

Traceability of portable hydrogen leak detectors

Orlando Teodoro

UNL - Portugal

The EMPIR Initiative is co-funded by the European Union's Horizon 2020 research and innovation programme and the EMPIR Participating States

Is the European Natural Gas Network ready for hydrogen?

Forthcoming introduction of hydrogen in the European gas network brings many new challenges.

• Health & safety requirements are a major concern!

Hazards of hydrogen:

- Easy ignition;
- Invisible flame;
- Eagerness to burn or form explosive mixtures with air;
- LEL \approx 4% in air;
- Easy permeation in many polymers;
- Steel embrittlement.

How to measure fugitive leaks and to assure its traceability?

This is one of the key questions addressed by the project "Metrology for decarbonising the gas grid".

- Which quantity?
- How to trace the quantity to SI units?

Which is the best measurand to describe leakage?

Leak rate (Std cm³/s)

Advantages:

• Describes the true emission rate.

Limitations:

Which quantity to measure leakage?

- The risk resulting from the leakage is unknown since LEL depends on the dispersion conditions.
- Is difficult to get if the probe is far from the leak point.

Concentration (ppm)

Advantages:

• LEL is immediately ascertained.

Limitations:

- True emission rate is unknown.
- Reading depends on uncontrolled dispersion factors.

Relationship between concentration and leak rate?

- For leak rate measurements the instrument needs to 'suck' the whole leakage.
- If the probe has no pumping, only the concentration reading is accurate.

Only few leak detectors are able measure both quantities.

If $S = 1 \text{ cm}^3/\text{s}$ the concentration reading in **ppm** is the same as the flow rate in Std cm³/s.

Measuring range in leak detection

Since everything leaks what is the smaller H2 leakage of concern?

Danger:

• Some instruments are able to detect leaks too small.

OR

Is 'zero' leakage the goal?

Danger:

- Any quantity smaller than the measuring resolution is 'zero'!
- Thus, the worst instruments will return zero leakage more easily.

shutterstock.com · 507791674

Maximum admissible leaks!

Is mandatory the definition of **acceptance criteria** to be used in leak testing campaigns.

- This was discussed in a recent review produced in the frame of this project.
- Only data for natural gas was found.
- Criteria depends on the leak detection scenario.
- Gas operators and regulators should discuss / define these quantities for H2.

Typical leak testing scenarios

1. Parts manufacturing

Example: gas valves

ISO 15848 which defines as the tightest requirement a maximum leak of 50 ppm of He (as the tracer gas).

2. Commissioning

Pressure drop tests are often performed. Detection limit is $>1 \times 10^{-3}$ Std cm³/s. Requirements for high pressure pipelines were not found.

3. Under operation

The tightest criterion found was 10 ppm for **natural gas**

Since hydrogen brings higher risk, a factor of 10 was proposed leading to

1ppm or **10**⁻⁶ Std cm³/s

This should be lowest limit required of the metrology infrastructure.

Repair action

Getting the leak rate from concentration measurements

- If the leakage can be enclosed by a bag we can calculate the leak rate from the concentration with the support of a **reference leak.**
- Traceability is then given by the reference leak.

⁽in the case of quick and homogeneous dispersion)

$$Q_{leak} = Q_{ref} \left(\frac{\Delta t_1 \Delta c_1}{\Delta t_1 \Delta c_2 - \Delta t_2 \Delta c_1} \right)$$

Reference leaks

• Depletion rate is low, gas inside the reservoirs last many years.

Reference leaks are small portable artifacts, allowing in situ calibration or sensitivity check of leak detectors

Should leak detectors be calibrated or just tested?

Most leak detectors are not measuring instruments.

- Some are quantitative, others not.
- EU regulations for refrigerant gases just require regular **sensitivity checks** to a leak of 5 g/ year.
- Traceability is provided by the reference leak used for testing.
- For many applications, is not relevant the exact value of the leak rate, just to know if the leak is above the acceptance criterion.

Testing leak detectors

Static test

• The detector probe is placed as closed as possible to a reference leak.

Dynamic test

• Probe passes several times in front of the reference leak output.

EN 14624:2020

Bench for dynamic tests

The probe passes by a calibrated reference leak at controlled distance and speed

- Response time, recovery time and repeatability may be assessed.
- Several reference leaks can be used, if needed.

Traceability of H2 leak detectors

The metrology infrastructure should offer calibrations of:

- Mixtures of H_2 in N_2 (or in other suitable gas) in the range of 1 to 1000 ppm.
 - 10 ppm of H2 in N2 is available from at least one gas supplier
 - 1 ppm mixture is within the capability of many NMIs
- Hydrogen reference leaks with flow rates in the range $[10^{-6}, 10^{-3}]$ Std cm³/s
 - Only PTB, (CMI ?) and UNL offers calibration in this range for H2
 - LNE is preparing a new calibration set-up

Metrology for decarbonising the gas grid

Calibration of leak detectors

Calibration of quantitative leak detectors should be performed with a set a references leaks.

- Typically, reference leaks of several orders of magnitude should be used, covering the whole range.
 - MS leak detectors may cover > 6 orders.
- **The smallest leak should be close to the detection limit.**
- Special attention should be given to the connection of the probe to the leak output.

Calibration of reference leaks

ISO 20486:2017 describes 7 methods for the calibration of reference leaks (also EN13192:2001).

- Method G is suitable for the lowest range.
- The reference leak delivers gas to a closed volume at atmospheric pressure.
- Whenever pressure rise is detected (≈ 1 Pa) the piston expands the volume (≈ 30 nL /step).

Lowest leak rate = 10^{-6} Std cm³/s, (± 10%).

7 (2% @ 10^{-5} Std cm³/s)

Constant pressure gas flowmeter at UNL

Summary

- Leak rate and concentration are both quantities used in leak detection.
- Quantitative acceptance criteria is always required in leak testing.
 - ↗ 'Zero leakage' is an incorrect approach.
- Definition of an acceptance criterion (maximum admissible leak) depends on the scenario.
 - **G**as operators and regulators should discuss and define these quantities for **hydrogen**.
- **Reference leaks are convenient portable devices to test and calibrate leak detectors.**
 - Can be produced for any gas
- Reference leaks allow easy traceability of leak testing to SI units.

Thanks for your attention

odt@fct.unl.pt

