1252	34,2	33	16,5	0,01	0,20	29,08
SP		SE	FTS	May 02	0,8	2,5	0,5	0,7	0,25	1257	43	34,275	17,137731	0,13	4,80	30,52
NPL		UK	NS4	Jul 02	0,8	2,5	0,1	<0.1	0,5	1236	57,1	33	16,5	0,44	16,20	29,08
IPQ		PT	S8P	Sep 02	0,8	2,5	0,5		0,5	1320	50	122,2	61,1	0,55	67,80	121,20
SMU	n	CS	FTS	Nov 02	0,8	2,5	1	1		1191	6,6	15,3				
NMi-VSL		NL	FTS	Mrz 03	0,8	2,5	0,5	0,55	0,25	1258	26	85	42,5	0,07	5,80	83,56
0=not me	0=not measured								Mean	1252,14	nm	X _{ref} /nm	u(X _{ref}) /nm	U(X _{ref}) /nm	R _B	n
i=incomp	lete								Stdev	37,82	nm	1252,2	7,8	15,6	0,7	13
n=exclud	led (En>'	1)													

SMU excluded see Main ch 8.1

DoE (*U*ir) for SMU cannot be calculated, since $U_i < U_{ref}$

Roughness standard 629f Rz_i±U(Rz_i), Rz_{ref}±U(Rz_{ref})(E_n<1)

open symbol shows corrected value of NPL Rz = (1234 +/- 29,4) nm

Results of Rmax

			ent	Measured						629f	629f	629f	629f	629f	629f	629f
Institute	nax	untry	trum	Date	λc	λs	Speed	Force	Sampl-dist	Rmax	S	U(k=2)	uc=U/2	En	DoE/ Xir	DoE/Uir
	Rr	လိ	sul		mm	μm	mm/s	mN	μm	nm	nm	nm	nm		nm	nm
PTB		DE	NS	May 01	0,8	2,5	0,1	1	0,2	1420	90	85	42,5	0,00	0,20	81,54
CMI		CZ	HT	Jun 01	0,8	2,5	0,5	0,75	0,42	1342	91	202	101	0,38	77,80	200,57
CEM		ES	MPC	Jul 01	0,8	2,5	0,5	0,4	0,5	1428	99	224,6	112,3	0,04	8,20	223,31
ILM	n	IT	FTS	Aug 01	0,8	2,5	0,5	0,75	0,25	1512	49	75,923			92,20	72,03
IMGC	0	IT	TS	Aug 01												
UME		TR	MPC	Sep 01	0,8	2,67	0,5	0,9	0,35	1421	51,5	98,1	49,05	0,01	1,20	95,12
METAS	0	СН	FTS	Oct 01	0,8	2,5	0,5	<1								
BEV	0	A	IM	Nov 01												
CGM		DK	FTS	Jan 02	0,8	2,5	0,05	1	0,5	1398	91	69	34,5	0,30	21,80	64,69
MIKES	0	FI	FTS	Feb 02	0,800	2,500	0,500	1,000	0,250							
GUM		PL	FTS	Apr 02	0,8	2,5	0,5	<1	0,25	1423	75	40	20	0,07	3,20	32,00
SP		SE	FTS	May 02	0,8	2,5	0,5	0,7	0,25	1421	63	44,026	22,012772	0,02	1,20	36,91
NPL	n	UK	NS4	Jul 02	0,8	2,5	0,1	<0.1	0,5	1545	83,9	48,5			125,20	42,15
IPQ		PT	S8P	Sep 02	0,8	2,5	0,5		0,5	1510	110	232,74	116,37	0,39	90,20	231,50
SMU	n	CS	FTS	Nov 02	0,8	2,5	1	1		1352	19,2	39,2			67,80	30,99
NMi-VSL		NL	FTS	Mrz 03	0,8	2,5	0,5	0,55	0,25	1440	33	103	51,5	0,19	20,20	100,16
0=not me	0=not measured								Mean	1434,33	nm	X _{ref} /nm	u(X _{ref}) /nm	U(X _{ref}) /nm	R _B	n
i=incomp	lete								Stdev	61,34	nm	1419,8	12,0	24,0	0,5	9

n=excluded (En>1) SMU excluded see Main ch 8.1 1. NPL En = 1,82

2. ILM En = 1,06

Roughness standard 629f Rmax_i±U(Rmax_i), Rmax_{ref}±U(Rmax_{ref})(E_n<1)

ILM	<i>Rmax</i> = (1359 +/- 68) nm
NPL	<i>Rmax</i> = (1410 +/- 34,9) nm

Results of Rk

			ent	Measured						629f	629f	629f	629f	629f	629f	629f
Institute	Rk	untry	trum	Date	λc	λs	Speed	Force	Sampl-dist	Rk	S	U(k=2)	uc=U/2	En	DoE/ Xir	DoE/Uir
		Ō	sul		mm	μm	mm/s	mN	μm	nm	nm	nm	nm		nm	nm
PTB		DE	NS	May 01	0,8	2,5	0,1	1	0,2	460	10	18	9	0,05	1,00	17,11
CMI		CZ	HT	Jun 01	0,8	2,5	0,5	0,75	0,42	435	9	52	26	0,50	26,00	51,70
CEM		ES	MPC	Jul 01	0,8	2,5	0,5	0,4	0,5	442	8	23	11,5	0,80	19,00	22,31
ILM		IT	FTS	Aug 01	0,8	2,5	0,5	0,75	0,25	455	15	23,803	11,901287	0,25	6,00	23,13
IMGC	0	IT	TS	Aug 01												
UME		TR	MPC	Sep 01	0,8	2,67	0,5	0,9	0,35	449	11,8	136	68	0,09	12,00	135,88
METAS		CH	FTS	Oct 01	0,8	2,5	0,5	<1		466	16	18	9	0,27	5,00	17,11
BEV	0	A	IM	Nov 01												
CGM		DK	FTS	Jan 02	0,8	2,5	0,05	1	0,5	464	12	39	19,5	0,08	3,00	38,60
MIKES	0	FI	FTS	Feb 02	0,800	2,500	0,500	1,000	0,250							
GUM		PL	FTS	Apr 02	0,8	2,5	0,5	<1	0,25	456	15,9	31	15,5	0,16	5,00	30,49
SP		SE	FTS	May 02	0,8	2,5	0,5	0,7	0,25	456	17	22,98	11,489845	0,21	5,00	22,29
NPL		UK	NS4	Jul 02	0,8	2,5	0,1	<0.1	0,5	464	13,1	7,7	3,85	0,32	3,00	5,28
IPQ		PT	S8P	Sep 02	0,8	2,5	0,5		0,5	470	10	50,33	25,165	0,18	9,00	50,02
SMU	n	CS	FTS	Nov 02	0,8	2,5	1	1		455	1,8	9,7			6,00	7,92
NMi-VSL		NL	FTS	Mrz 03	0,8	2,5	0,5	0,55	0,25	463	8	35	17,5	0,06	2,00	34,55
0=not me	asu	red							Mean	456,54	nm	X _{ref} /nm	u(X _{ref}) /nm	U(X _{ref}) /nm	R _B	n
i=incomp	incomplete									9,89	nm	461,0	2,8	5,6	0,7	12

n=excluded (En>1) SMU excluded see Main ch 8.1

Roughness standard 629f Rk_i±U(Rk_i), Rk_{ref}±U(Rk_{ref})(E_n<1)

open symbol shows corrected value of NPL Rk = (451 + - 8,3) nm

Results of Rpk

			ent	Measured						629f	629f	629f	629f	629f	629f	629f
Institute	×	untry	trum	Date	λc	λs	Speed	Force	Sampl-dist	Rpk	S	U(k=2)	uc=U/2	En	DoE/ Xir	DoE/Uir
	R	ပိ	Ins		mm	μm	mm/s	mN	μm	nm	nm	nm	nm		nm	nm
PTB		DE	NS	May 01	0,8	2,5	0,1	1	0,2	132	6	3	1,5	0,52	2,00	1,80
CMI		CZ	HT	Jun 01	0,8	2,5	0,5	0,75	0,42	130	7	14	7	0,28	4,00	13,79
CEM		ES	MPC	Jul 01	0,8	2,5	0,5	0,4	0,5	133	6	15	7,5	0,07	1,00	14,81
ILM		IT	FTS	Aug 01	0,8	2,5	0,5	0,75	0,25	143	15	10,006	5,0030616	0,87	9,00	9,71
IMGC	0	IT	TS	Aug 01												
UME		TR	MPC	Sep 01	0,8	2,67	0,5	0,9	0,35	137	5,7	136	68	0,02	3,00	135,98
METAS		СН	FTS	Oct 01	0,8	2,5	0,5	<1		137	12	12	6	0,25	3,00	11,76
BEV	0	А	IM	Nov 01												
CGM		DK	FTS	Jan 02	0,8	2,5	0,05	1	0,5	137	7	35	17,5	0,09	3,00	34,92
MIKES	0	FI	FTS	Feb 02	0,800	2,500	0,500	1,000	0,250							
GUM		ΡL	FTS	Apr 02	0,8	2,5	0,5	<1	0,25	162	9,2	30	15	0,93	28,00	29,90
SP		SE	FTS	May 02	0,8	2,5	0,5	0,7	0,25	148	9	21,014	10,506953	0,66	14,00	20,88
NPL		UK	NS4	Jul 02	0,8	2,5	0,1	<0.1	0,5	136	10,2	6	3	0,31	2,00	5,50
IPQ		ΡT	S8P	Sep 02	0,8	2,5	0,5		0,5	150	10	46,16	23,08	0,35	16,00	46,10
SMU	n	CS	FTS	Nov 02	0,8	2,5	1	1		139	2,9	11,2			5,00	10,94
NMi-VSL		NL	FTS	Mrz 03	0,8	2,5	0,5	0,55	0,25	134	4	17	8,5	0,00	0,00	16,83
0=not me	asu	red							Mean	139,85	nm	X _{ref} /nm	u(X _{ref}) /nm	U(X _{ref}) /nm	R _B	n
i=incomp	=incomplete									8,90	nm	134,0	1,2	2,4	1,0	12
	1 /	-	4													

