Case Studies: Supporting light-based and X-ray technology innovation in manufacturing

As industrial automation advances, enhancing the competiveness of European industries worth billions of euros requires innovation. From controlling and monitoring movements of robotic machine tools making intricate parts to determining the quality of finished products, light has the potential to revolutionise manufacturing processes. To accelerate these innovations, new ways to monitor and correct manufacturing procedures using inline measurements with instantaneous feedback for adjustments are needed. Light-based and X-ray technologies could provide the tools needed to make this change. Interferometry, a lab-based measurement technique using light, has great potential for applications in diverse industrial settings from manufacturing miniscule electronic circuits to the precision positioning of aircraft wings. However, research is needed to make this highly accurate technique available to industrial users. Increasing the quality of European products and generating new on-machine or in-line measurement capabilities will enhance the competiveness of many highly regarded European industries.

PRECISION POSITIONING FOR ELECTRONICS

Europe is aiming to capture 20% of the global silicon wafer production market, with an estimated value of 11.5 billion euro by 2025. To do so, it needs to develop innovative manufacturing techniques for producing the next generation of larger silicon wafers with increased numbers of electronic circuits. Efficient production methods are needed to boost EU manufacturing productivity and create low cost electronics.

Download the full case study

ENSURING PRECISION COMPONENT QUALITY

The automotive and aerospace industries, worth billions of Euro, use precision engineering production processes in which robotic arms carrying machine tools make complex small-scale movements in 3D. Ensuring that the parts made meet specification relies on confirming their dimensions and also that machine tools precisely follow pre-set moves. Automation, based on identifying movement errors early, has the potential to increase precision engineering productivity and so boost European competitiveness.

Download the full case study

MEASURING LENS IMPLANTS ACCURATELY

Reducing micropart size allows new functionality in smaller spaces, but confirming the accuracy of tiny dimensions is extremely challenging. Often simple shapes are used to calibrate instruments measuring miniscule features, increasing the match between these shapes and the real measurement would improve accuracy. One area where this is critical is for instruments used to measure the eyes corneal curvature to aid lens implant selection during sight restoration after cataract surgery.

Download the full case study

X-RAY MEASUREMENT SMOOTHS INSULIN FLOW

Drug delivery systems and fuel injection nozzles are examples of applications where microparts with inaccessible yet critical dimensions are used. Reliable quality assurance is essential during their manufacture to ensure assembled systems function as designed. X-ray Computed Tomography (CT), commonly used in medical imaging and in weld defect analysis, is a technique with great potential for reliably assessing internal dimensions, but it requires better characterisation before it can be introduced.

Download the full case study​​​​​​​