News

Beta spectra measurement Good Practice Guides and data now available

Doctors with Patient at Scan

EMPIR project will help to improve knowledge of beta spectra

The project

Recently completed EMPIR project Radionuclide beta spectra metrology (15SIB10, MetroBeta) has developed new measurement approaches for beta radiation, used in a broad range of applications, in particular in national metrology laboratories and environmental measurement laboratories.

The project developed theoretical and experimental approaches to measure the spectra of beta radiation to an unprecedented level of accuracy, including modelling the shape of spectra for the first time, and the development of novel beta radiation detection techniques. These methods allow the energy of beta radiation to be measured with greater precision, supporting the more effective use of radionuclides in applications including medical diagnosis, nuclear power management, environmental protection and even the detection of neutrinos in astrophysics. 

Good Practice Guides

The project consortium produced four Good Practice Guides, which are available for download. These will be useful for laboratories intending to initiate new measurement programmes using the advanced detectors developed with this project, or by laboratories wishing to improve their measurement technique with more standard detectors. These are:

Beta spectra data

The project developed data sets, which are now available:

The improved beta spectra and associated anti-neutrino spectra (calculated using BetaShape) will be useful to improve:

  • the prediction of the decay heat of existing nuclear power reactors,
  • the modelling of new nuclear power reactors designs,
  • the safeguards of operating nuclear power reactors (anti-neutrino spectra),
  • the calculated dose delivered to cancer patients, in particular for new and emerging radiopharmaceuticals,
  • the understanding required in fundamental research in the fields of astrophysics, nuclear structure and atomic masses,
  • the determination of the neutrino mass in fundamental physics, and
  • the precision of primary activity measurements in national metrology laboratories.

This EMPIR project is co-funded by the European Union's Horizon 2020 research and innovation programme and the EMPIR Participating States.

Want to hear more about EURAMET?
Sign up for EURAMET newsletters and other information
Follow us on LinkedIn and Twitter

Select your area of interest
Calibration of medical infusion pumps explained in video and flyer
2021-08-25

EMPIR project flyer and video will help the understanding of the importance of metrology for the accuracy and traceability of medical device flow meas... more

Potential Partnership Call 2021: Stage 2 OPEN
2021-08-24

Call for Green Deal and Normative proposals more

Completed EMPIR project contributes to improved radon measurements
2021-08-17

New radon measurements will enable regulators to reliably assess and limit public radon exposure more

EMPIR project’s practice guides and software being adopted by nuclear industry
2021-07-13

Results from a completed EMPIR project will have impact in the nuclear industry and laboratories around the world measuring radioactive material more

EMPIR project delivers new methodology and standards for ultra-high voltages
2021-07-06

Ultra-high voltages are being used in a range of fields but until recently lacked the instrumentation and standards to ensure confidence in their use ... more