SMU excluded see Main ch 8.1

Roughness standard 629f Rpk_i±U(Rpk_i), Rpk_{ref}±U(Rpk_{ref})(E_n<1)

open symbol shows corrected value of NPL Rpk = (136 +/- 4) nm

Results of Rvk

		`	lent	Measured						629f	629f	629f	629f	629f	629f	629f
Institute	ķ	untry	trum	Date	λc	λs	Speed	Force	Sampl-dist	Rvk	S	U(k=2)	uc=U/2	En	DoE/ Xir	DoE/Uir
	R	co	sul		mm	μm	mm/s	mN	μm	nm	nm	nm	nm		nm	nm
PTB		DE	NS	May 01	0,8	2,5	0,1	1	0,2	301	20	9	4,5	0,36	3,80	7,05
CMI		CZ	HT	Jun 01	0,8	2,5	0,5	0,75	0,42	309	18	42	21	0,28	11,80	41,62
CEM		ES	MPC	Jul 01	0,8	2,5	0,5	0,4	0,5	290	10	17	8,5	0,40	7,20	16,05
ILM	n	IT	FTS	Aug 01	0,8	2,5	0,5	0,75	0,25	318	12	17,373			20,80	16,45
IMGC	0	IT	TS	Aug 01												
UME		TR	MPC	Sep 01	0,8	2,67	0,5	0,9	0,35	298	7,6	136	68	0,01	0,80	135,88
METAS		СН	FTS	Oct 01	0,8	2,5	0,5	<1		294	23	23	11,5	0,14	3,20	22,31
BEV	0	А	IM	Nov 01												
CGM		DK	FTS	Jan 02	0,8	2,5	0,05	1	0,5	299	12	39	19,5	0,05	1,80	38,60
MIKES	0	FI	FTS	Feb 02	0,800	2,500	0,500	1,000	0,250							
GUM		PL	FTS	Apr 02	0,8	2,5	0,5	<1	0,25	302	18,2	31	15,5	0,15	4,80	30,49
SP		SE	FTS	May 02	0,8	2,5	0,5	0,7	0,25	313	19	23,321	11,660605	0,66	15,80	22,64
NPL		UK	NS4	Jul 02	0,8	2,5	0,1	<0.1	0,5	289	19,7	11,4	5,7	0,65	8,20	9,93
IPQ		PT	S8P	Sep 02	0,8	2,5	0,5		0,5	300	10	46,19	23,095	0,06	2,80	45,85
SMU	n	CS	FTS	Nov 02	0,8	2,5	1	1		299	3,5	11,3			1,80	9,81
NMi-VSL		NL	FTS	Mrz 03	0,8	2,5	0,5	0,55	0,25	299	9	24	12	0,07	1,80	23,34
0=not me	0=not measured								Mean	300,85	nm	X _{ref} /nm	u(X _{ref}) /nm	U(X _{ref}) /nm	R _B	n
i=incomp	ncomplete									8,34	nm	297,2	2,8	5,6	0,8	11

n=excluded (En>1) SMU excluded see Main ch 8.1

En = 1,04 1. ILM

> 450 Rvk_i±U(Rvk_i), Rvk_{ref}±U(Rvk_{ref})(E_n<1) /nm 400 350 300 φ 250 200 PTB CMI CEM ILM IMGC UME METAS BEV CGM MIKES GUM SP NPL IPQ SMU NMi-VSL Institute

open symbol shows corrected value of NPL *Rvk* = (297 +/- 9,6) nm

Rvk_i±U(Rvk_i), Rvk_{ref}±U(Rvk_{ref})(E_n<1)

Roughness standard 629f

		`	ient	Measured						629f	629f	629f	629f	629f	629f	629f
Institute	7	untry	trum	Date	λc	λs	Speed	Force	Sampl-dist	Mr1	S	U(k=2)	uc=U/2	En	DoE/ Xir	DoE/Uir
	Ī	ပိ	lns		mm	μm	mm/s	mN	μm	%	%	%	%		%	%
PTB		DE	NS	May 01	0,8	2,5	0,1	1	0,2	8,9	0,8	2	1	0,15	0,30	1,99
CMI		CZ	HT	Jun 01	0,8	2,5	0,5	0,75	0,42	8,8	0,6	0,6	0,3	0,63	0,40	0,57
CEM		ES	MPC	Jul 01	0,8	2,5	0,5	0,4	0,5	9,33	0,494	0,288	0,144	0,37	0,13	0,21
ILM		IT	FTS	Aug 01	0,8	2,5	0,5	0,75	0,25	8,4	1	1,5	0,75	0,53	0,80	1,49
IMGC	0	IT	TS	Aug 01												
UME		TR	MPC	Sep 01	0,8	2,67	0,5	0,9	0,35	8,982	0,86	0,97	0,485	0,22	0,22	0,95
METAS	i	СН	FTS	Oct 01	0,8	2,5	0,5	<1		9	0,8					
BEV	0	A	IM	Nov 01												
CGM		DK	FTS	Jan 02	0,8	2,5	0,05	1	0,5	8,5	0,7	2	1	0,35	0,70	1,99
MIKES	0	FI	FTS	Feb 02	0,800	2,500	0,500	1,000	0,250							
GUM		PL	FTS	Apr 02	0,8	2,5	0,5	<1	0,25	8,3	0,49	2	1	0,45	0,90	1,99
SP	n	SE	FTS	May 02	0,8	2,5	0,5	0,7	0,25	8,4	0,8	0,462			0,80	0,42
NPL		UK	NS4	Jul 02	0,8	2,5	0,1	<0.1	0,5	9,17	0,74	1,39	0,695	0,02	0,03	1,38
IPQ	i	PT	S8P	Sep 02	0,8	2,5	0,5		0,5	8,66	0,46					
SMU	n	CS	FTS	Nov 02	0,8	2,5	1	1		9,8	136,2					
NMi-VSL		NL	FTS	Mrz 03	0,8	2,5	0,5	0,55	0,25	8,7	0,4	1,5	0,75	0,33	0,50	1,49
0=not me	asu	red							Mean	8,84	%	X _{ref} /%	u(X _{ref}) /%	U(X _{ref}) /%	R _B	n
i=incomp	lete	_							Stdev	0,43	%	9,2	0,1	0,2	0,8	9

n=excluded (En>1) SMU excluded see Main ch 8.1

1. SP En = 1,19

Roughness standard 629f Mr1_i±U(Mr1_i), Mr1_{ref}±U(Mr1_{ref})(E_n<1)

4	a anna hai	alanna	annantad	l.	af
+ obei	n svmdoi	snows	correctea	vaiue	OI

NPL	<i>Mr1</i> = (9,87	+/- 1,38) %
SP	<i>Mr1</i> = (8,4	+/- 2,1) %

			ent	Measured						629f	629f	629f	629f	629f	629f	629f
Institute	Ņ	untry	trum	Date	λς	λs	Speed	Force	Sampl-dist	Mr2	S	U(k=2)	uc=U/2	En	DoE/ Xir	DoE/Uir
	Mr	ပိ	lns		mm	μm	mm/s	mN	μm	%	%	%	%		%	%
PTB		DE	NS	May 01	0,8	2,5	0,1	1	0,2	87,9	0,7	4	2	0,00	0,00	3,99
CMI		CZ	HT	Jun 01	0,8	2,5	0,5	0,75	0,42	88,3	0,7	1,2	0,6	0,33	0,40	1,18
CEM		ES	MPC	Jul 01	0,8	2,5	0,5	0,4	0,5	87,69	0,461	0,332	0,166	0,54	0,21	0,26
ILM		IT	FTS	Aug 01	0,8	2,5	0,5	0,75	0,25	88,4	0,9	1,5	0,75	0,33	0,50	1,49
IMGC	0	IT	TS	Aug 01												
UME		TR	MPC	Sep 01	0,8	2,67	0,5	0,9	0,35	88,158	0,654	9,521	4,7605	0,03	0,26	9,52
METAS	i	СН	FTS	Oct 01	0,8	2,5	0,5	<1		87,7	0,8					
BEV	0	А	IM	Nov 01												
CGM		DK	FTS	Jan 02	0,8	2,5	0,05	1	0,5	87,9	0,4	2	1	0,00	0,00	1,99
MIKES	0	FI	FTS	Feb 02	0,800	2,500	0,500	1,000	0,250							
GUM		ΡL	FTS	Apr 02	0,8	2,5	0,5	<1	0,25	87,5	0,61	2	1	0,20	0,40	1,99
SP		SE	FTS	May 02	0,8	2,5	0,5	0,7	0,25	88,1	0,8	0,462	0,23094	0,40	0,20	0,42
NPL		UK	NS4	Jul 02	0,8	2,5	0,1	<0.1	0,5	88,03	0,51	1,35	0,675	0,10	0,13	1,34
IPQ	i	ΡT	S8P	Sep 02	0,8	2,5	0,5		0,5	87,53	0,4					
SMU	n	CS	FTS	Nov 02	0,8	2,5	1	1		87,8	121,4					
NMi-VSL	NMi-VSL NL FTS Mrz 03 0,8 2,5 0,5									87,9	0,5	1,6	0,8	0,00	0,00	1,59
0=not me	asu	red	=	-					Mean	87,92	%	X _{ref} /%	u(X _{ref}) /%	U(X _{ref}) /%	R _B	n
i=incomp	lete								Stdev	0,28	%	87,9	0,1	0,2	0,6	10
n=ovolud	~d (Env	4)											,		

