

Mathmet Measurement Uncertainty Training Activity:

# Curricula for legal metrology and accreditation

Thierry Caebergs (SPF Economie – division Métrologie) on behalf of the consortium



## Why MU training for legal metrology and accreditation ?

- First tier of stakeholders of NMIs in the dissemination of SI units/traceability
- Legal metrology: make a legal decision based on a measurement, considering its « risks »
  - $\rightarrow$  conformity assessment



Irainin

## Why MU training for legal metrology and accreditation ?

- <u>Accreditation</u>: in the context of ISO/IEC 17025
  - requirement : MU must be evaluated
  - <u>testing</u> : evaluation of quality of the measurement
  - <u>calibration</u> : also but with the idea of enabling traceability downstream



Trainin

### Curricul-a (-um ?) for MU training

- Address specific needs and, as well as groundings for them
- Only headlines about the content, but good starting point for structure
- Sub-audiences are also possible
- Modularity :
  - Big institutes : rich portfolio of trainings, and dependency tree
  - Smaller institutes : fewer trainings, more a table of contents
- Options for refresh courses





#### Overview



- Method and analysis
  - Legal metrology consultation (IMBiH and IPQ)
  - Survey within the accreditation community (ACCREDIA)
- Curricula
  - Legal metrology
  - Accreditation
- Synthesis of curricula
  - Common parts vs. very specific parts

### Legal metrology consultation



- Led by IMBiH and IPQ
- Consultation of WELMEC by its chairs and WG chairs
- Further discussions with some WG and direct colleagues for feedback
- MU in place for their WG's activities but what if : new rule, new technology, new legislation, people leave ?
- More guidelines needed for sampling within MID (modules F and F1)
- Outcome of the workshop : not always quantification needed but first to detect factors of influence

### Curriculum for legal metrology



#### • 5 modules

- 3 for measurement, measurement uncertainty and statistics :
  - designing a first budget of uncertainty, discussing the measurement
  - elaborating a simple budget of uncertainty
  - non-normal probability laws
  - how to read a certificate ?
- module about conformity assessment : vocabulary, content (JCGM 106:2012)
  - conformity (yes/no decision)
  - evaluation of consumer's and producer's risks
- module about statistical sampling : lot acceptance (→ MID modules F and F1), market surveillance.
  - more explanation, use of model curves, software

### Accreditation survey



- Led by ACCREDIA
- Survey Questions/Topics elaborated by a focus group in Italy
- Circulation of the survey as a Google Form via EA.
- Analysis at Italian level and EA level (outside Italy)
- High number of responses

   → Enough for numerical data analysis

- 21 topics
- For each, rate 1-4: interest and knowledge
- Preferred teaching approaches
- Subanalysis in categories : (tech. assessor vs lab) X (test vs cal.)
- Significance of difference by (Wilcoxon-)Mann-Whitney test

#### Accreditation survey - questionnaire



| Q1   | Mathematic elements for the evaluation of uncertainty                                                                                        | Q 12 | Monte Carlo Method for the propagation of the probability distributions applied to measurement models with more measurands (Multivariate model)              |
|------|----------------------------------------------------------------------------------------------------------------------------------------------|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Q 2  | Probability and statistics elements                                                                                                          | Q 13 | GUM approach vs Monte Carlo method in measurement uncertainty evaluation                                                                                     |
| Q 3  | Fundamental concepts of metrology                                                                                                            | Q 14 | Alternative methods for the evaluation of the measurement uncertainty based on Bayesian approach                                                             |
| Q 4  | GUM approach: evaluation of type A and type B uncertainty components                                                                         | Q 15 | Evaluation of measurement uncertainty based on methods validation data                                                                                       |
| Q 5  | GUM approach: combined standard uncertainty evaluation with uncorrelated input quantities                                                    | Q 16 | Evaluation of measurement uncertainty based on data from participation in interlaboratory comparisons/Proficiency Testing and data from practical experience |
| Q 6  | GUM approach: combined standard uncertainty evaluation with correlated input quantities                                                      | Q 17 | Fitness for purpose of evaluated measurement uncertainty and target uncertainty                                                                              |
| Q 7  | GUM approach: determination of expanded uncertainty (U) and coverage factors (k)                                                             | Q 18 | Reporting measurement result                                                                                                                                 |
| Q 8  | GUM approach: application of Multivariate Measurement Models (with multiple measurands)                                                      | Q 19 | "Coverage factor", new approaches for expanded measurement uncertainty evaluation                                                                            |
| Q 9  | Definition and use of theoretical or empirical measurement models                                                                            | Q 20 | Evaluation of uncertainty from sampling and its contribution to the overall measurement uncertainty                                                          |
| Q 10 | Least Squares Method applied to metrology (with or without correlation between the input quantities)                                         | Q 21 | Statements of conformity to specifications                                                                                                                   |
| Q 11 | Monte Carlo Method for the propagation of probability distributions applied to measurement models with a single measurand (Univariate model) |      |                                                                                                                                                              |

