EMPIR project leads the way in standardisation for magnetic nanoparticles

Gold nanoparticles illustration

An EMPIR project publishes first standards and roadmap for magnetic nanoparticles used in a wide range of applications in Europe

Magnetic nanoparticles (MNPs) are extremely small particles containing a magnetic metal core and a nonmagnetic shell layer that gives a functional property.

Despite a single MNP being only 5 to 100 nm diameter on average- around 1000 times smaller than the width of a human hair - they are widely used in a diverse range of applications. As MPNs can be precisely activated by magnetic fields they are used in a range of industrial applications, from vacuum-tight magnetic bearings, improving performance of audio speakers to purifying water in industry.

MNPs are also routinely used in the biomedical field; for separating out cells, isolating DNA or proteins, as a contrast agent to enhancing magnetic resonance imaging (MRI) data and are currently being used in clinical trials to treat cancer using ‘magnetic hyperthermia’. Here MNP suspensions are injected into a tumor and are ‘heated up’ by an external magnetic field – effectively ‘frying’ the cancer cell.

However, despite presence in everyday electronics, biological or medical applications there were no international standards to specify the magnetic characteristic of MNP or any MNP application.

The project

This lack of standards was addressed by the completed EMPIR project Towards an ISO standard for magnetic nanoparticles (16NRM04, MagNaStand).

During its lifetime the project results inputted into the first international standard on MNPs: ISO/TS 19807-1:2019 Part 1: Specification of characteristics and measurements for magnetic nanosuspensions. This was followed by helping to develop a second standard in this series, which was published in 2021, a year after the project concluded: ISO/TS 19807-2:2021 Part 2: Specification of characteristics and measurement methods for nanostructured magnetic beads for nucleic acid extraction.

Members of the consortium also helped contribute to the first ever ‘road map’ for the use of MNPs in the treatment of cancer using magnetic hyperthermia. This paper, which considers the clinical aspects, need for standardised methodologies for characterising relevant MNP parameters, as well as the evolution of science and technology behind magnetic hyperthermia, will prove vital in helping standardise this form of patient treatment for cancer.

In addition to the standards and publications the project has also helped establish the first ever technical service according to according to ISO/TS 19807-1  at the Swedish National Measurement Institute (NMI) RISE for MNP magnetic AC susceptibility measurements for customers.
In addition, the German NMI, PTB, now offers a service for MNP parameters, such as dynamic magnetisation or ‘specific loss power’ in magnetic field hyperthermia, which is a measure of the heating efficiency of these particles in this form of treatment.

The coordinator of this project, Uwe Steinhoff from PTB said “As we say in our publication on the subject, given the economic importance of MNPs and technologies which rely on them, it is in itself a striking finding that not one laboratory in the world can currently issue accredited test certificates for the hyperthermia performance of MNPs or related characteristics.”

This EMPIR project is co-funded by the European Union's Horizon 2020 research and innovation programme and the EMPIR Participating States.

Want to hear more about EURAMET?

Sign up for EURAMET newsletters and other information

Follow us on LinkedIn and Twitter

Select your area of interest
EMPIR project supplies time and frequency dissemination for aerospace industry

An EMPIR project has extended the size of its time and frequency dissemination test-beds to supply two prominent aerospace companies more

EMPIR project on biomethane contributes to several ISO projects

Methods proposed by the project have been accepted by an ISO working group, as part of a standards collaboration with CEN more

Comprehensive guide to detecting mercury in the environment publicly available

Mercury is highly toxic to humans, animals and ecosystems. Its oxidised forms are particularly harmful but prior to the work of this project lacked va... more

EMPIR project assesses European facilities for calibrating radon detectors

Work by an EMPIR project to improve radon monitoring has completed an assessment of 15 radon calibration facilities in Europe more

EMPIR project protects European gas networks while promoting key biofuels

Improving the quality of biomethane injected into existing European gas networks more

Page 1 of 197.