SMU excluded see Main ch 8.1

Roughness standard 629f Mr2_i±U(Mr2_i), Mr2_{ref}±U(Mr2_{ref})(E_n<1)

Ш			. 1			. r
Ŧ	onen	svmnoi	SNOWS	CORRECTED	vanie	OT
	open	Syntoot	5110115	0011001001	101110	$\mathcal{O}_{\mathcal{I}}$

NPL	<i>Mr2</i> = (87,66	+/- 1,35) nm
SP	<i>Mr2</i> = (88,1	+/- 2,1) nm

4 ROUGHNESS STANDARD 1006

Results of Ra

			ent	Measured						1006	1006	1006	1006	1006	1006	1006
Institute	Ra	untry	trum	Date	λc	λs	Speed	Force	Sampl-dist	Ra	S	U(k=2)	uc=U/2	En	DoE/ Xir	DoE/Uir
		ပိ	lns		mm	μm	mm/s	mN	μm	nm	nm	nm	nm		nm	nm
PTB		DE	NS	May 01	0,25	2,5	0,05	0,025	0,15	25	0,9	1,8	0,9	0,05	0,10	1,50
CMI		CZ	HT	Jun 01	0,25	2,5	0,5	0,75	0,13	25	1	18	9	0,01	0,10	17,97
CEM		ES	MPC	Jul 01	0,25	2,5	0,1	0,4	0,5	23,52	0,55	25,66	12,83	0,06	1,58	25,64
ILM		IT	FTS	Aug 01	0,25	2,5	0,5	0,75	0,25	25	1	5,099	2,5495098	0,02	0,10	5,00
IMGC		IT	TS	Aug 01	0,25	1	0,025	0,025	1	25,9	0,8	3	1,5	0,25	0,80	2,83
UME		TR	MPC	Sep 01	0,25	2,5	0,1	0,9	0,1	24	1,6	42,8	21,4	0,03	1,10	42,79
METAS		CH	FTS	Oct 01	0,25	2,5	0,5	<1		24,7	0,7	2,5	1,25	0,15	0,40	2,29
BEV	0	А	IM	Nov 01												
CGM		DK	FTS	Jan 02	0,25	2,5	0,05	1	0,2	26	1	15	7,5	0,06	0,90	14,97
MIKES		FI	FTS	Feb 02	0,250	2,500	0,500	1,000	0,250	26	0,603	50	25	0,02	0,90	49,99
GUM		PL	FTS	Apr 02	0,25	2,5	0,5	<1	0,25	24	0,6	19	9,5	0,06	1,10	18,97
SP		SE	FTS	May 02	0,25	2,5	0,5	0,7	0,25	27	1,4	8,1641	4,0820333	0,23	1,90	8,10
NPL		UK	NS4	Jul 02	0,3	2,5	0,0	<0.1	0,5	24,98	0,74	1,39	0,695	0,07	0,12	0,97
IPQ		PT	S8P	Sep 02						30	0	40,41	20,205	0,12	4,90	40,40
SMU	n	CS	FTS	Nov 02	0,25	2,5	1	1		25,6	0,1	6,9			0,50	6,83
NMi-VSL	Mi-VSL NL FTS Mrz 03 0,25 2,5 0,5								0,25	25	1	14	7	0,01	0,10	13,96
0=not me	not measured								Mean	25,45	nm	X _{ref} /nm	u(X _{ref}) /nm	U(X _{ref}) /nm	R _B	n
i=incomp	ncomplete									1,55	nm	25,1	0,5	1,0	0,2	14

n=excluded (En>1) SMU excluded see Main ch 8.1

> Roughness standard 1006 Ra_i±U(Ra_i), Ra_{ref}±U(Ra_{ref})(E_n<1)

open symbol shows corrected value of NPL Ra = (25,1 + - 1,37) nm

		~	ent	Measured						1006	1006	1006	1006	1006	1006	1006
Institute	Rz	untry	trum	Date	λC	λs	Speed	Force	Sampl-dist	Rz	S	U(k=2)	uc=U/2	En	DoE/ Xir	DoE/Uir
		c	lns		mm	μm	mm/s	mN	μm	nm	nm	nm	nm		nm	nm
PTB		DE	NS	May 01	0,25	2,5	0,05	0,025	0,15	139	2	9,7	4,85	0,28	2,80	9,35
CMI		CZ	HT	Jun 01	0,25	2,5	0,5	0,75	0,13	146	9	128	64	0,03	4,20	127,97
CEM		ES	MPC	Jul 01	0,25	2,5	0,1	0,4	0,5	133,29	4,5	31,45	15,725	0,27	8,51	31,34
ILM		IT	FTS	Aug 01	0,25	2,5	0,5	0,75	0,25	146	4	10,114	5,0569259	0,40	4,20	9,77
IMGC		IT	TS	Aug 01	0,25	1	0,025	0,025	1	148	3,7	8	4	0,74	6,20	7,57
UME		TR	MPC	Sep 01	0,25	2,5	0,1	0,9	0,1	138	6,1	42,8	21,4	0,09	3,80	42,72
METAS		CH	FTS	Oct 01	0,25	2,5	0,5	<1		150	6	23	11,5	0,35	8,20	22,85
BEV	0	A	IM	Nov 01												
CGM		DK	FTS	Jan 02	0,25	2,5	0,05	1	0,2	137	6	29	14,5	0,16	4,80	28,88
MIKES		FI	FTS	Feb 02	0,250	2,500	0,500	1,000	0,250	155	8,521	70	35	0,19	13,20	69,95
GUM		PL	FTS	Apr 02	0,25	2,5	0,5	<1	0,25	138	3,2	19	9,5	0,20	3,80	18,82
SP		SE	FTS	May 02	0,25	2,5	0,5	0,7	0,25	158	12	15,917	7,9583617	1,00	16,20	15,70
NPL		UK	NS4	Jul 02	0,3	2,5	0,0	<0.1	0,5	140,14	4,57	3,06	1,53	0,41	1,66	1,61
IPQ		PT	S8P	Sep 02						170	0	70,24	35,12	0,40	28,20	70,19
SMU	n	CS	FTS	Nov 02	0,25	2,5	1	1		131,4	3,1	10,6			10,40	10,28
NMi-VSL	IMI-VSL NL FTS Mrz 03 0,25 2,5 0,5									146	9	59	29,5	0,07	4,20	58,94
0=not me	=not measured								Mean	145,06	nm	X _{ref} /nm	u(X _{ref}) /nm	U(X _{ref}) /nm	R _B	n
i=incomp	lete								Stdev	10,26	nm	141,8	1,3	2,6	0,9	14

n=excluded (En>1) SMU excluded see Main ch 8.1

> Roughness standard 1006 Rz_i±U(Rz_i), Rz_{ref}±U(Rz_{ref})(E_n<1)

open symbol shows corrected value of NPL Rz = (140,9 +/- 3,02) nm

Appendix D3 - Results on roughness standard type D

Results of Rmax

		,	ent	Measured						1006	1006	1006	1006	1006	1006	1006
Institute	nax	untry	trum	Date	λC	λs	Speed	Force	Sampl-dist	Rmax	S	U(k=2)	uc=U/2	En	DoE/ Xir	DoE/Uir
	Rr	Co	lns		mm	μm	mm/s	mN	μm	nm	nm	nm	nm		nm	nm
PTB		DE	NS	May 01	0,25	2,5	0,05	0,025	0,15	177	11	15,9	7,95	1,00	16,60	15,16
CMI		CZ	HT	Jun 01	0,25	2,5	0,5	0,75	0,13	176	14	196	98	0,09	17,60	195,94
CEM		ES	MPC	Jul 01	0,25	2,5	0,1	0,4	0,5	172,9	16,6	36,99	18,495	0,55	20,70	36,68
ILM		IT	FTS	Aug 01	0,25	2,5	0,5	0,75	0,25	203	15	12,33	6,1648702	0,71	9,40	11,36
IMGC		IT	TS	Aug 01	0,25	1	0,025	0,025	1	203,7	4,4	10	5	0,91	10,10	8,77
UME		TR	MPC	Sep 01	0,25	2,5	0,1	0,9	0,1	175	13	42,8	21,4	0,43	18,60	42,53
METAS	0	СН	FTS	Oct 01	0,25	2,5	0,5	<1								
BEV	0	А	IM	Nov 01												
CGM		DK	FTS	Jan 02	0,25	2,5	0,05	1	0,2	173	8	29	14,5	0,70	20,60	28,60
MIKES	0	FI	FTS	Feb 02	0,250	2,500	0,500	1,000	0,250							
GUM	n	PL	FTS	Apr 02	0,25	2,5	0,5	<1	0,25	171	9,7	19			22,60	18,38
SP		SE	FTS	May 02	0,25	2,5	0,5	0,7	0,25	203	22	19,272	9,6357571	0,47	9,40	18,66
NPL		UK	NS4	Jul 02	0,3	2,5	0,0	<0.1	0,5	189,36	12,79	7,5	3,75	0,48	4,24	5,76
IPQ		PT	S8P	Sep 02						220	20	85,05	42,525	0,31	26,40	84,91
SMU	n	CS	FTS	Nov 02	0,25	2,5	1	1		155,5	3,9	11,7			38,10	10,67
NMi-VSL		NL	FTS	Mrz 03	0,25	2,5	0,5	0,55	0,25	185	23	81	40,5	0,11	8,60	80,86
0=not me	not measured								Mean	184,96	nm	X _{ref} /nm	u(X _{ref}) /nm	U(X _{ref}) /nm	R _B	n
i=incomp	lete								Stdev	17,90	nm	193,6	2,4	4,8	1,3	11

