

National Metrology Institute

Metrology for biomethane conformity assessment

Adriaan M H van der Veen (VSL, ISO/TC193/SC1)

EMN Energy Gases Workshop "Measurement Solutions for Energy Gases"

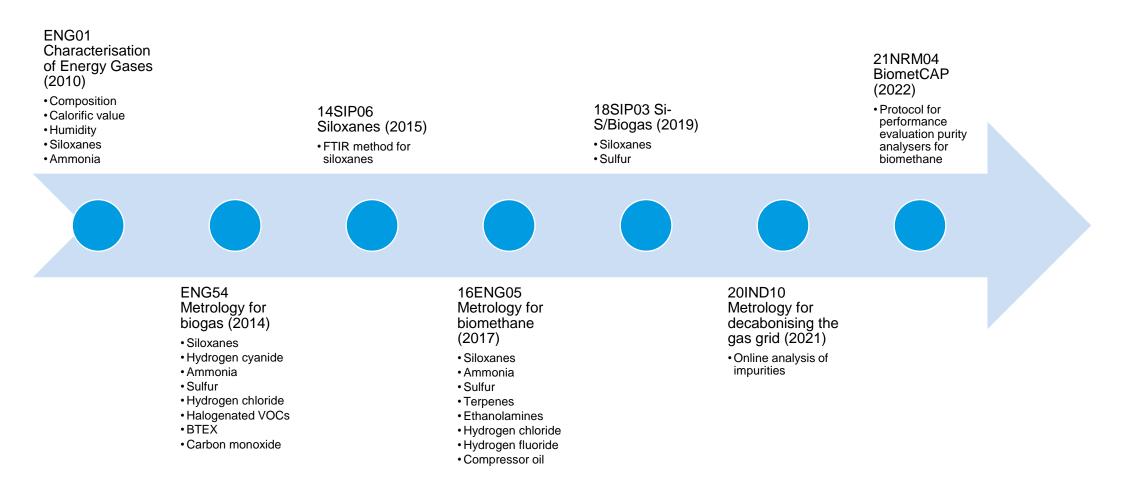
21-22 March 2023, IPQ, Monte de Caparica, Portugal

VSL Biomethane

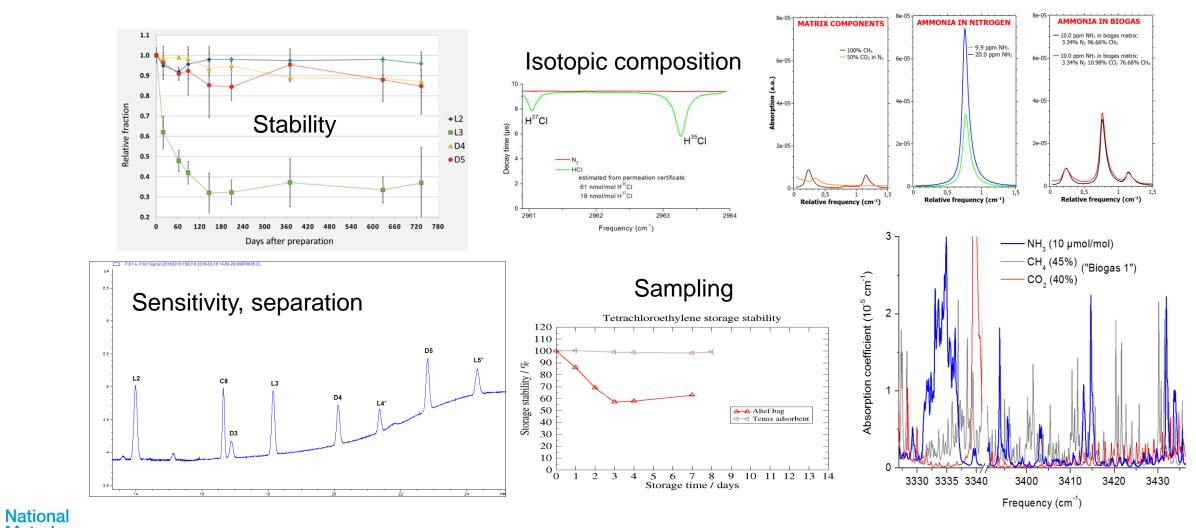
- "biogas, upgraded to natural gas quality"
- Direct renewable substitute for natural gas, unlike hydrogen (which requires many more adaptations)
- Specification (EN 16723) developed, for
 - 1. Injection into the natural gas grid (2016)
 - 2. Use at refuelling stations (2017)
- Specification supplements EN 16726 for highcalorific natural gas

