New faster methods for measuring energy absorption from mobile phones

Mobile phones

EMPIR project has improved measurements for the rate at which energy is absorbed by the human body when using smartphones

Completed European Metrology Programme for Innovation and Research (EMPIR) project SAR measurement using vector probes (16NRM07, Vector SAR) developed traceable calibration methods, software and modelling tools, as well as uncertainty analysis for the energy from mobile phone electromagnetic fields which is absorbed by their users, called the specific absorption rate (SAR). International regulations require that this does not exceed safe limits.

Previously existing single sensor SAR measurement approaches required excessive testing time and were unable to measure all possible configurations of modern mobile devices. This EMPIR project supported the development of an improved vector-based measurement approach, which uses arrays of sensors to “image” the fields. This is 100 times faster and measures a wider range of parameters than previous methods.

Results from this EMPIR project have confirm the methods described into the new IEC 62209-3 standard Measurement procedure for the assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices - Part 3: Vector measurement-based systems (Frequency range of 600 MHz to 6 GHz), which allows the use of vector based systems for SAR testing, and also supports the development of new 5G standards.

Thanks to a fruitful partnership within the project, LNE, the French National Metrology Institute, has acquired a vector probe measurement system from industrial partner KAPTEOS. This system will be used as a basis for establishing a new calibration and measurement capability towards SAR measurement traceability using traditional and vector‑probe array systems.

Project coordinator Djamel Allal from LNE said

‘Metrologically approved methods developed within the project establishing traceability of dedicated measurement systems will help deploy new 5G devices and MIMO (multiple-in multiple-out)  and beamforming technologies for which an unprecedented number of test configurations are needed to ensure safety’.

The outcomes from this project will reduce testing time for mobile device manufacturers, decrease the time to market, and build higher public confidence in mobile phone safety.

This EMPIR project is co-funded by the European Union's Horizon 2020 research and innovation programme and the EMPIR Participating States.

Want to hear more about EURAMET?

Sign up for EURAMET newsletters and other information
Follow us on LinkedIn and Twitter


Select your area of interest
New faster methods for measuring energy absorption from mobile phones

EMPIR project has improved measurements for the rate at which energy is absorbed by the human body when using smartphones more

Machine learning and data analysis video tutorials available from EMPIR project

Project on factory of the future is building calibration capabilities for advanced, digital-only industrial sensors more

Figure: a) A calculated back focal plane image with θ=70°, ϕ=345° and z0 = 60nm. b) A measured back focal plane image of an NV-center. From J. Christinck et al., Appl. Phys. B 126, 161 (2020). Copyright PTB, published with kind permission of PTB
EMPIR project contributes to European Metrology Network for Quantum Technologies

Improving sources of single photons to accelerate quantum technology innovation more

EMPIR project gives first access to algorithms used for MR-based EPT

Assessing new MRI technologies using quantitative methods for more accurate clinical diagnoses more

New primary method for temperature measurement moves a step closer

Two EURAMET funded projects help redefine the kelvin, reach the world’s lowest temperature measurement uncertainties and demonstrate a new way to meas... more

Page 1 of 170.