n=excluded (En>1) SMU excluded see Main ch 8.1

1. GUM En = 1,08

Roughness standard 1006 Rmax_i±U(Rmax_i), Rmax_{ref}±U(Rmax_{ref})(E_n<1)

ILM	<i>Rmax</i> = (196	+/- 1	2) nm
NPL	<i>Rmax</i> = (185,7	+/-	8,74) nm

			ent	Measured						1006	1006	1006	1006	1006	1006	1006
Institute	Rk	untry	trum	Date	λc	λs	Speed	Force	Sampl-dist	Rk	S	U(k=2)	uc=U/2	En	DoE/ Xir	DoE/Uir
		Co	lns		mm	μm	mm/s	mN	μm	nm	nm	nm	nm		nm	nm
PTB		DE	NS	May 01	0,25	2,5	0,05	0,025	0,15	77	3,9	4,6	2,3	0,13	0,70	3,92
CMI		CZ	HT	Jun 01	0,25	2,5	0,5	0,75	0,13	74	5	52	26	0,07	3,70	51,94
CEM		ES	MPC	Jul 01	0,25	2,5	0,1	0,4	0,5	72,56	3,25	26	13	0,20	5,14	25,89
ILM		IT	FTS	Aug 01	0,25	2,5	0,5	0,75	0,25	76	6	7,9649	3,9824616	0,20	1,70	7,59
IMGC	0	IT	TS	Aug 01	0,25	1	0,025	0,025	1							
UME		TR	MPC	Sep 01	0,25	2,5	0,1	0,9	0,1	69	12,6	72,4	36,2	0,12	8,70	72,36
METAS		СН	FTS	Oct 01	0,25	2,5	0,5	<1		76	6	5	2,5	0,31	1,70	4,39
BEV	0	A	IM	Nov 01												
CGM		DK	FTS	Jan 02	0,25	2,5	0,05	1	0,2	76	6	19	9,5	0,09	1,70	18,85
MIKES	0	FI	FTS	Feb 02	0,250	2,500	0,500	1,000	0,250							
GUM		PL	FTS	Apr 02	0,25	2,5	0,5	<1	0,25	75	3,2	19	9,5	0,14	2,70	18,85
SP		SE	FTS	May 02	0,25	2,5	0,5	0,7	0,25	85	6	14,657	7,3284587	0,49	7,30	14,46
NPL		UK	NS4	Jul 02	0,3	2,5	0,0	<0.1	0,5	79,63	6,62	4,04	2,02	0,41	1,93	3,25
IPQ		PT	S8P	Sep 02						80	10	50,33	25,165	0,05	2,30	50,27
SMU	n	CS	FTS	Nov 02	0,25	2,5	1	1		97,7	0,3	8,7			20,00	8,36
NMi-VSL	Mi-VSL NL FTS Mrz 03 0,25 2,5 0,5									78	4	31	15,5	0,01	0,30	30,91
0=not me	not measured								Mean	78,15	nm	X _{ref} /nm	u(X _{ref}) /nm	U(X _{ref}) /nm	R _B	n
i=incomp	lete								Stdev	7,02	nm	77,7	1,2	2,4	0,5	12

n=excluded (En>1) SMU excluded see Main ch 8.1

150 130 Rki±U(Rk_i), Rk_{ref}±U(Rk_{ref})(E_n<1) /nm 110 90 70 50 30 PTB CMI CEM ILM IMGC UME METAS BEV CGM MIKES GUM SP NPL IPQ SMU NMi-VSL Institute

Roughness standard 1006 Rk_i±U(Rk_i), Rk_{ref}±U(Rk_{ref})(E_n<1)

open symbol shows corrected value of NPL Rk = (79,48 + -3,79) nm

Results of Rpk

		`	ent	Measured						1006	1006	1006	1006	1006	1006	1006
Institute	ķ	untry	trum	Date	λC	λs	Speed	Force	Sampl-dist	Rpk	S	U(k=2)	uc=U/2	En	DoE/ Xir	DoE/Uir
	R	c	lns		mm	μm	mm/s	mN	μm	nm	nm	nm	nm		nm	nm
PTB		DE	NS	May 01	0,25	2,5	0,05	0,025	0,15	27	1,3	1,4	0,7	0,22	0,40	0,72
CMI		CZ	HT	Jun 01	0,25	2,5	0,5	0,75	0,13	31	5	14	7	0,26	3,60	13,95
CEM		ES	MPC	Jul 01	0,25	2,5	0,1	0,4	0,5	26,1	1,17	27	13,5	0,05	1,30	26,97
ILM	n	IT	FTS	Aug 01	0,25	2,5	0,5	0,75	0,25	35	6	7,2154			7,60	7,11
IMGC	0	IT	TS	Aug 01	0,25	1	0,025	0,025	1	0	0	0				
UME		TR	MPC	Sep 01	0,25	2,5	0,1	0,9	0,1	29	3,1	72,4	36,2	0,02	1,60	72,39
METAS		СН	FTS	Oct 01	0,25	2,5	0,5	<1		30	3	3,5	1,75	0,70	2,60	3,29
BEV	0	А	IM	Nov 01						0	0	0				
CGM		DK	FTS	Jan 02	0,25	2,5	0,05	1	0,2	28	3	14	7	0,04	0,60	13,95
MIKES	0	FI	FTS	Feb 02	0,250	2,500	0,500	1,000	0,250	0	0	0				
GUM		PL	FTS	Apr 02	0,25	2,5	0,5	<1	0,25	28	2,9	19	9,5	0,03	0,60	18,96
SP		SE	FTS	May 02	0,25	2,5	0,5	0,7	0,25	31	4	14,403	7,2015827	0,25	3,60	14,35
NPL		UK	NS4	Jul 02	0,3	2,5	0,0	<0.1	0,5	27,24	4,77	3,05	1,525	0,05	0,16	2,80
IPQ		PT	S8P	Sep 02						30	0	41,63	20,815	0,06	2,60	41,61
SMU	n	CS	FTS	Nov 02	0,25	2,5	1	1		19,4	0,8	8,8			8,00	8,72
NMi-VSL	NMi-VSL NL FTS Mrz 03 0,25 2,5 0,5									28	2	15	7,5	0,04	0,60	14,95
0=not me	not measured								Mean	23,11	nm	X _{ref} /nm	u(X _{ref}) /nm	U(X _{ref}) /nm	R _B	n
i=incomp	lete								Stdev	11,90	nm	27,4	0,6	1,2	0,6	11

n=excluded (En>1) SMU excluded see Main ch 8.1

1. ILM En = 1,01

Roughness standard 1006 Rpk_i±U(Rpk_i), Rpk_{ref}±U(Rpk_{ref})(E_n<1)

