Spintronics EMPIR project publishes papers in prestigious journals

Circuit board

Characterising materials to increase the understanding of spintronics for the next generation of electronics

Smaller, faster, and more efficient electronic devices are a vital part of Europe’s economic growth and industrial innovation, and could significantly contribute to its goal of a 20 % reduction in CO2 emissions by 2020. Spintronics, which uses a fundamental property, intrinsic spin, of electrons to process information in a way that is analogous to charge in traditional electronics, holds potential to meet such aims. Researchers have been exploring materials that have geometric structure which protect the configuration of electrons’ spin. These are known as topologically-protected spin structures (TSS), and could enable greater data storage and device efficiency. However, at the start of this project fundamental understanding and reliable characterisation tools for TSS were still lacking.

EMPIR project Metrology for topical spin structures (17FUN08, TOPS) has developed and validated measurement tools and techniques for describing TSS, helping to identify key parameters that determine the formation, size, and stability of TSS. By performing fundamental investigations on spintronics, the project has progressed TSS towards standardisation and thus supported Europe’s continuing expertise and competitiveness in electronic device manufacturing.

The research of the project has been published in a number of prestigious publications, including:

In addition, in November 2019 two project members, Craig Barton from NPL and Katharina Zeissler from the University of Leeds, were invited to give presentations at the Conference on Magnetism and Magnetic Materials in Las Vegas, being one of the most prestigious magnetism conferences. This allowed an excellent opportunity to present an overview of the most recent work to a focused audience of approximately 100 people from science and industry.

Project Coordinator Mark Bieler from PTB said

‘This project is nicely highlighting the importance of metrology in basic science. On example is measurement of the Dzyaloshinskii-Moriya-Interaction (DMI) constant, which is responsible for the formation of TSS. Together with collaborators the project partners are currently performing a comparison of DMI measurements with the aim to publish guidelines on how to accurately measure the DMI’.

This EMPIR project is co-funded by the European Union's Horizon 2020 research and innovation programme and the EMPIR Participating States.

Want to hear more about EURAMET?
Sign up for EURAMET newsletters and other information
Follow us on LinkedIn and Twitter


Select your area of interest
Journal paper describing work of EMRP project is favourite from last 15 years

Paper in journal Nature Physics is featured as one of the editors’ favourites from the journal’s 15- year lifetime more

New faster methods for measuring energy absorption from mobile phones

EMPIR project has improved measurements for the rate at which energy is absorbed by the human body when using smartphones more

Machine learning and data analysis video tutorials available from EMPIR project

Project on factory of the future is building calibration capabilities for advanced, digital-only industrial sensors more

Figure: a) A calculated back focal plane image with θ=70°, ϕ=345° and z0 = 60nm. b) A measured back focal plane image of an NV-center. From J. Christinck et al., Appl. Phys. B 126, 161 (2020). Copyright PTB, published with kind permission of PTB
EMPIR project contributes to European Metrology Network for Quantum Technologies

Improving sources of single photons to accelerate quantum technology innovation more

EMPIR project gives first access to algorithms used for MR-based EPT

Assessing new MRI technologies using quantitative methods for more accurate clinical diagnoses more

Page 1 of 170.