#### Responses to survey



- Majority is from testing and from laboratories, for Europe (outside Italy) and Italy
- Numbers of responses :
  - Italy : 805
  - EA (outside Italy): 477
- $\rightarrow$  quantitative analysis possible



#### High interest and knowledge



(on results in Italy)



Testing - Laboratories

**Testing- Technical Assessor** 







#### **Calibration - Technical Assessor**



#### Mann-Whitney test



- Ordering by average and similarity testing by Mann-Whitney
- Knowledge :

|         | 2,89     | << | 3,06             | ~ | 3,17    | << | 3,64            |
|---------|----------|----|------------------|---|---------|----|-----------------|
| ex.:Q3: | Lab Test |    | Assessor<br>Test |   | Lab Cal |    | Assessor<br>Cal |

 $\rightarrow$  Q3 «Fundamental concepts of metrology » can be split into

- « basic » (lab test)
- « intermediate » (assessors test and lab cal)
- « advanced » (assessors cal)

#### Grouping topics and levels



#### (on results in Italy)

|                                                    |                                         | Homogeneous | labs test < TA test,<br>labs cal < TA cal | labs <<br>TA test <<br>TA cal | labs <<br>TA | <<br>TA cal | < TA test | labs cal < | Proposed<br>attributions                |
|----------------------------------------------------|-----------------------------------------|-------------|-------------------------------------------|-------------------------------|--------------|-------------|-----------|------------|-----------------------------------------|
| Base mathematical concept                          | Q1<br>Q2<br>Q3                          |             |                                           |                               |              |             |           |            | General<br>concepts                     |
| Propagating<br>uncertainties<br>(GUM approach)     | Q4<br>Q5<br>Q6<br>Q7<br>Q8<br>Q9<br>Q18 |             |                                           |                               |              |             |           |            |                                         |
| Least squares method                               | Q10                                     |             |                                           |                               |              |             |           |            | More for                                |
| Advanced<br>methods : Monte-<br>Carlo and Bayesian | Q11<br>Q12<br>Q13<br>Q14                |             |                                           |                               |              |             |           |            |                                         |
| MU evaluation for                                  | Q15                                     |             |                                           |                               |              |             |           |            | For testing                             |
| specific<br>applications                           | Q16<br>Q20<br>Q21                       |             |                                           |                               |              |             |           |            | Specific<br>applications :<br>one short |
|                                                    | Q17<br>Q19*                             |             |                                           |                               |              |             |           |            | lecture per<br>topic                    |

#### Grouping topics and levels



| Topic                    | Legal metrology (mod. Ref.)    | Accreditation (Q#) | Several<br>levels ? |
|--------------------------|--------------------------------|--------------------|---------------------|
| Simple uncertainty       | Module 1.1-1.2                 | Q3                 | No                  |
| budget                   | Module 1.3                     | Q4                 |                     |
|                          | Module 1.4                     | Q1-2               |                     |
|                          | 1.5 Completing the uncertainty | Q17                | (yes)               |
|                          | budget                         |                    |                     |
|                          | Reading a certificate          | Q18 (reporting)    | (yes: lab-TA)       |
| Measurement model        | Module 2, 3                    | Q5-9               | No                  |
| and sensitivity analysis |                                |                    |                     |
| Conformity assessment    | Module 4                       | Q21                | yes                 |
| Sampling                 | Module 5                       | Q20                | yes                 |

### Specific applications



- Accreditation :
  - More calibration-oriented :
    - Q10: least squares method
    - Q11-14: cover uncertainty propagation by Monte-Carlo method and Bayesian approach
  - More testing-oriented :
    - Q15: Evaluation of measurement uncertainty based on methods validation data,
    - Q16: Evaluation of measurement uncertainty based on data from participation in ILC/PT and data from practical experience

#### Implementing the curricula



- Help in designing trainings, regarding content

   → for the training methodology, also combine with outcomes of
  the workshop (see S. Demeyer's presentation)
- Adapt the content to the audience
  - $\rightarrow$  several material documents tailor to needs each time
  - $\rightarrow$  single material but adapt the presentation
- Adapt to your manpower
  - $\rightarrow$  provide trainings by module or by submodule / single document





- Elaboration of curricula based on two different consultations
  - Accreditation : broad consultation by questionaire
  - Legal metrology : by consultation of WELMEC (representative)
- Some gaps have been identified, as well as current shortcomings
- Structure the training program and provide a basic table of content
- Common parts are identified
- Still work in progress, a document is being drafted.
- Many thanks to Katy and João



Questions ? Remarks ? Suggestions ?

Thank you for your attention !