VSL Rationale

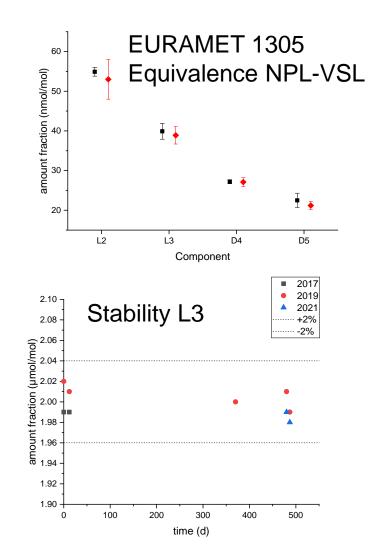
- Urgent need to diversify the supply of natural gas
 - Environmental (carbon dioxide emission reduction)
 - Economical (EU resources for natural gas are declining)
 - Geopolitical (lesser dependence on imported gas)
- Biomethane and upgraded biogas and need to fulfil certain criteria to be compatible with appliances of end users (households, industry)
- Demonstrating conformity requires
 - Setting criteria
 - Reliable measurement methods
 - Measurement standards and certified reference materials
 - Laboratories with competence in determining properties of biomethane and biogas
 - Conformity assessment



National Metrology Institute


VSL EURAMET's response to the introduction of biomethane

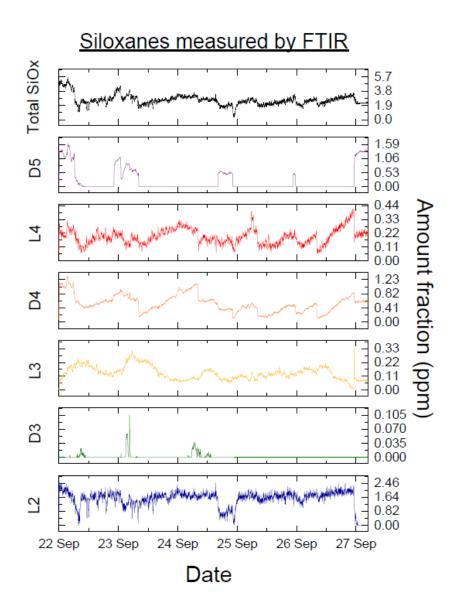
SL What were (are) the challenges?


Spectral interferences

Metrology Institute 3-4-2023

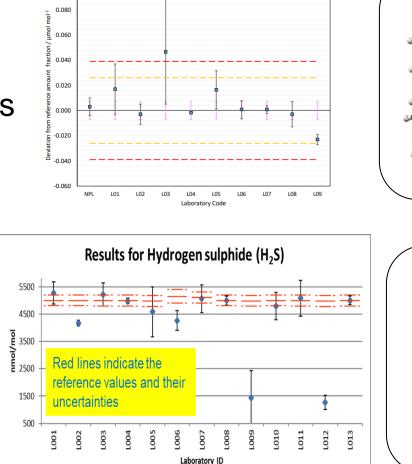
VSL Siloxanes and silicon content

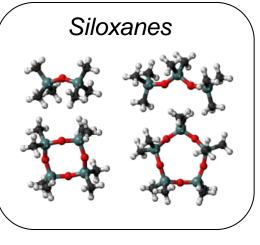
- Methods developed for
 - Total silicon content (ICP-AES, GC-ICP-MS)
 - Siloxane content (GC-MS, TD-GC-MS/FID, GC-FID, GC-TOF-MS)
- Repeatability and reproducibility of methods acceptable
- Gravimetrically prepared gas mixtures
 - Down to levels relevant for the biomethane specification
 - Successful introduction of a solid (D3)
 - Initial losses substantial (between -5% down to -70%)
- Proficiency tests organised with SI-traceable reference values

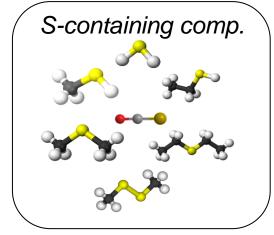


VSL EMPIR 14SIP06 Siloxanes

- Comparison of on-line and laboratory based measurement of siloxanes in biogas.
- Laboratory-based method validation using traceable gas reference standards
- Results showed it was possible to achieve live monitoring of siloxanes breakthrough in filters to with 5% uncertainty





