The Strategic Research Agenda of EURADOS: research needs and their links to metrology

History of EURADOS

- Founded in 1981 by scientists involved in contracts with the EC
- Aim: To promote European research, development and cooperation in dosimetry
- Financial support from EC
 - General support in the first years
 - Later (only) dedicated support for projects
- In 2008 registered in Germany as "e.V." (registered society)
- Since 2008: self-sustained network with regular income

EURADOS

EURADOS General Assembly

83 Voting Members (institutions) represented by designated individuals

EURADOS Board of Officers

Chair:	Filip Vanhavere (SCK-CEN, Belgium)
Vice-Chair:	Oliver Hupe (PTB, Germany)
Secretary:	Isabelle Clairand (IRSN, France)
Treasurer:	Zeljka Knezevic (RBI, Croatia)

EURADOS Council

Francesco Rossi (Italy), Veronika Olsovcova (Czech Republic), Rick Tanner (UK), Vadim Chumak (Ukraine), Sebastian Trinkl (Germany), Ruxandra Sapoi (Rumania), Markus Figel (Germany), Agnieszka Szumska (Poland)

EURADOS

Associate Members

Almost 650 active scientists contributing to the overall EURADOS objectives

- Eight EURADOS Working Groups
 - Harmonization of Individual Monitoring (MA. Chevallier, France)
 - Environmental Dosimetry (A. Vargas, Spain)
 - Computational Dosimetry (H. Rabus, Germany)
 - Internal Dosimetry (D. Broggio, France)
 - Radiation Dosimetry in Radiotherapy (L. Stolarcyk, Denmark)
 - Retrospective Dosimetry (L. Ainsbury, U.K.)
 - High-Energy Dosimetry (M. Caresano, Italy)
 - Dosimetry in Medical Imaging (P. Ferrari, Italy)
 - Pilot Group on Nuclear medicine (W. Li,Germany)

Activities of EURADOS

- Activities:
 - Scientific work in the working groups
 - which promote technical development and its implementation in routine work
 - which contribute to harmonization within Europe
 - which perform scientific research
 - organization of intercomparisons and bench mark studies
 - organization of scientific meetings and conferences, training activities, winter schools
 - organization of Annual Meeting (>300 participants)
 - Represent the dosimetry community in different projects and organisations

EURADOS Strategic Research Agenda

- Document that describes the research needs linked to dosimetry for the years to come
 - > Organised in 5 visions, each with different challenges, each with different research lines
- Set-up by EURADOS members and working groups (over 60 contributors....)
- Used to direct research of EURADOS working groups
- Used as input for joint roadmap of European research (CONCERT, PIANOFORTE, RnR)
- Started in 2012, first version 2015, second version in 2020
- Published as a EURADOS Report and in the Radiation Protection Dosimetry journal:
 - EURADOS Report 2020-04: "Visions for Radiation Dosimetry over the Next Two Decades - Strategic Research Agenda of the European Radiation Dosimetry Group: Version 2020",
- Soon we will start preparing a new version

Metrology aspects of the EURADOS SRA

- Dosimetry is quantifying radiation: metrology aspects
- EURADOS is involved in much more than just measuring radiation
 - > Harmonization, link with biological effects, concepts,
 - Dosimetry/EURADOS is involved in all aspects of radiation protection (medical, NORM, emergency, ecology, biology,...)
- Still, large parts of the EURADOS SRA topics could qualify as part of metrology research, including in support of regulation
- Next: give a short selection of potential topics...

Vision 1 - Towards updated fundamental dose concepts and quantities

- **Challenge 1**: To improve understanding of spatial correlations of radiation interaction events.
- Research on experimental track structure characterization, including uncertainties
- Development of computational methods and detectors
- **Challenge 2**: To quantify correlations between track structure and radiation damage.
- Studies on the geometrical and temporal correlation of energy deposition and cellular damage
- Automated assays and metrological methods
- Challenge 3: To improve quantities used in dosimetry
- Investigation of the effects of a change in operational quantities

Vision 2 - Towards improved dosimetry for radiation risk estimates deduced from epidemiological cohorts

- **Challenge 1**: To improve dosimetric data for epidemiological studies
- Improvement of the basic models used for assessments of external and internal doses.
- Challenge 2: To estimate uncertainties and validate the dose results
- Uncertainty analysis in the calculated doses and estimation of their influence on the radiation-risk coefficients.
- Challenge 3: To anticipate future epidemiological studies

