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Overview

TRAINING FOR THE METROLOGY COMMUNITY

▪ Current applications of ML uncertainty evaluation 

▪ Framing the uncertainty evaluation task

▪ Regression models

o Uncertainty propagation through training models

o Taking uncertainty related to model training into account

• Classical statistical modelling approaches

• Modern ML approaches

▪ Classification models

TRAINING FOR THE WIDER COMMUNITY

CONCLUSIONS



Training for the metrology community



Some applications of ML uncertainty evaluation 

in the metrology community

Critical care 
[image from PTB]

Battery state-of-health Optical form measurements 
[image from PTB]

Landcover classification
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Expression of predictive uncertainty

▪ ML models are typically either regression (numeric output) or classification 

(categorical output).

▪ For regression models, A GUM approach to expressing uncertainty can 

essentially be used: standard errors, credible/confidence intervals, etc.

▪ For classification, it is less straightforward:

o What is the measurand? 

▪ The class assignment (uncertainty is probabilities, entropy)

▪ The class probabilities (a regression approach can be taken)

o A metrology framework is needed for the expression of uncertainty for 

classification problems, and ML models in particular.



Uncertainty propagation through fixed ML 

regression models

▪ Analytical approach

o Linear models

▪ Input distribution → Output distribution

▪ Input moments → Output moments

o Kernel-based models

▪ Input distribution → Output moments

Analytical Results for Uncertainty Propagation through Trained Machine Learning 

Regression Models (AT, 2023, under review).

▪ Monte Carlo sampling approach

o Can be used with all ML regression models

https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4679081
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4679081


Uncertainty-aware regression using classical 

statistical modelling

▪ Analytical approaches exist for linear and kernel-based models

✓ Ordinary least squares, ridge regression

ꭓ Sparse linear regression (requires a numerical approach)

✓ Gaussian Processes

ꭓ Support vector machines

▪ They tend to assume simplistic i.i.d. Gaussian noise models

▪ Extensions are needed to take input data uncertainties into account:

o Errors-in-variables for linear models

o Input-uncertainty aware GPs (Quinonera-Candela et al., 2003)

o Monte Carlo sampling and variance decomposition  



Uncertainty-aware regression using modern 

ML models

▪ Most notably neural networks and tree-based models…

▪ Techniques from the ML community need to be used.

▪ These methods involve changing the way ML models are trained – and so 

require all the computational skills associated with ML model development.

▪ Examples for neural networks: Deep Ensembles, Monte Carlo Dropout.

▪ Examples for tree-based models: Jackknife-after-Bootstrap, Quantile 

Regression Forests.



Uncertainty-aware regression using modern 

ML models: considerations

▪ These methods do not take into account uncertainty about the choice of model 

→ empirical model validation good practice from the ML community are 

important.

▪ These methods often sacrifice mathematical rigour for the sake of scaleability…

→ It is important that metrologists understand the assumptions/approximations 

made.

→Empirical validation of uncertainties using techniques from the ML 

community (e.g. calibration analysis) is important.

→ It is possible to combine with frequentist recalibration techniques.



A metrology framework for uncertainty-aware 

ML regression models

Uncertainty evaluation for machine learning, AT et al., 2021, NPL Report MS 34

https://eprintspublications.npl.co.uk/9306/1/MS34.pdf


Uncertainty evaluation for ML classification

▪ Classification problems are usually significantly ill-posed → we should focus on 

probabilistic classification approaches in metrology.

▪ Developments in the ML community have focused on neural networks.

▪ Neural networks for classification typically have a final softmax layer which 

outputs probabilities.

▪ These probabilities are often poorly calibrated.

▪ Methods for regression can also be used to explore the effect of aleatoric and 

epistemic uncertainty on the probabilities and their uncertainties.



Calibration of classifiers

▪ Deep classifiers typically output ‘scores’ which are interpreted as probabilities.

▪ But these probabilities cannot necessarily be trusted…

▪ Well-calibrated: “If an image is assigned a 60% probability of being in a certain 

class, then it should actually be in that class 60% of the time.”

▪ There are various post-hoc techniques for improving calibration, such as 

temperature scaling.

[Image from AWS Documentation]



Training for the wider community



The Hub’s online training offering

Course catalogue e-learning platform



ML training courses produced by NPL



Conclusions



Conclusions – training needs

Dissemination of knowledge and skills originating from the ML community:

▪ Theory background and computational skills for modern machine learning 

approaches

▪ The aleatoric/epistemic framework

▪ Knowledge and know-how relating to the implementation of state-of-the-art 

uncertainty evaluation methods

→ Use of external training courses produced by the ML community

→  Knowledge sharing across NMIs as part of EPM projects etc.



Conclusions – training needs

Development and dissemination of metrologically-specific good practice:

▪ Agreed vocabulary and framework for sources of uncertainty and expressions of 

uncertainty in both regression and classification

▪ Agreed good practice on uncertainty evaluation for metrology when using modern 

machine learning approaches (e.g. neural networks and tree-based methods):

o choice of method

o implementation of methods

o validation of methods

→  This should be developed partly through collaborative projects, e.g. QUMPHY

→   Vehicles are needed for (within MATHMET?)

o bringing together good practice

o disseminating this good practice

Eventual dissemination to the wider community through standards etc.



Thank you for your attention!

The National Physical Laboratory is operated by NPL Management Ltd, a wholly-owned company 

of the Department for Science, Innovation and Technology (DSIT).
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