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Overview NPLE

National Physical Laboratory

TRAINING FOR THE METROLOGY COMMUNITY

= Current applications of ML uncertainty evaluation
= Framing the uncertainty evaluation task
= Regression models

o Uncertainty propagation through training models
o Taking uncertainty related to model training into account
* Classical statistical modelling approaches
 Modern ML approaches
= Classification models

TRAINING FOR THE WIDER COMMUNITY

CONCLUSIONS
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Some applications of ML uncertainty evaluation INPLE
In the metrology community
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Uncertainty evaluation in machine learning: NPLE
framing the task
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Uncertainty evaluation in machine learning: NPL
framing the task
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Uncertainty evaluation in machine learning: NPLE
framing the task
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Uncertainty evaluation in machine learning: NPLE
framing the task
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Expression of predictive uncertainty NPLE
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= ML models are typically either regression (numeric output) or classification
(categorical output).

= Forregression models, A GUM approach to expressing uncertainty can
essentially be used: standard errors, credible/confidence intervals, etc.

= For classification, it is less straightforward:
o What is the measurand?
= The class assignment (uncertainty is probabilities, entropy)
= The class probabilities (a regression approach can be taken)

o A metrology framework is needed for the expression of uncertainty for
classification problems, and ML models in particular.



Uncertainty propagation through fixed ML NPLE
regression models

= Analytical approach
o Linear models
= |nput distribution - Output distribution
= |nput moments - Output moments
o Kernel-based models

= |nput distribution - Output moments

Analytical Results for Uncertainty Propagation through Trained Machine Learning
Regression Models (AT, 2023, under review).

= Monte Carlo sampling approach
o Can be used with all ML regression models


https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4679081
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4679081

Uncertainty-aware regression using classical NPL
statistical modelling

= Analytical approaches exist for linear and kernel-based models
Ordinary least squares, ridge regression
X Sparse linear regression (requires a numerical approach)
Gaussian Processes
X Support vector machines
= They tend to assume simplistic i.i.d. Gaussian noise models
= Extensions are needed to take input data uncertainties into account:
o Errors-in-variables for linear models
o Input-uncertainty aware GPs (Quinonera-Candela et al., 2003)
o Monte Carlo sampling and variance decomposition



Uncertainty-aware regression using modern NPLE
ML models

= Most notably neural networks and tree-based models...
= Techniques from the ML community need to be used.

* These methods involve changing the way ML models are trained — and so
require all the computational skills associated with ML model development.

= Examples for neural networks: Deep Ensembles, Monte Carlo Dropout.

= Examples for tree-based models: Jackknife-after-Bootstrap, Quantile
Regression Forests.



Uncertainty-aware regression using modern NPLE
ML models: considerations

* These methods do not take into account uncertainty about the choice of model

- empirical model validation good practice from the ML community are
Important.

* These methods often sacrifice mathematical rigour for the sake of scaleability...

- It Is Important that metrologists understand the assumptions/approximations
made.

- Empirical validation of uncertainties using techniques from the ML
community (e.g. calibration analysis) Is important.

- It Is possible to combine with frequentist recalibration techniques.



A metrology framework for uncertainty-aware NPLE
ML regression models
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Uncertainty evaluation for machine learning, AT et al., 2021, NPL Report MS 34



https://eprintspublications.npl.co.uk/9306/1/MS34.pdf

Uncertainty evaluation for ML classification NPLE
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= Classification problems are usually significantly ill-posed = we should focus on
probabilistic classification approaches in metrology.

= Developments in the ML community have focused on neural networks.

= Neural networks for classification typically have a final softmax layer which
outputs probabillities.

= These probabilities are often poorly calibrated.

= Methods for regression can also be used to explore the effect of aleatoric and
epistemic uncertainty on the probabilities and their uncertainties.



Calibration of classifiers NPLE
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= Deep classifiers typically output ‘scores’ which are interpreted as probabilities.
= But these probabilities cannot necessarily be trusted...

= Well-calibrated: “If an image is assigned a 60% probability of being in a certain
class, then it should actually be in that class 60% of the time.”

= There are various post-hoc techniques for improving calibration, such as
temperature scaling.
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Training for the wider community




The Hub’s online training offering
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Conclusions




Conclusions —training needs NPLE
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Dissemination of knowledge and skills originating from the ML community:

= Theory background and computational skills for modern machine learning
approaches

= The aleatoric/epistemic framework

= Knowledge and know-how relating to the implementation of state-of-the-art
uncertainty evaluation methods

- Use of external training courses produced by the ML community
- Knowledge sharing across NMls as part of EPM projects etc.



Conclusions - training needs NPLE
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Development and dissemination of metrologically-specific good practice:

= Agreed vocabulary and framework for sources of uncertainty and expressions of
uncertainty in both regression and classification

= Agreed good practice on uncertainty evaluation for metrology when using modern
machine learning approaches (e.g. neural networks and tree-based methods):
o choice of method

o Implementation of methods

o validation of methods
- This should be developed partly through collaborative projects, e.g. QUMPHY
- Vehicles are needed for (within MATHMET?)

o bringing together good practice

o disseminating this good practice
Eventual dissemination to the wider community through standards etc.




Thank you for your attention! NPLE
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The National Physical Laboratory is operated by NPL Management Ltd, a wholly-owned company
of the Department for Science, Innovation and Technology (DSIT).
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