News

Optical atomic clock used to measure gravitation for the first time

The PTB transportable optical lattice clock, inside its trailer at LSM

EMRP project makes measurement using new transportable clock

EMRP collaborative project '<link research-innovation search-research-projects details>International timescales with optical clocks' (SIB55, ITOC) made significant advances in addressing some of the measurement challenges associated with the possible forthcoming change to redefine the second in terms of an optical transition frequency.

In addition, the project partners used one of the world's only transportable optical atomic clocks to measure gravitation for the first time. This was achieved by measuring the gravitational redshift of the clock operating frequency, which is possible due to the very high levels of stability and accuracy demonstrated by optical clocks.

Until now, such delicate clocks have been restricted to laboratories at a few major research institutions; however, researchers at PTB, Germany, developed a new transportable strontium optical lattice clock, opening up the possibility of performing measurements in the field.

The team measured the gravity potential difference between the exact location of the clock at the Laboratoire Souterrain de Modane (LSM) in the Fréjus road tunnel between France and Italy and a second clock at INRIM – located 90 kilometres away in Torino, Italy, at a height difference of about 1000 metres.

With improvements to the accuracy of the transportable optical clock, this technique has the potential to resolve height differences as small as 1 centimetre across the Earth's surface. The advantage of using optical clocks is that they can make measurements at specific points, in contrast to satellite-based measurements which average the gravity potential over length scales of about 100 kilometres.

This novel method could lead to higher resolution measurements of the Earth's gravity potential, allowing scientists to monitor – with unprecedented accuracy – continental height changes related to sea levels and the dynamics of ocean currents. It will also lead to more consistent national height systems.

Helen Margolis, Fellow in Optical Frequency Standards and Metrology at NPL, UK, said

"Our proof-of-principle experiment demonstrates that optical clocks could provide a way to eliminate discrepancies and harmonise measurements made across national borders. One day such technology could help to monitor sea level changes resulting from climate change."

The results of the experiment were published in the following articles:

Nature Physics article

The Engineer article


This EMRP joint research project is part of EURAMET’s European Metrology Research Programme. The EMRP is jointly funded by the EMRP participating countries within EURAMET and the European Union.

Select your area of interest
Paper describing work of Large Volume Metrology EMPIR project wins outstanding paper award
2024-03-27

Improving large-scale dimensional measurements for manufacturing more

EMPIR project publishes good practice guide to aid uptake of standards related to waveguides
2024-03-25

From 2012 to 2016 the IEEE published standards for high-frequency waveguides. EMPIR NeWITT project supports their uptake more

EMPIR project publishes freely available appearance measurement training videos on YouTube
2024-03-21

The videos regarding the metrology of appearance cover a variety of topics and will help increase photometry and radiometry expertise across National ... more

EMPIR project leads publication of first ISO measurement standard on graphene
2024-03-19

Graphene could revolutionise many technology sectors but needs standardisation more

BIPM initiative: Young Metrologists’ 2050+ Vision
2024-03-18

Take part in EURAMET workshop and BIPM survey! more

Page 1 of 225.