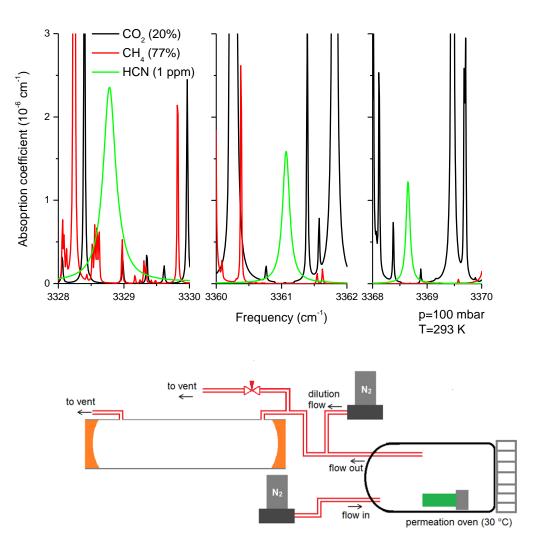

0.100

- Different labs with different calibration, sampling and measurement methods contributed to the comparisons
- Generally good agreement between participants
- Traceable and stable gas mixtures are important for a successful comparison. Pay attention to instability due to reactions, adsorptions, etc.

Reported amount fractions for D5 Siloxane

National

Institute

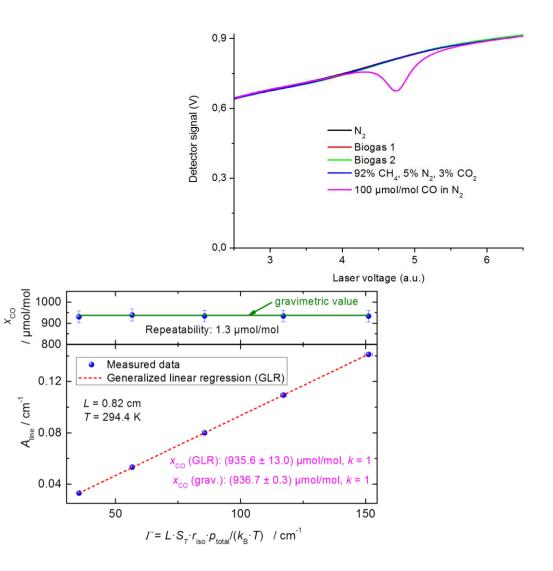

National

Metrology Institute

3-4-2023

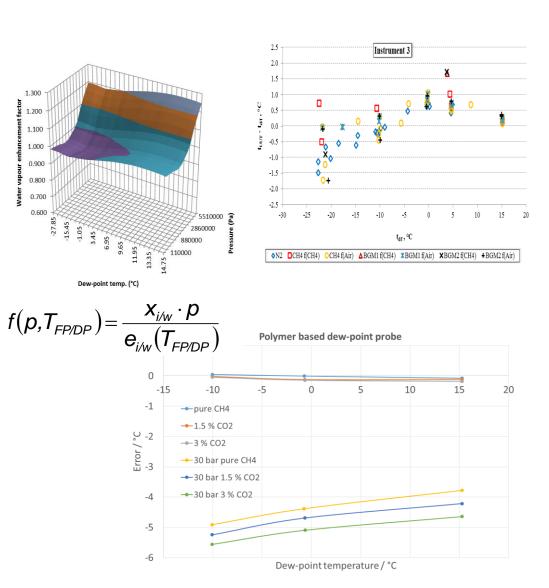
SL Hydrogen cyanide content

- Method developed based on CRDS
- Gas mixture preparation using permeation method (ISO 6145-10)
- Some issues with current implementation of the gas mixture preparation method
 - Temperature stability of the oven
 - Manual weighing of the tube
 - Dilution system using mass flow controllers
- Detection limit in the low-ppb range, even for a biomethane matrix

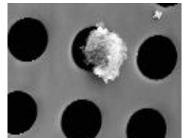


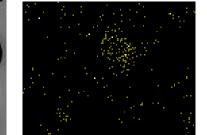
/SL Carbon monoxide content

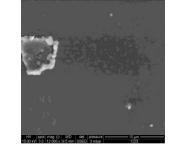
- Development of static reference gas mixtures unproblematic down to the ppm level
- GC/TCD and GC-FID(Nicat) methods developed for high- and low ranges
- Laser adsorption method developed, with little effect of the biogas/biomethane matrix
- Portable analyser developed for CO, CH₄ and HCI

