News

EMPIR project develops new ionisation gauge for high vacuum measurement

Model gauge as manufactured by the VACOM company. ©LNE – Philippe Stroppa

The new gauge will be made available to calibration laboratories and the research will feed into new ISO standards

The project

High and ultra-high vacuums are used for cutting edge materials research and in the production of microelectronics. Ionisation gauges are the only method for measuring pressure in such vacuums. Different approaches to constructing ionisation gauges, and the different gasses used for the ionisation process, have led to significant differences in the relative sensitivity factors between them with all lacking long-term stability. The performance of these approaches could be greatly improved by standardisation.

Recently completed EMPIR project Towards a documentary standard for an ionisation vacuum gauge (16NRM05, Ion gauge) worked to specify all relevant parameters for an improved and standardised ionisation gauge. The technical results will inform new documentary ISO standards on ionisation gauges.

Innovative standardised ionisation gauge

The project developed a standardised ionisation gauge that has standard features and performance, meaning it can be used to achieve measurement traceability.

The gauge will provide a reliable reference standard for calibration laboratories and will allow manufacturers of vacuum gauges to produce the gauge by the forthcoming ISO Technical Specification, which will be the subject of a new working group and also a new EMPIR project Developing an ISO Technical Specification "Characteristics for a stable ionisation vacuum gauge" (20SIP01, ISO Gauge).

As a first instrumentation manufacturer INFICON is taking steps to produce the innovative gauge. Since the company aims to offer it together with a compact electrical controller, which requires development, it will take some more time before the set can be offered to customers.

This work found interest at CERN and was presented in an article entitled Vacuum metrology: made to measure in the journal CERN COURIER. This new development will provide greater accuracy to the vacuum market, and to the many industries it supports such as materials researchers and electronics manufacturers.

Project Coordinator Karl Jousten from PTB said that this is the first reliable ionisation vacuum gauge developed so far and it is the first significant development for vacuum metrology since the invention of the spinning rotor gauge in the 1980s.

This EMPIR project is co-funded by the European Union's Horizon 2020 research and innovation programme and the EMPIR Participating States.


Want to hear more about EURAMET?

Sign up for EURAMET newsletters and other information
Follow us on LinkedIn and Twitter

Select your area of interest
New standards for X-ray tube focal spot sizes at the nano- and micrometre scale
2022-05-31

EMPIR project develops new NanoXSpot (NxS) gauge with line groups, Siemens star, and hole patterns for focal spot size measurement down to 100 nm more

EMPIR project provides new tools to deal with nuclear incidents
2022-05-24

Better ways of dealing with radioactive incidents, such as occurred at Fukushima and Chernobyl, have been developed by an EMPIR project more

Global collaboration for digital transformation
2022-05-19

World Metrology Day 2022 - Metrology in the Digital Era more

20 May: Measurement science community celebrates ‘World Metrology Day’
2022-05-19

The theme in 2022 is ‘Metrology in the Digital Era’ more

Comprehensive analysis of non-governmental radiation networks published
2022-05-18

EMPIR project helps extend ionising radiation monitoring in Europe in the event of nuclear incident more