

Reference Data for Trustworthy Machine Learning/ Al

Markus Bär

Mathematical Modelling and Data Analysis, PTB EMN for Mathematics and Statistics, EURAMET

Metrology for Digital Transformation – Online September, 23rd, 2021

Content

 Motivation: Reference data for Al/machine learning

 Example: Metrology of automated ECG analysis – EMPIR Project 18HLT07 (2019 – 2022)

Background:

Future research in mathematics and statistics for metrology

Machine learning and artificial intelligence:

Application in sensor networks, advanced manufacturing,
 medical physics (e. g. PTB AI for Health) <--> large data sets

Virtual metrology and digital twins:

- Competence VirtMet@PTB
- Intl. Workshop of VirtMet, EMNs MATHMET & AdvManu (Sept. 21-22, 2021, 120 participants from > 20 countries)
- Simulation of realistic physics-based models
- Proper treatment of uncertainties, uncertainty quantification
- Validation by comparison to measurements

Al Survey among 14 European NMIs

Research Priorities?

Reliability (19)

Robustness, Repeatability, Training data quality

Metrology Support?

Uncertainty, traceability (12)

- Reference data bases (8)
 - Measurements, simulation data ("digital twins"), quality ?
- Standardization concepts (6)

Metrology for ECG data analysis

Objectives (EMPIR Project MedalCare, 2019 – 2022)

Uncertainty Analysis

Metrology for advanced data analysis:
 Benchmark data analysis & AI methods

Synthetic ECG-Data of virtual population

- Reference data for AI:
 - i. Clinical ECG data base (here PTB-XL) with diagnosis
 - ii. Synthetic data base with "ground truth"

Computational Model

Measurements

PTB - XL clinical reference data base

- 22.000 ECG-recording (10s)
- 12-lead ECG measurements

NORM

 Diagnostic (62) and rhythm (24) statements according SCP ISO-standard

Superclasses 10000 8000 6000 4000 2000

STTC

Conduction disturbance (CD)

P. Wagner, N. Strodthoff, et al. Scientific Data (2020)

CD

HÝP

MI

Benchmarking methods

Machine Learning for ECG Classification

Benchmarking: Diagnosis

Method	all	diag.	sub-diag.	super-diag.	form	rhythm
inception1d	.925(08)	.931(09)	.930(10)	.921(06)	.899(22)	.953(13)
xresnet1d101	.925(07)	.937(08)	.929(14)	.928(05)	.896(12)	.957(19)
resnet1d_wang	.919(08)	.936(08)	.928(10)	.930(05)	.880(15)	.946(10)
fcn_wang	.918(08)	.926(10)	.927(11)	.925(06)	.869(12)	.931(08)
lstm	.907(08)	.927(08)	.928(10)	.927(05)	.851(15)	.953(09)
lstm_bidir	.914(08)	.932(07)	.923(12) .859(16)	.921(06)	.876(15)	.949(11)
Wavelet+NN	.849(13)	.855(15)		.874(07)	.757(29)	.890(24)
ensemble	.929(07)	.939(08)	.933(11)	.934(05)	.907(12)	.965(07)

"Heatmapping" / Explainability

N. Strodthoff, et al. IEEE Trans. Biomed. Health Informatics (2020)

"Digital twin"

WP1: Modelling pipeline – Ventricles

Simulation with 450 ms (10): Bidomain: 3.29 hours Pseudo-bidomain: 1.77 hours R-E+ with Lead Field: 63 s

K. Gillette, A. Prassl, G. Plank et al. (2021)

Digital Twin II

WP1: Modelling pipeline – Model cohort

Models: 13 (9 male, 4 female)

Model Resolution: 1201 +/- 56.21 microns

K. Gillette, A. Prassl, G. Plank et al. (2021)

Simulated ECGs

WP1+3: Modelling pipeline – ECG simulation + processing

Validation by statistical comparison of synthetic data base with PTB-XL

Summary

Metrology approach to Trustworthy ML/ AI: Uncertainty evaluation, robustness, explainability

Training data are key: Lack of high-quality references

- -> Well characterized measurement data
- -> Validated synthetic reference data from "digital twins"

Input to standardization?

Physikalisch-Technische Bundesanstalt Braunschweig und Berlin

Abbestraße 2-12 10587 Berlin

Prof. Dr. Markus Bär

Department 8.4 Mathematical Modelling & Data Analysis

Telefon: +49 30 3481 7687 E-Mail: markus.baer@ptb.de

www.ptb.de

PTB Strategy "Metrology for AI in Medicine"

Autumn 2020: Strategy paper analysing demands regarding Standardisation & Regulation of AI products (inter alia) from

- German Government's Strategy Artificial Intelligence
- DIN "AI Standardisation Roadmap"
- EUROLAB position paper
- FDA Regulatory Framework Proposal

Key messages

- Core requirements:
 - Functionality and performance

 Uncertainty
 - Robustness
 - Explainability
- Essential: Selection & assessment of data used

Implementation

- Metrology for AI in medicine as a nucleus (coordinators Hans Rabus, David Auerbach)
- Focus on generic methods, transferable to other areas (autonomous driving, data evaluation, ...)
- Collective call for 10 PhD / PostDoc positions from a portfolio of 13 projects related to

- Basic research on trust in Al
- Application of AI in medicine
- Type testing for medical devices/methods with AI components

List of Projects

1	Towards standardized quality control for artificial intelligence systems in critical care [B]		
2	ML and uncertainty quantification for bioelectromagnetic inverse solutions and signal separation methods [B]		
3	Advancing the theory and practice of machine learning model explanations in biomedicine [B]		
4	Invertible neural networks for resolving the hemodynamic inverse problem [B]		
5	Robust machine learning-based quantitative magnetic resonance imaging [B]		
6	Active learning using Fisher information [B]		
7	Uncertainty in deep learning versus conventional statistics [B]		
8	Artificial intelligence and metabolite markers in diagnosis and prognosis of Parkinson's disease [BS]		
9	AI-based image enhancement for reduced radiation exposure in computed tomography imaging [BS]		
10	Deep learning-based dosimetry in medical x-ray imaging [BS]		
11	Uncertainty of artificial intelligence-based dose prediction compared to Monte Carlo methods [B]		
12	Incorporation of spatial regularization and uncertainty estimations into magnetic-resonance parametric mapping [B]		
13	Accelerating radiation transport simulations in radiation medicine by machine learning [B]		