open symbol shows corrected value of NPL Rpk = (26,2 +/- 2,35) nm

Results of Rvk

			ent	Measured						1006	1006	1006	1006	1006	1006	1006
Institute	¥	untry	trum	Date	λc	λs	Speed	Force	Sampl-dist	Rvk	S	U(k=2)	uc=U/2	En	DoE/ Xir	DoE/Uir
	Ř	Ō	sul		mm	μm	mm/s	mN	μm	nm	nm	nm	nm		nm	nm
PTB		DE	NS	May 01	0,25	2,5	0,05	0,025	0,15	31	1,9	1,6	0,8	0,00	0,00	0,77
CMI		CZ	HT	Jun 01	0,25	2,5	0,5	0,75	0,13	34	6	22	11	0,14	3,00	21,96
CEM		ES	MPC	Jul 01	0,25	2,5	0,1	0,4	0,5	29,83	2,07	29	14,5	0,04	1,17	28,97
ILM		IT	FTS	Aug 01	0,25	2,5	0,5	0,75	0,25	34	4	7,2035	3,6017357	0,41	3,00	7,07
IMGC	0	IT	TS	Aug 01	0,25	1	0,025	0,025	1	0	0	0				
UME		TR	MPC	Sep 01	0,25	2,5	0,1	0,9	0,1	36	6	72,4	36,2	0,07	5,00	72,39
METAS		СН	FTS	Oct 01	0,25	2,5	0,5	<1		30	7	5	2,5	0,19	1,00	4,80
BEV	0	A	IM	Nov 01						0	0	0				
CGM		DK	FTS	Jan 02	0,25	2,5	0,05	1	0,2	32	2	14	7	0,07	1,00	13,93
MIKES	0	FI	FTS	Feb 02	0,250	2,500	0,500	1,000	0,250	0	0	0				
GUM		PL	FTS	Apr 02	0,25	2,5	0,5	<1	0,25	32	4,4	19	9,5	0,05	1,00	18,95
SP		SE	FTS	May 02	0,25	2,5	0,5	0,7	0,25	37	7	14,792	7,3961852	0,40	6,00	14,73
NPL		UK	NS4	Jul 02	0,3	2,5	0,0	<0.1	0,5	30,57	4,69	3,01	1,505	0,13	0,43	2,66
IPQ		PT	S8P	Sep 02						40	10	46,19	23,095	0,19	9,00	46,17
SMU	n	CS	FTS	Nov 02	0,25	2,5	1	1		21,8	2,9	10,5			9,20	10,41
NMi-VSL		NL	FTS	Mrz 03	0,25	2,5	0,5	0,55	0,25	33	2	16	8	0,12	2,00	15,94
0=not me	not measured									26,33	nm	X _{ref} /nm	u(X _{ref}) /nm	U(X _{ref}) /nm	R _B	n
i=incomp	lete								Stdev	13,63	nm	31,0	0,7	1,4	0,4	12
n=ovolud	ad (•													

SMU excluded see Main ch 8.1

Roughness standard 1006 Rvk_i±U(Rvk_i), Rvk_{ref}±U(Rvk_{ref})(E_n<1)

open symbol shows corrected value of NPL Rvk = (30,5 +/- 2,72) nm

			ent	Measured						1006	1006	1006	1006	1006	1006	1006
Institute	Ţ	untry	trum	Date	λc	λs	Speed	Force	Sampl-dist	Mr1	S	U(k=2)	uc=U/2	En	DoE/ Xir	DoE/Uir
	Mr	Col	Ins		mm	μm	mm/s	mN	μm	%	%	%	%		%	%
PTB		DE	NS	May 01	0,25	2,5	0,05	0,025	0,15	12,6	0,7	3	1,5	0,23	0,70	2,99
CMI		CZ	HT	Jun 01	0,25	2,5	0,5	0,75	0,13	11,6	1,9	1,2	0,6	0,25	0,30	1,18
CEM		ES	MPC	Jul 01	0,25	2,5	0,1	0,4	0,5	11,86	0,683	0,2	0,1	0,14	0,04	0,00
ILM		IT	FTS	Aug 01	0,25	2,5	0,5	0,75	0,25	12,9	1,8	2	1	0,50	1,00	1,99
IMGC	0	IT	TS	Aug 01	0,25	1	0,025	0,025	1							
UME		TR	MPC	Sep 01	0,25	2,5	0,1	0,9	0,1	12,606	0,784	6,618	3,309	0,11	0,71	6,61
METAS	i	СН	FTS	Oct 01	0,25	2,5	0,5	<1		12,6	1					
BEV	0	А	IM	Nov 01												
CGM		DK	FTS	Jan 02	0,25	2,5	0,05	1	0,2	11,9	1,1	2	1	0,00	0,00	1,99
MIKES	0	FI	FTS	Feb 02	0,250	2,500	0,500	1,000	0,250							
GUM		PL	FTS	Apr 02	0,25	2,5	0,5	<1	0,25	10,8	1,35	5,8	2,9	0,19	1,10	5,80
SP	n	SE	FTS	May 02	0,25	2,5	0,5	0,7	0,25	10,8	1,3	0,751			1,10	0,72
NPL		UK	NS4	Jul 02	0,3	2,5	0,0	<0.1	0,5	11,06	1,92	1,72	0,86	0,49	0,84	1,71
IPQ	i	PT	S8P	Sep 02						10,13	0,89					
SMU	n	CS	FTS	Nov 02	0,25	2,5	1	1		5,6	290					
NMi-VSL	INI NL FTS Mrz 03 0,25 2,5 0,5									12,3	0,9	8,6	4,3	0,05	0,40	8,60
0=not me	not measured								Mean	11,29	%	X _{ref} /%	u(X _{ref}) /%	U(X _{ref}) /%	R _B	n
i=incomp	lete								Stdev	1,91	%	11,9	0,1	0,2	0,6	9

n=excluded (En>1) SMU excluded see Main ch 8.1

1. SP En = 1,29

 $\begin{array}{l} Roughness \ standard \ 1006 \\ Mr1_i {\pm} U(Mr1_i), \ Mr1_{ref} {\pm} U(Mr1_{ref})(E_n{<}1) \end{array}$

#	onen	symbol	shows	corrected	value	of
π	open	symoor	Shows	correcteu	vuine	<i>Uj</i>

NPL	<i>Mr1</i> = (11,2 +/- 1,67) %
SP	<i>Mr1</i> = (10,8 +/- 2,1) %

			ent	Measured						1006	1006	1006	1006	1006	1006	1006
Institute	Ņ	untry	trum	Date	λc	λs	Speed	Force	Sampl-dist	Mr2	S	U(k=2)	uc=U/2	En	DoE/ Xir	DoE/Uir
	лı	Col	lns		mm	μm	mm/s	mN	μm	%	%	%	%		%	%
PTB		DE	NS	May 01	0,25	2,5	0,05	0,025	0,15	86,6	0,7	3	1,5	0,03	0,10	2,99
CMI		CZ	ΗT	Jun 01	0,25	2,5	0,5	0,75	0,13	87,1	1,7	1,4	0,7	0,42	0,60	1,39
CEM		ES	MPC	Jul 01	0,25	2,5	0,1	0,4	0,5	86,42	0,688	0,2	0,1	0,28	0,08	0,00
ILM		IT	FTS	Aug 01	0,25	2,5	0,5	0,75	0,25	86,7	1,2	2	1	0,10	0,20	1,99
IMGC	0	IT	TS	Aug 01	0,25	1	0,025	0,025	1							
UME		TR	MPC	Sep 01	0,25	2,5	0,1	0,9	0,1	83,232	4,394	43,7	21,8485	0,07	3,27	43,70
METAS	i	СН	FTS	Oct 01	0,25	2,5	0,5	<1		87	1,5					
BEV	0	A	IM	Nov 01												
CGM		DK	FTS	Jan 02	0,25	2,5	0,05	1	0,2	86,6	1	2	1	0,05	0,10	1,99
MIKES	0	FI	FTS	Feb 02	0,250	2,500	0,500	1,000	0,250							
GUM		PL	FTS	Apr 02	0,25	2,5	0,5	<1	0,25	81,4	1,25	5,8	2,9	0,88	5,10	5,80
SP		SE	FTS	May 02	0,25	2,5	0,5	0,7	0,25	87,4	1,9	1,097	0,548483	0,81	0,90	1,08
NPL		UK	NS4	Jul 02	0,3	2,5	0,0	<0.1	0,5	86,17	1,75	1,66	0,83	0,20	0,33	1,65
IPQ	i	PT	S8P	Sep 02						86,58	1,14					
SMU	n	CS	FTS	Nov 02	0,25	2,5	1	1		94,3	261,9					
NMi-VSL		NL	FTS	Mrz 03	0,25	2,5	0,5	0,55	0,25	86,8	1,1	8,7	4,35	0,03	0,30	8,70
0=not measured								Mean	86,64	%	X _{ref} /%	u(X _{ref}) /%	U(X _{ref}) /%	R _B	n	
i=incomplete									Stdev	2,87	%	86,5	0,1	0,2	0,9	10
n=oxoludod (En>1)																

SMU excluded see Main ch 8.1

Roughness standard 1006 Mr2_i±U(Mr2_i), Mr2_{ref}±U(Mr2_{ref})(E_n<1)

NPL	<i>Mr2</i> = (86,22	+/- 1,56) %
SP	<i>Mr2</i> = (87,4	+/- 2,3) %

Appendix D4

CONCOUNDE: S 53 4F 20 35 34 35 36 20 21 20 32 30 30 00 : IEO 54.36 - 2000. 000000101: 55 30 35 40 55 30 34 55 30 34 30 20 35 30 20 25 38 30 22 4.8 30 22 4.8 30 22 4.8 30 22 4.8 40 40 40 40 40 40 40 40 44 45 40 44 45 20 -0 00 0.0 00 00 44 45 45 10 -0 0.0 0.0 0.4 44 45 20 0.6 00 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Software Gauges Type F1

