Spintronics EMPIR project publishes papers in prestigious journals

Circuit board

Characterising materials to increase the understanding of spintronics for the next generation of electronics

Smaller, faster, and more efficient electronic devices are a vital part of Europe’s economic growth and industrial innovation, and could significantly contribute to its goal of a 20 % reduction in CO2 emissions by 2020. Spintronics, which uses a fundamental property, intrinsic spin, of electrons to process information in a way that is analogous to charge in traditional electronics, holds potential to meet such aims. Researchers have been exploring materials that have geometric structure which protect the configuration of electrons’ spin. These are known as topologically-protected spin structures (TSS), and could enable greater data storage and device efficiency. However, at the start of this project fundamental understanding and reliable characterisation tools for TSS were still lacking.

EMPIR project Metrology for topical spin structures (17FUN08, TOPS) has developed and validated measurement tools and techniques for describing TSS, helping to identify key parameters that determine the formation, size, and stability of TSS. By performing fundamental investigations on spintronics, the project has progressed TSS towards standardisation and thus supported Europe’s continuing expertise and competitiveness in electronic device manufacturing.

The research of the project has been published in a number of prestigious publications, including:

In addition, in November 2019 two project members, Craig Barton from NPL and Katharina Zeissler from the University of Leeds, were invited to give presentations at the Conference on Magnetism and Magnetic Materials in Las Vegas, being one of the most prestigious magnetism conferences. This allowed an excellent opportunity to present an overview of the most recent work to a focused audience of approximately 100 people from science and industry.

Project Coordinator Mark Bieler from PTB said

‘This project is nicely highlighting the importance of metrology in basic science. On example is measurement of the Dzyaloshinskii-Moriya-Interaction (DMI) constant, which is responsible for the formation of TSS. Together with collaborators the project partners are currently performing a comparison of DMI measurements with the aim to publish guidelines on how to accurately measure the DMI’.

This EMPIR project is co-funded by the European Union's Horizon 2020 research and innovation programme and the EMPIR Participating States.

Want to hear more about EURAMET?
Sign up for EURAMET newsletters and other information
Follow us on LinkedIn and Twitter


Select your area of interest
EMPIR optical clocks project advances fundamental research

Exploiting optical clocks for time measurement and sensor development more

Members of EMPIR project win international award

Consortia members of EMPIR project GRACE win IEC 1906 award for work in the graphene standardisation field more

EMPIR project on renewable gas flow measurements commissions new test benches

Investigating renewable gas flow meter accuracy for compliance with the EU Measuring Instruments Directive more

Results of EMPIR project receives international recognition

A new digital communication format developed by an EMPIR project is expected to be the future for the communication of metrology data more

European Partnership on Metrology successfully passed Parliament and Council

The Metrology Partnership enters next stage after adoption more

Page 1 of 176.