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Background:

Future research in mathematics and statistics for metrology 

Machine learning and artificial intelligence:
- Application in sensor networks, advanced manufacturing, 

medical physics (e. g. PTB AI for Health)  <--> large data sets 

Virtual metrology and digital twins:
- Competence VirtMet@PTB

- Intl. Workshop of VirtMet, EMNs MATHMET & AdvManu
(Sept. 21-22, 2021, 120 participants from > 20 countries) 

- Simulation of realistic physics-based models
- Proper treatment of uncertainties, uncertainty quantification 
- Validation by comparison to measurements



▪ Reliability (19)

Robustness, Repeatability, Training data quality

AIMetrology

Metrology Support ?

▪ Uncertainty, traceability (12)

▪ Reference data bases (8)

▪ Measurements, simulation data (“digital twins”), quality ?

▪ Standardization concepts (6) 

Research Priorities  ?

AI Survey among 14 European NMIs 



Metrology for ECG data analysis

Objectives (EMPIR Project MedalCare, 2019 – 2022)

• Metrology for advanced data analysis: 
Benchmark data analysis & AI methods

• Reference data for AI : 

i. Clinical  ECG data base (here PTB-XL) with diagnosis

ii. Synthetic data base with „ground truth“ 

Institute of Biomedical Engineering, Karlsruhe 28.06.2018 Synthetic ECG Reference Data
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We have 8 thorax data sets, completely 
segmented and ready for simulation and 

numerical field calculation.

Medical University of Graz, Auenbruggerplatz 2, A-8036 Graz, www.medunigraz.at

Activation/Repolarization Sequence
Genesis of BSPM & ECG
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Institute of Biomedical Engineering, Karlsruhe 28.06.2018 Synthetic ECG Reference Data

Identification of the Atrial Depolarization 
Sequence from the P-wave
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The morphology of the P-wave 
depends on the individual 
pathways from right to left atrium.

Medical University of Graz, Auenbruggerplatz 2, A-8036 Graz, www.medunigraz.at

Forward ECG Modeling
Gernot Plank

B e rlin  P T B , E M P IR , Ju n e  2 8 , 2 0 1 8

Medical University of Graz, Auenbruggerplatz 2, A-8036 Graz, www.medunigraz.at

Fast Forward Source Models

Neic et al, J Comp Phys,  346:191-211, 2017
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Model Parametrisation

Multiparametric model 

signatures (e.g. anatomy, 
conduction blocks, tissue 
conductivity, heart rate)

Electrophysiology Simulation Body Surface Potential Maps Electrocardiogramm (ECG)

Computational Model 

Uncertainty Analysis 



Measurements

PTB – XL  clinical reference data base

P. Wagner, N. Strodthoff, et al. Scientific Data (2020) 

• 22.000 ECG-recording (10s)
• 12-lead ECG measurements
• Diagnostic (62) and rhythm (24) statements 

according SCP ISO-standard

Superclasses Conduction disturbance (CD)



Benchmarking
methods
Machine Learning for ECG Classification
Benchmarking: Diagnosis 

„Heatmapping“ / Explainability

N. Strodthoff, et al. IEEE Trans. Biomed. Health Informatics (2020) 



„Digital twin“
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Bidomain Formulation

Monodomain

Assumption:
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Simulation with 450 ms (10):

Bidomain: 3.29 hours

Pseudo-bidomain: 1.77 hours

R-E+ with Lead Field: 63 s

Ionic Model: TT2 vs. Mitchell 

Schaeffer

Lead-Field Mapping

Validation

WP1: Modelling pipeline – Ventricles

K. Gillette, A. Prassl, G. Plank et al. (2021) 



Digital Twin II

WP1: Modelling pipeline – Model cohort

S62 S63 S64 S65 S66 S67 S68

S69 S70 S71 S72 S73 S74

Models: 13 (9 male, 4 female)

Model Resolution: 1201 +/- 56.21 microns

K. Gillette, A. Prassl, G. Plank et al. (2021) 



Simulated ECGs

WP1+3: Modelling pipeline – ECG simulation + processing

Validation by statistical comparison of synthetic data base with PTB-XL 



Summary

Metrology approach to Trustworthy ML/ AI: 
Uncertainty evaluation, robustness, explainability

Training data are key: Lack of high-quality references

->   Well characterized measurement data
->   Validated synthetic reference data from „digital twins“ 

Input to standardization ? 
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Autumn 2020: Strategy paper analysing demands 

regarding Standardisation & Regulation of AI products 

(inter alia) from

• German Government‘s Strategy Artificial Intelligence

• DIN “AI Standardisation Roadmap”

• EUROLAB position paper

• FDA Regulatory Framework Proposal 

PTB Strategy “Metrology for AI in Medicine”



• Core requirements:

− Functionality and performance → Uncertainty

− Robustness

− Explainability

• Essential: Selection & assessment of data used 

22.04.2021 14Kuratoriumstagung 2021

Key messages



• Metrology for AI in medicine as a nucleus 

(coordinators Hans Rabus, David Auerbach) 

• Focus on generic methods, transferable to other areas 
(autonomous driving, data evaluation, ...)

• Collective call for 10 PhD / PostDoc positions from a 
portfolio of 13 projects related to

o Basic research on trust in AI

o Application of AI in medicine

o Type testing for medical devices/methods with AI components

Implementation



1 Towards standardized quality control for artificial intelligence systems in critical care  [B]

2 ML and uncertainty quantification for bioelectromagnetic inverse solutions and signal separation methods [B]

3 Advancing the theory and practice of machine learning model explanations in biomedicine  [B]

4 Invertible neural networks for resolving the hemodynamic inverse problem [B]

5 Robust machine learning-based quantitative magnetic resonance imaging [B]

6 Active learning using Fisher information  [B]

7 Uncertainty in deep learning versus conventional statistics  [B]

8 Artificial intelligence and metabolite markers in diagnosis and prognosis of Parkinson's disease [BS]

9 AI-based image enhancement for reduced radiation exposure in computed tomography imaging [BS]

10 Deep learning-based dosimetry in medical x-ray imaging  [BS]

11 Uncertainty of artificial intelligence-based dose prediction compared to Monte Carlo methods  [B]

12 Incorporation of spatial regularization and uncertainty estimations into magnetic-resonance parametric mapping [B]

13 Accelerating radiation transport simulations in radiation medicine by machine learning [B]

List of Projects 