1. DATA FILE 1001.SMD

	fry	Ĕ	Measured			1001	1001	1001	1001	1001	1001	1001	1001	1001	1001
Institute	uno	stru	Date	λc	λs	Ra	Ra-Ref.	Rq	Rq-Ref.	Rp	Rp-Ref.	Rv	Rv-Ref.	Rt	Rt-Ref.
	ö	lns		mm	μm	nm	nm	nm	nm	nm	nm	nm	nm	nm	nm
PTB	DE	NS	May 01	0,3	3	86,91		107,94		232,44		238,03		628,33	
UME	TR	MPC	Sep 01	0,3	0	90	3,09	110	2,06	240	7,56	240	1,97	630	1,67
METAS	CH	FTS	Oct 01	0,3	3	86,9	-0,01	107,9	-0,04	232,4	-0,04	238	-0,03	628,3	-0,03
CGM	DK	FTS	Jan 02			87	0,09	108	0,06	235	2,56	240	1,97	632	3,67
SP	SE	FTS	May 02	0,3	3	86,7	-0,21	107,7	-0,24	231,1	-1,34	329,3	91,27	560,5	-67,83
NPL	UK	NS4	Jul 02	0,3	2,5	87	0,09	107	-0,94	238	5,56	232	-6,03	625	-3,33
SMU	CS	FTS	Nov 02	0,8	3	54,7	-32,21	70,1	-37,84	159	-73,44	135	-103,03	572	-56,33
NMi-VSL	NL	FTS	Mrz 03	0,3	3	87	0,09	108	0,06	230	-2,44	239	0,97	610	-18,33
Mittelwert			-			83,28	-4,15	103,33	-5,27	224,74	-8,80	236,42	-1,84	610,77	-20,07
STABW:						11,60	12,43	13,45	14,39	26,78	28,73	52,06	56,22	28,46	29,77
NPL corre	*)NPL value *(-1) IPL corrected values 87 107 232 238											628			
	У	Ę	Moasurod			1001	1001	1001	1001	1001	1001	1001	1001		
Inotituto	ntr	LUN	Dete	10	10	1001 D7	Dr. Def	DSm	DSm Dof	Dmox	Dmox Dof	Dok	Dok Dof		
Institute	5 G	nst	Date	λC	λS	RZ	RZ-REI.	Rolli	Rolli-Rel.	Rillax	Rilldx-Rel.	rt SK	RSK-REI.	ļ	
DTD			May 01	0.0	μΠ	470.47	11111	10000	11111	504.07	11111	0.400		1	
		INS MDC	May 01	0,3	3	470,47	0.52	48880	45000.00	501,37	0.02	-0,162	0.40		
		INIPU	Sep 01	0,3	0	480	9,53	63900	15020,00	570	8,03	0	0,16		
METAS		FIS		0,3	3	470,5	0,03			500	0.00	-0,009	0,15		
		FIS	Jan UZ	0.0	2	4/5	4,53			500	0,03	-0,008	0,15		
5P	SE	FIS	Iviay 02	0,3	3	460,1	-10,37	05050	40070.00	560,5	-0,87	-0,0074	0,15		
	UN	IN54	JUI UZ	0,3	2,5	470	-0,47	00202	16372,00	470	04.07	0,16	0,32		
SMU	CS	FIS	NOV U2	0,8	3	294	-1/6,47			470	-91,37	0,286	0,45		
INIVII-VOL	INL	гіз	10112 03	0,3	3	470	-0,47		15000.00	610	46,03	-0,014	0,13		
Mittelwert						448,76	-24,81	59344,00	15696,00	556,65	-5,67	0,03	0,22		
STABW:						62,78	67,15	9087,27	956,01	46,26	51,65	0,13	0,12		
NDL corre	oto					470		66125				0.16			
INPL COTT	ecter	u valu	les			470		00133				-0,10			
	\geq	Ē	Measured			1001	1001	1001	1001	1001	1001	1001	1001	1001	1001
Instituto	Intr	rur	Date	20	10	Rok	Rok-Ref	Rk	Rk-Ref	Byk	Ryk-Rof	Mr1%	Mr1%-Ref	Mr2%	Mr2%-Ref
mstitute	Col	nst		mm	um	nm	nm	nm	nm	nm	nm	1VII 1 /0	1VII 1 /0-1 (C1.	1VI1 2 /0	1VI12 /0-1(C1.
PTR	DE		May 01	03	μ 3	76.65		276 42		97.05		11 75	70	87 59	70
		MPC	Sep 01	0,5	0	70,00	-6.65	270,42	3.58	100	2.95	11,75	-0.19	87.81	0.22
METAS	CH	FTS	Oct 01	0,3	3	10	-0,00	200	5,50	100	2,35	11,50	-0,13	07,01	0,22
CGM	DK	FTS	Jan 02	0,0	Ŭ	77	0.35	279	2 58	95	-2.05	11.8	0.05	87.6	0.01
SP	SF	FTS	May 02	0.3	3	76 1	-0.55	272 6	-3.82	91 1	-5.95	10	-1 75	88	0.41
NPL	UK	NS4	Jul 02	0.3	2.5	. 3, 1	0,00	2.2,0	3,02	07,1	0,00	10	.,/0	00	0,41
SMU	CS	FTS	Nov 02	0.8	_,0	110	33,35	205	-71 42	84.6	-12 45	16	4 25	88.8	1.21
NMi-VSL	NL	FTS	Mrz 03	0,3	3	66	-10,65	264	-12,42	96	-1,05	10,4	-1,35	89,5	1,91

Some selected diagrams

Mittelwe STABW

3.1

Data files 1001smd Rai±ui(Ra)

93.9

<u>+,2</u> -1,3

88.2

open symbol shows corrected value of NPL

Data files 1001smd Rvi±ui(Rv)

open symbol shows corrected value of NPL

Data files 1001smd

open symbol shows corrected value of NPL

Data files 1001smd Rmaxi±ui(Rmax)

 $^{\# \}textit{ open symbol shows corrected value of NPL}$

Data files 1001smd Rki±ui(Rk)

