Stuk

Competences and measurement needs in environmental surveillance and emergency preparedness

Metrology for regulatory Pia Keski-Jaskari, 23.10.2023

> Metrology for regulation, Pia Keski-Jaskari 1 24/10/2023

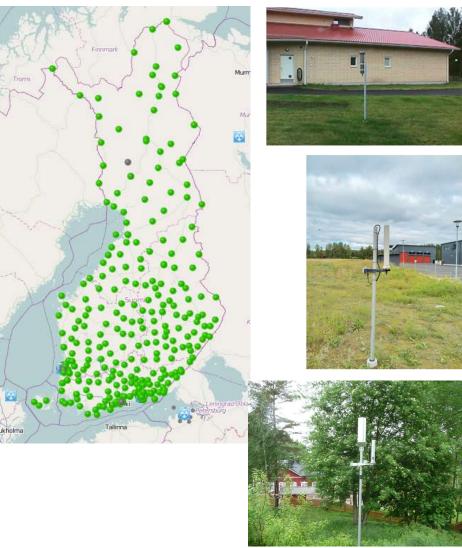
National Measurement Strategy in Finland

- Published in 2022 by Ministry of Interior.
- The changing security environment has placed demands on the maintenance of a common situational awareness, early warning capability and preparedness, highlighting the importance of cooperation between authorities and societal actors and the ability to communicate and provide guidance to the population.
 - Rapid, versatile measurement and analysis methods that can identify different types of radiation are needed to build up the real-time situational picture.
 - Different measurement methods, e.g. alpha, beta, gamma, neutron.
 - It is pointless to measure the external dose rate if, for example, the contamination is caused by plutonium or polonium.
 - There must be a broad understanding of the situation by the various authorities, but not all of them need to be experts.
 - However, measurements must be reliable to give a correct picture of the situation.

Metrology for regulation, Pia Keski-Jaskari 2 24/10/2023

Actions in measurement strategy

- The objectives of the Radiation Measurement Strategy are focused on four different areas:
 - maintaining and developing measurement skills and competences
 - critical radiation measurements
 - common situational awareness among public authorities
 - guidance to the public on radiation measurements
- For each of these regions, different development needs and means have been identified to achieve the objectives of the strategy.
- These cover actions in the early and intermediate phases.

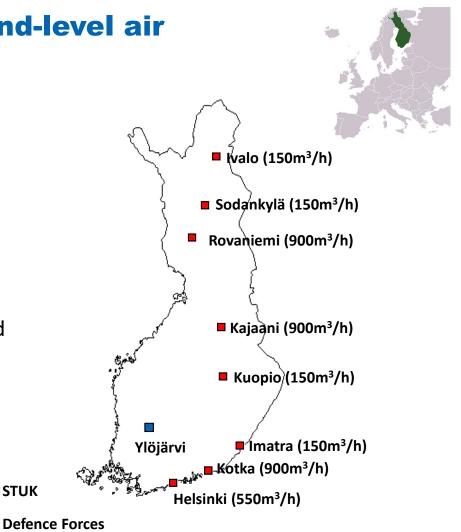

OIKEA-AIKAISET JA OIKEIN MITOITETUT SUOJELUTOIMET

Metrology for regulation, Pia Keski-Jaskari 3 24/10/2023

External dose rate network

- Monitoring of ambient external dose with a network of 255 monitoring stations.
- Stations have a dose rate detector and rain sensor. Some stations equipped with a spectrometer.
- Calibrated once in five years.
- Challenges in the measurement:
 - Contamination, how to detect contamination without a separate hand measurement. In case of emergency situation this is important issue but also in malevolent use of radiation.
 - Uncertainty in measurements if they are used in estimation of public exposure.