Vision 3 - Towards an Efficient Dose Assessment in Case of Radiological Emergencies

- **Challenge 1**: To quantify doses from internal emitters after accidents
- Improvement of the calibration of in vivo monitoring systems
- Networking, optimization and development of new methods in case of nuclear accidents
- Development of new biokinetic modelling
- Challenge 2: To quantify individual doses from external exposure in emergencies
- To standardize existing markers and methods
- To improve existing methods and to identify new markers and develop new methods
- Challenge 3: To improve monitoring, including citizens networks and drones
- To improve aerial measurements using unmanned aerial vehicles
- To harmonized and improve capacity analysis using novel information
- Evaluation of existing dosimetry tools for citizens and development of new tools

EURADOS

Vision 4 - Towards integrated personalized dosimetry in medical applications

- **Challenge 1**: To improve patient and ambient dosimetry in radiotherapy
- Dosimetry for proton and ion beam radiotherapy
- Dosimetry during treatment and for quality assurance of the treatment process
- Challenge 2: Improving patient dosimetry in nuclear medicine
- Internal dosimetry within pre-clinical development and evaluation of RPs emitting alpha, beta and Auger radiation
- Accuracy of radionuclide activity measurements with radionuclide calibrators
- **Challenge 3**: Establish reliable patient dosimetry in CT and interventional radiology examinations
- Skin and organ doses in interventional radiology and cardiology
- Patient specific dose estimates in CT imaging

Vision 5 - Towards an Improved Radiation Protection of Workers and the Public

- **Challenge 1**: To improve biokinetic and dosimetric models for internal emitters
- Improvement of *in vivo* measurements, biokinetic and dosimetric models
- Challenge 2: To develop more accurate and real time personal dosimetry
- Including a more accurate dosimetry for specific tissues and organs is needed
- Challenge 3: To develop neutron dosimetry techniques
- To improve the performance of neutron personal dosemeters and survey meters
- To improve the understanding of neutron workplace fields (direction dependence)
- Challenge 4: To improve environmental monitoring
- To improve environmental monitoring for radon
- To develop and adapt infrastructures for calibration and comparison exercises
- **Challenge 5**: To improve dosimetry in space
- Development of Instrumentation, calibration of Instruments and Model verification

Additionally, the SRA includes ...

Separate section on the role of computational methods in dosimetry

• Important in all aspects of dosimetry

Separate Chapter on Training and Education

- Implementation of EC directives and technical recommendations into practice
- Training courses on novel or improved dosimetric methods
- Winter schools, workshops and scientific symposia

Separate Chapter on Harmonisation and Practice

- Intercomparison for dosemeters used in individual monitoring
- Intercomparison for early-warning systems used in environmental monitoring
- Surveys on practical dosimetry (to document quality of dosimetric practices)
- Intercomparison of dose assessment in cases of internal exposures

EURADOS

Priorities from the EURADOS Voting Members

• A voting was organised in 2021: list the top 5 priorities

1°	To improve patient and ambient dosimetry in radiotherapy
	Dosimetry for proton and ion beam radiotherapy
2°	Establishment of reliable patient dosimetry in CT and interventional radiology examinations
	Patient-specific dose estimates in CT imaging
3°	To develop more accurate and real-time external personal dosimetry for workers
	"Real-time" dose monitoring of workers is encouraged
4°	To quantify correlations between track structure and radiation damage
	 Studies on the geometrical correlation of energy deposition and cellular damage
5°	Improving patient dosimetry in nuclear medicine
	 Internal dosimetry within pre-clinical development and evaluation of RPs
6°	To Improve the protection and operational quantities used in dosimetry
	 To investigate the effects of any change in the protection quantities
7°	To develop neutron dosimetry techniques
	 To evaluate and improve, if necessary, the response of neutron personal dosemeters in high- energy fields
8°	To quantify doses from internal emitters in case of radiological emergencies
	 Improvement of the calibration of in vivo monitoring systems
9°	To improve environmental monitoring
	To improve the environmental monitoring of radon
10°	To improve dosimetric data for epidemiological studies
_	 Improvement of the basic models used for assessments of external and internal doses

EURADOS

Conclusion: metrology aspects of the EURADOS SRA

- Dosimetry is quantifying radiation: metrology aspects
- Sufficient research topic needing attention and improvement
 To be taken up in EURAMET plans....