2. DATA FILE 505.SMD

	×	nen	Measured			505	505	505	505	505	505	505	505	505	505	
Institute	untr	trun	Date	λc	λs	Ra	Ra-Ref.	Rq	Rq-Ref.	Rp	Rp-Ref.	Rv	Rv-Ref.	Rt	Rt-Ref.	
	ပိ	sul		mm	μm	nm	nm	nm	nm	nm	nm	nm	nm	nm	nm	
PTB	DE	NS	May 01	0,8	2,5	187,02		231,05		498,26		747,64		1424,69		
ILM	IT	FTS	Aug 01	unfilt	unfilte	176	-11,02	217	-14,05	492	-6,26	756	8,36	1248	-176,69	
UME	TR	MPC	Sep 01	0,8	0	190	2,98	230	-1,05	520	21,74	780	32,36	1470	45,31	
METAS	CH	FTS	Oct 01	0,8	2,5	186,5	-0,52	230,6	-0,45	510,7	12,44	725,7	-21,94	1456,4	31,71	
CGM	DK	FTS	Jan 02			189	1,98	234	2,95	520	21,74	782	34,36	1472	47,31	
SP	SE	FTS	May 02	0,8	2,5	186,8	-0,22	230,8	-0,25	523,7	25,44	888,8	141,16	1412,5	-12,19	
NPL	UK	NS4	Jul 02	0,8	2,5	187	-0,02	230	-1,05	746	247,74	496	-251,64	1422	-2,69	
SMU	CS	FTS	Nov 02	0,8	2,5	120	-67,02	150	-81,05	346	-152,26	389	-358,64	1430	5,31	
NMi-VSL	NL	FTS	Mrz 03	0,8	2,5	186	-1,02	230	-1,05	509	10,74	724	-23,64	1452	27,31	
Mittelwert:						178,70	-9,36	220,38	-12,00	518,41	22,67	698,79	-54,95	1420,84	-4,33	
STABW:	1					22,37	23,68	26,82	28,35	101,74	108,46	155,62	165,21	68,29	72,99	
NPL correct	cted v	values				187 230				498 748				1425		
	1	- C	N 4				505	505	505		505	505	505	1		
	try	men	Measured			505	505	505	505	505	505	505	505			
Institute	ountry	strumen	Measured Date	λς	λs	505 Rz	505 Rz-Ref.	505 RSm	505 RSm-Ref.	505 Rmax	505 Rmax-Ref	505 Rsk	505 Rsk-Ref.			
Institute	Country	Instrumen	Measured Date	λc mm	<mark>λs</mark> µm	505 Rz nm	505 Rz-Ref. nm	505 RSm nm	505 RSm-Ref. nm	505 Rmax	505 Rmax-Ref nm	505 Rsk	505 Rsk-Ref.			
Institute PTB	Gountry	S Instrumen	Measured Date May 01	λc mm 0,8	λs μm 2,5	505 Rz nm 1245,91	505 Rz-Ref. nm	505 RSm nm 30300	505 RSm-Ref. nm	505 Rmax nm 1421,99	505 Rmax-Ref nm	505 Rsk	505 Rsk-Ref.			
Institute PTB ILM	T Country	Instrumen NS FTS	Measured Date May 01 Aug 01	λc mm 0,8 unfilt	λs µm 2,5 unfilte	505 Rz nm 1245,91 1112	505 Rz-Ref. nm -133,91	505 RSm nm 30300	505 RSm-Ref. nm	505 Rmax nm 1421,99 1248	505 Rmax-Ref nm -173,99	505 Rsk -0,222 -0,261	505 Rsk-Ref.			
Institute PTB ILM UME	Country IT TR	Instrumen	Measured Date May 01 Aug 01 Sep 01	λc mm 0,8 unfilt 0,8	λs µm 2,5 unfilte 0	505 Rz nm 1245,91 1112 1300	505 Rz-Ref. nm -133,91 54,09	505 RSm nm 30300 45980	505 RSm-Ref. nm 15680,00	505 Rmax nm 1421,99 1248 1470	505 Rmax-Ref nm -173,99 48,01	505 Rsk -0,222 -0,261 -0,28	505 Rsk-Ref.			
Institute PTB ILM UME METAS	IT TR Country	Instrument	Measured Date May 01 Aug 01 Sep 01 Oct 01	λc mm 0,8 unfilt 0,8 0,8	λs μm 2,5 unfilte 0 2,5	505 Rz nm 1245,91 1112 1300 1236,4	505 Rz-Ref. nm -133,91 54,09 -9,51	505 RSm 30300 45980	505 RSm-Ref. nm 15680,00	505 Rmax nm 1421,99 1248 1470	505 Rmax-Ref nm -173,99 48,01	505 Rsk -0,222 -0,261 -0,258 -0,258	505 Rsk-Ref. -0,04 -0,04 -0,04			
Institute ILM UME METAS CGM	DT II Country	NS FTS FTS FTS FTS	Measured Date May 01 Aug 01 Sep 01 Oct 01 Jan 02	λc mm 0,8 0,8 0,8	λs μm 2,5 unfilte 0 2,5	505 Rz nm 1245,91 1112 1300 1236,4 1302	505 Rz-Ref. nm -133,91 54,09 -9,51 56,09	505 RSm nm 30300 45980	505 RSm-Ref. nm 15680,00	505 Rmax nm 1421,99 1248 1470 1470	505 Rmax-Ref nm -173,99 48,01 48,01	505 Rsk -0,222 -0,261 -0,28 -0,258 -0,284	505 Rsk-Ref. -0,04 -0,06 -0,04 -0,04			
Institute ILM UME METAS CGM SP	TR CH DK SE	NS FTS FTS FTS FTS FTS	Measured Date May 01 Aug 01 Sep 01 Oct 01 Jan 02 May 02	λc mm 0,8 unfilt 0,8 0,8	λs μm 2,5 unfilte 0 2,5 2,5	505 Rz nm 1245,91 1112 1300 1236,4 1302 1198,3 1040	505 Rz-Ref. nm -133,91 54,09 -9,51 56,09 -47,61	505 RSm nm 30300 45980	505 RSm-Ref. nm 15680,00	505 Rmax nm 1421,99 1248 1470 1470 1412,5	505 Rmax-Ref nm -173,99 48,01 -9,49	505 Rsk -0,222 -0,261 -0,28 -0,288 -0,284 -0,285	505 Rsk-Ref. -0,04 -0,06 -0,04 -0,06 -0,06			
Institute PTB ILM UME METAS CGM SP NPL ANH	DE IT TR CH DK SE UK	New Test Stress	Measured Date May 01 Aug 01 Sep 01 Oct 01 Jan 02 May 02 Jul 02	λc mm 0,8 0,8 0,8 0,8 0,8	λs μm 2,5 unfilte 2,5 2,5 2,5	505 Rz nm 1245,91 1112 1300 1236,4 1302 1198,3 1242 720	505 Rz-Ref. nm -133,91 54,09 -9,51 56,09 -47,61 -3,91	505 RSm nm 30300 45980 99210	505 RSm-Ref. nm 15680,00 68910,00	505 Rmax nm 1421,99 1248 1470 1470 1412,5	505 Rmax-Ref nm -173,99 48,01 -48,01 -9,49	505 Rsk -0,222 -0,261 -0,28 -0,288 -0,284 -0,285 0,244 -0,285	505 Rsk-Ref. -0,04 -0,06 -0,04 -0,06 -0,06 0,46			
Institute PTB ILM UME METAS CGM SP NPL SMU SMU	Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z	NS4 FTS FTS FTS FTS FTS FTS FTS FTS	Measured Date May 01 Aug 01 Sep 01 Oct 01 Jan 02 May 02 Jul 02 Nov 02 May 02	λc mm 0,8 0,8 0,8 0,8 0,8 0,8	λs μm 2,5 unfilte 0 2,5 2,5 2,5 2,5	505 Rz nm 1245,91 1112 1300 1236,4 1302 1198,3 1242 7366 1222	505 Rz-Ref. nm -133,91 54,09 -9,51 56,09 -47,61 -3,91 -509,91 122 01	505 RSm nm 30300 45980 99210	505 RSm-Ref. nm 15680,00 68910,00	505 Rmax nm 1421,99 1248 1470 1470 1470 1412,5 1150 1410	505 Rmax-Ref nm -173,99 48,01 48,01 -9,49 -271,99 200	505 Rsk -0,222 -0,261 -0,288 -0,258 -0,284 -0,285 0,24 -0,271	505 Rsk-Ref. -0,04 -0,06 -0,04 -0,06 -0,06 0,46 -0,05 0,04			
Institute PTB ILM UME METAS CGM SP NPL SMU NMI-VSL Mii-VSL	LA Country I L L L L Country I L C L Country	NS4 FTS FTS FTS FTS FTS FTS	Measured Date May 01 Aug 01 Sep 01 Oct 01 Jan 02 May 02 Jul 02 Nov 02 Mrz 03	λc mm 0,8 0,8 0,8 0,8 0,8 0,8 0,8	λs μm 2,5 unfilte 0 2,5 2,5 2,5 2,5 2,5	505 Rz nm 1245,91 1112 1300 1236,4 1302 1198,3 1242 736 1233 1242	505 Rz-Ref. nm -133,91 54,09 -9,51 56,09 -47,61 -3,91 -509,91 -12,91	505 RSm nm 30300 45980 99210	505 RSm-Ref. nm 15680,00 68910,00	505 Rmax 1421,99 1248 1470 1470 1412,5 1150 1419	505 Rmax-Ref nm -173,99 48,01 -48,01 -9,49 -271,99 -271,99 -22,99	505 Rsk -0,222 -0,261 -0,288 -0,285 -0,284 -0,285 0,24 -0,271 -0,258	505 Rsk-Ref. -0,04 -0,06 -0,04 -0,06 -0,06 -0,06 -0,05 -0,04 -0,05			
Institute PTB ILM UME METAS CGM SP NPL SMU NMi-VSL Mittelwert: STADW	IT TR Country S N N N N N N N N N N N N N N N N N N N	NS FTS FTS FTS FTS FTS FTS FTS FTS FTS FT	Measured Date May 01 Sep 01 Oct 01 Jan 02 May 02 Jul 02 Nov 02 Mrz 03	λc mm 0,8 0,8 0,8 0,8 0,8 0,8 0,8	λs μm 2,5 unfilte 0 2,5 2,5 2,5 2,5 2,5	505 Rz nm 1245,91 1300 1236,4 1198,3 1242 736 1233 1178,40	505 Rz-Ref. nm -133,91 54,09 -9,51 56,09 -47,61 -3,91 -3,91 -12,91 -75,95	505 RSm nm 30300 45980 99210 58496,67	505 RSm-Ref. nm 15680,00 68910,00 42295,00	505 Rmax nm 1421,99 1248 1470 14170 14170 14170 1412,5 1150 1419 1370,21	505 Rmax-Ref nm -173,99 48,01 -9,49 -271,99 -2,99 -00,41	505 Rsk -0,222 -0,261 -0,288 -0,258 -0,284 -0,285 -0,241 -0,271 -0,258 -0,21	505 Rsk-Ref. -0,04 -0,06 -0,04 -0,06 -0,06 -0,06 -0,05 -0,04 0,01			

NPL corrected values	1246	98808	-0,22

	У	nen	Measured			505	505	505	505	505	505	505	505	505	505
Institute	untr	trun	Date	λC	λs	Rpk	Rpk-Ref.	Rk	Rk-Ref.	Rvk	Rvk-Ref.	Mr1%	Mr1%-Ref	Mr2%	Mr2%-Ref.
	ပိ	sul		mm	μm	nm	nm	nm	nm	nm	nm	%	%	%	%
PTB	DE	NS	May 01	0,8	2,5	134,68		636,93		254,13		7,72		89,86	
ILM	IT	FTS	Aug 01	unfilt	unfilte	129	-5,68	661	24,07	257	2,87	6	-1,72	91	1,14
UME	TR	MPC	Sep 01	0,8	0	140	5,32	650	13,07	250	-4,13	7,43	-0,29	89,92	0,06
METAS	СН	FTS	Oct 01	0,8	2,5										
CGM	DK	FTS	Jan 02			131	-3,68	661	24,07	252	-2,13	6,9	-0,82	90,1	0,24
SP	SE	FTS	May 02	0,8	2,5	152	17,32	657,1	20,17	251	-3,13	8	0,28	90	0,14
NPL	UK	NS4	Jul 02	0,8	2,5										
SMU	CS	FTS	Nov 02	0,8	2,5	184	49,32	448	-188,93	144	-110,13	13,2	5,48	89,6	-0,26
NMi-VSL	NL	FTS	Mrz 03	0,8	2,5	130	-4,68	640	3,07	244	-10,13	7,4	-0,32	90,3	0,44
Mittelwert:						142,95	9,65	622,00	-17,41	236,02	-21,13	8,09	0,44	90,11	0,29
STABW:						19,79	21,30	77,33	84,40	40,77	43,80	2,34	2,56	0,45	0,47

Some selected Diagrams

open symbol shows corrected value of NPL

Data files 505smd Rvi±ui(Rv)

open symbol shows corrected value of NPL

open symbol shows corrected value of NPL

open symbol shows corrected value of NPL

Data files 505smd Rki±ui(Rk)