Metrology for regulation, Pia Keski-Jaskari 4 24/10/2023



Radioactive substances in ground-level air

STUK

- STUK operates a network of 8 high volume aerosol samplers
- Collection of daily particulate filters in Helsinki (automatic sampler)
- •Weekly particulate filters from other stations
- •Analysis of gamma emitting nuclides in filters
- •Detection limits below 1 μ Bq/m³ for many relevant nuclides
- •Several days delay between end-of-sampling and analysis results
- 4 sampling stations around NPPs
- •Car-borne measurements using STUK's mobile laboratory
- Portable samplers

Metrology for regulation, Pia Keski-Jaskari 5 24/10/2023

Sampling equipment and station infrastructure

Senya Snow White

- flow rate 900m³/h
 Camfill Farr Media glass
- fiber filter, area 1400 cm²
 TEDA activated charcoal filter, volume 0.5 l (carbon flow rate ~12 m³/h)
 Manual filter change

Senya Cinderella

- flow rate 550m³/h
- Camfill Farr Media glass fiber filter, area 670 cm²
- Auxiliary manual sampler (Hunter) with TEDA impregnated charcoal filter available for emergency monitoring
- Automatic sample change and measurement (HPGe)

Senya Hunter

- flow rate 150m³/h
- Camfill Farr Media glass fiber filter, area 420 cm²
- TEDA activated charcoal filter, volume 0.5 l
- Manual filter change

Challenges:

- Particle size collected
- Air flow , retention at the filter
- Uncertainty estimations for air amount collected !

measureme săteilyturvakeskus strålsäkerhetscentralen radiation and nuclear safety authority

Fallout sampling

Ritva

PIRKKO

Dry and wet deposit

Tritium collectors

Challenges in collection:

- representativeness and its uncertainty
- a sufficient amount of constitute to representative sample
- (minimum size of the sample collector) -> uncertainty of the sample

Field measurement

- The field measurement used:
 - Civil protection meter, external dose rate measurement
 - Backpack, cointaining external dose rate measurement, neutron measurement, LaBr₃
 - Mobile car with mobile radiation measurements
- Challenges in the measurement:
 - waiting time until the meter is stable, varies by type of measurement, the meter may give erroneous results if you do not wait until the device is stable
 - Activity concentrations are estimated based on external dose rate measurement. Uncertainty for activity measurement need to be estimated.
 - In field sampling e.g. air, uncertainty in the air amount.
 - Distance for automatic measurement e.g. laser correction for results?

Surface contamination measurement

- The field measurement used:
 - Civil protection meter equipped with external surface contamination measuring head
 - Surface contamination meter
- Challenges in the measurement:
 - Waiting time until the meter is stable, varies by type of measurement
 - Distance from the surface.
 - the meter may give erroneous results if you measure radioactivity from different distances. However, you can not keep device too close to the contaminated surface.
 - Measurement of alpha activity using surface contamination meter. Detection efficiency, need to be very close to the contaminated surface.
 - Alpha activity measurement at normal air pressure?
 - Uncertainty ?

Metrology for regulation, Pia Keski-Jaskari 9 24/10/2023

Laboratory measurement

- Different kind of equipment available on the market:
 - E.g. HPGe and NAI detectors
- Requires different skills and financial investment.
 - HPGe is expensive and demands high-level competence.
 - NAI is less expensive and easy to use if you are not a hard-core expert. Suitable for routine measurements e.g. Rn-222, Cs-137.
- Challenges in the measurement:
 - HPGe: high resolution, suitable many kind of measurements but needs competence.
 - NAI: low resolution if the sample contains several radioactive substances emitting different gamma rays.
 - Uncertainty estimates are challenging, requires demanding and wide-ranging skills.

Metrology for regulation, Pia Keski-Jaskari 10 24/10/2023

In general, for laboratory measurements:

- The specifications of the device depend on, among other things.
 - What is being measured (alpha, beta, gamma)
 - The level of radioactivity to be measured
 - The skills required to maintain and measure the instrument
 - How much money is available for the purchase of the instrument
 - Uncertainties allowed for different measurement situations

Some thoughts about future needs in general

- Research and development of measuring instruments, different kind of radiation measuring instruments are needed, especially for field measurements, on-line measurements. These are needed e.g. food industry, waterworks where the sample flow is continuous.
 - Uncertainty estimations for these kind of measurements are lacking.
- Measurements in emergency situations need uncertainty estimations if the results are used to estimate public exposure and exposure of radiation worker
 - reliability and speed must be ensured. In such a situation, a lot of different meters will be used, how their data flows will be managed in (almost) real time.
- In the event of a large-scale accident or deposition, the availability of measurement and calibration services will be a bottleneck. This will also involve the introduction of new quantities (ICRU 95). Measurement used in situation should comply with the standard.
- From authority perspective, there must be resilience for these measurement and calibration services (not just meters), including across national borders.

Thank you !