3. DATA FILE 7080.SMD

	У	ner	Measured			7080	7080	7080	7080	7080	7080	7080	7080	7080	7080
Institute	untı	trun	Date	λc	λs	Ra	Ra-Ref.	Rq	Rq-Ref.	Rp	Rp-Ref.	Rv	Rv-Ref.	Rt	Rt-Ref.
	ů	lns		mm	μm	nm	nm	nm	nm	nm	nm	nm	nm	nm	nm
PTB	DE	NS	Mai 01	0,3	3	423,65		484,11		754,08		721		1484,2	
UME	ΤY	MPC	Sep 01	0,3	0	430	6,35	490	5,89	760	5,92	740	19,01	1520	35,79
METAS	CH	FTS	Okt 01	0,3	3	423,8	0,15	484,2	0,09	753,8	-0,28	721	0,01	1482,8	-1,41
CGM	DK	FTS	Jan 02			422	-1,65	482	-2,11	755	0,92	730	9,01	1501	16,79
SP	SE	FTS	Mai 02	0,3	3	420,4	-3,25	480,5	-3,61	754,7	0,62	718,2	-2,79	1472,9	-11,31
NPL	UK	NS4	Jul 02	0,3	2,5	423	-0,65	483	-1,11	725	-29,08	754	-1474,99	1507	22,79
SMU	CS	FTS	Nov 02	0,8	3	216	-207,65	250	-234,11	401	#####	425	-295,99	947	-537,21
NMi-VSL	NL	FTS	Mrz 03	0,3	3	419	-4,65	479	-5,11	748	-6,08	713	-7,99	1474	-10,21
Mittelwert	t:					397,23		454,10		706,45		#####		######	
STABW:						73,30		82,53		123,89		#####		193,29	
)NPL	Rp(-1)		
NPL corr	ecte	ed				424		484		754		721		1484	
		Lie	Mooguro	4		7080	7080	7080	7080	7080	7080	7080	7080	1	
Institute	try	mme	Dete	L L L	20	7000		7000 DSm		Dmov		Dok	Dek Def		
Institute	our	Istri	Dale	λC mm	ΛS	RZ nm	RZ-REI.	Rolli	Rom-Rei.	Rillax	max-re	RSK	RSK-REI.		
DTD			Moi 01	0.2	μm	1475.05	11111	00700	11111	1400 4	11111	0.014			
	TV	MDC	Son 01	0,3	0	1475,05	24.05	99790	120.00	1400,4	20.65	0,014	0.00		
		ETC	Okt 01	0,3	2	1474 9	24,95	99920	10,00	1520	39,05	0,015	0,00		
CGM		ETS	Jan 02	0,5	5	1474,0	10.05	99000	10,00	1501	20.65	0,013	0,00		
	SE	ETS	Mai 02	03	3	1463.5	11 55	00860	70.00	1/67.2	13 15	0,012	0,00		
		NS4		0,5	25	1403,3	3 05	99000	120.00	1407,2	-13,13	0,014	0,00		
SMLL		FTS	Nov 02	0,5	2,5	827	-648.05	10.6	-129,00 ########	000	######	-0.14	-0,01		
NMi_VSI		FTS	Mrz 03	0,0	3	1461	-0-0,05	99760	-30.00	1470	-10 35	0.052	-0,13		
Mittelwort		110	10112 03	0,0	5	1305 70	-14,00		-30,00	1301.26	-10,00	0,002	0,04		
STAB/V/	1					230.16		#######		237 11		0,00			
STADW.	1					230,10				257,11		0,00		ł	
NPL corr	octo	h				1475		99825		1		0.01		l	
		<i>.</i> u				1470		00020				0,01		ł	
	~	ler	Measured	d		7080	7080	7080	7080	7080	7080	7080	7080	7080	7080
Institute	untr	trum	Date	λc	λs	Rpk	Rpk-Ref	Rk	Rk-Ref.	Rvk	Rvk-Ref	Mr1%	Mr1%-Ref	Mr2%	Mr2%-Ref.
	Col	Inst		mm	μm	nm	nm	nm	nm	nm	nm	%	%	%	%
PTB	DE	NS	Mai 01	0,3	3										
UME	ΤY	MPC	Sep 01	0,3	0										
METAS	СН	FTS	Okt 01	0.3	3										
CGM	DK	FTS	Jan 02	- , -		116	116.00	1407	1407.00	12	12.00	10.4	10.40	99.9	99.90
SP	SE	FTS	Mai 02	0.3	3				. ,			- /	-, -		
NPL	UK	NS4	Jul 02	0.3	2.5										
SMU	CS	FTS	Nov 02	0.8	3	125	125.00	505	505,00	627	627.00	5.89	5,89	77,3	77,30
NMi-VSL	NL	FTS	Mrz 03	0,3	3				- ,			,		,-	,
Mittelwert	t:				•	120,50		956,00		319,50		8,15		88,60	
STABW:	1					6,36		637,81		434,87		3,19		15,98	
L						- /		,		7		, -		.,	

Some selected Diagrams

open symbol shows corrected value of NPL

Data files 7080smd Rvi±ui(Rv)

open symbol shows corrected value of NPL

[#] open symbol shows corrected value of NPL

open symbol shows corrected value of NPL

Data files 7080smd Rski±ui(Rsk)

open symbol shows corrected value of NPL

open symbol shows corrected value of NPL

Appendix E1

Degree of Equivalence

Depth Setting Standard Type A

1 Depth standard EN806 R1 0,2 μm

Degree of Equivalence for Pt

Degree of Equivalence for **D**

2 Depth standard EN806 R2 1,5 μM

Degree of Equivalence for Pt

Degree of Equivalence for *D*

DoE Depth standard EN806 1,5 µm (En<1)

3 DEPTH STANDARD EN806 R3 8,0 μM

Degree of Equivalence for Pt

DoE Depth standard EN806 8 µm (En<1)

*) DoE(*U*ir) for CEM cannot be calculated, since $u_i < u_{ref}$

Degree of Equivalence for *D*

DoE Depth standard EN806 8 µm (En<1)

Appendix E2

Degree of Equivalence

Roughness Standard Type C

1 ROUGHNESS STANDARD P114A

Degree of Equivalence for Ra

DoE Geometry standard P114A/528-RS5 (En<1)

Degree of Equivalence for Rz

DoE Geometry standard P114A/528-RS5 (En<1)

DoE (*U*ir) for SMU cannot be calculated, since $U_i < U_{ref}$

Degree of Equivalence for Rmax

DoE Geometry standard P114A/528-RS5 (En<1)

DoE (*U*ir) for SMU cannot be calculated, since $U_i < U_{ref}$

Degree of Equivalence for RSm

2 ROUGHNESS STANDARD 7070/PGN10

Degree of Equivalence for Ra

DoE Geometry standard 7070/PGN10 (En<1)

Degree of Equivalence for Rz

Degree of Equivalence for Rmax

DoE Geometry standard 7070/PGN10 (En<1)

DoE (Uir) for SMU cannot be calculated, since $U_i < U_{ref}$

3 ROUGHNESS STANDARD 8194/PGN3

Degree of Equivalence for Ra

Degree of Equivalence for Rz

DoE (*U*ir) for SMU cannot be calculated, since $U_i < U_{ref}$

Degree of Equivalence for Rmax

DoE Geometry standard 8194/PGN3 (En<1)

Degree of Equivalence for RSm

Appendix E3

Degree of Equivalence

Roughness Standard Type D

1. ROUGHNESS STANDARD 686SG

Results of Ra

DoE Roughness standard 686sg (En<1)

Results of Rz

DoE Roughness standard 686sg (En<1)

Results of *Rmax*

DoE Roughness standard 686sg (En<1)

Results of Rk

DoE Roughness standard 686sg (En<1)

Results of Rpk

DoE Roughness standard 686sg (En<1)

Results of Rvk

DoE Roughness standard 686sg (En<1)

Results of Mr1

DoE Roughness standard 686sg (En<1)

Results of *Mr2*

DoE Roughness standard 686sg (En<1)

2. ROUGHNESS STANDARD 633G

Results of Ra

DoE Roughness standard 633g (En<1)

Results of Rz

DoE Roughness standard 633g (En<1)

DoE (Uir) for SMU cannot be calculated, since Ui < Uref

Results of *Rmax*

DoE Roughness standard 633g (En<1)

DoE Roughness standard 633g (En<1)

Results of Rpk

DoE Roughness standard 633g (En<1)

Results of Rvk

DoE Roughness standard 633g (En<1)

Results of Mr1

DoE Roughness standard 633g (En<1)

DoE Roughness standard 633g (En<1)

3. ROUGHNESS STANDARD 629F

Results of Ra

DoE Roughness standard 629f (En<1)

DoE (Uir) for SMU cannot be calculated, since Ui < Uref

Results of *Rmax*

DoE Roughness standard 629f (En<1)

DoE Roughness standard 629f (En<1)

Results of Rpk

DoE Roughness standard 629f (En<1)

Results of Rvk

DoE Roughness standard 629f (En<1)

Results of Mr1

Results of Mr2

4. ROUGHNESS STANDARD 1006

Results of Ra

DoE Roughness standard 1006 (En<1)

Results of Rz

Results of *Rmax*

DoE Roughness standard 1006 (En<1)

Results of Rk

Results of Rpk

DoE Roughness standard 1006 (En<1)

Results of Rvk

DoE Roughness standard 1006 (En<1)

Results of Mr1

DoE Roughness standard 1006 (En<1)

DoE Roughness standard 1006 (En<1)