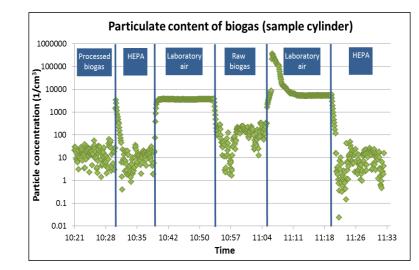


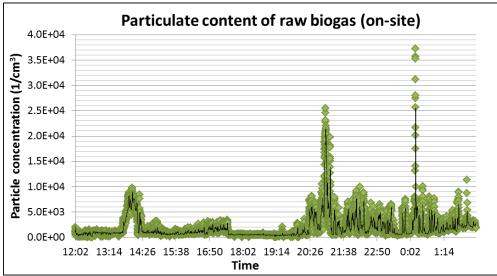
3-4-2023

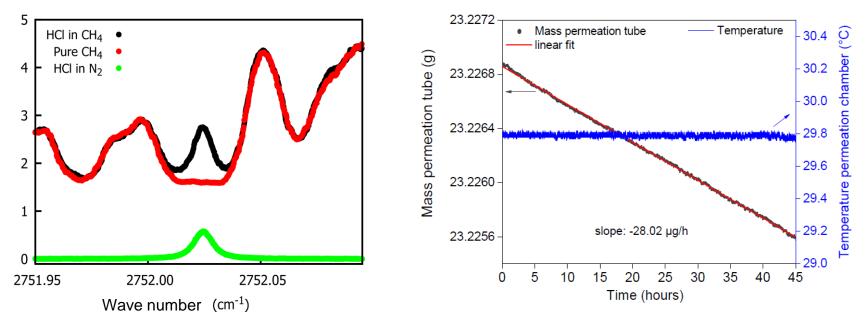

- Facilities for water dewpoint measurement further developed to measure water enhancement factor
- First results confirm models for natural gas for biomethane compositions
- Several common moisture sensors assessed for matrix and pressure sensitivity
- Best practice guide developed






/SL Particulate content


- Method developed for measuring particulate concentration in biomethane and biogas
- Offsite analysis of particulate concentration not feasible (particles stick to the walls of the sample collection vessel)
- Particulate concentration generally lower than in indoor air
- Recommendation developed for measuring particulate concentration and offered to standardisation

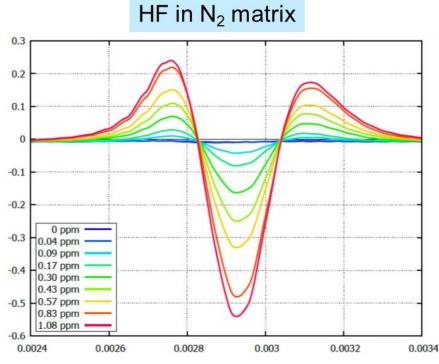

National Metrology Institute

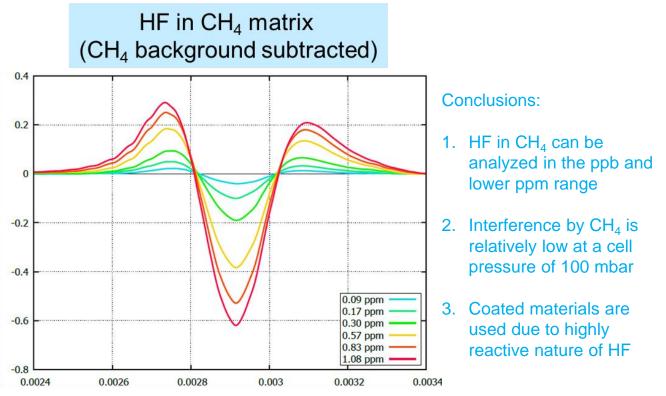
3-4-2023

Metrology for biomethane conformity assessment

VSL Gas standards and test methods for HCI

- Dynamic gas standards: permeation method using magnetic suspension balance
- Test method using CRDS improved but still suffers from matrix interference
- Dedicated direct absorption (DDA) method on-going
- Target relative expanded uncertainty (3 %)


3-4-2023


National

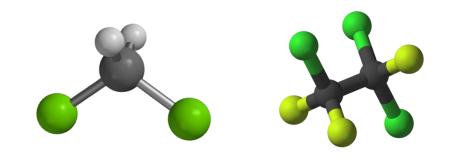
Metrology Institute

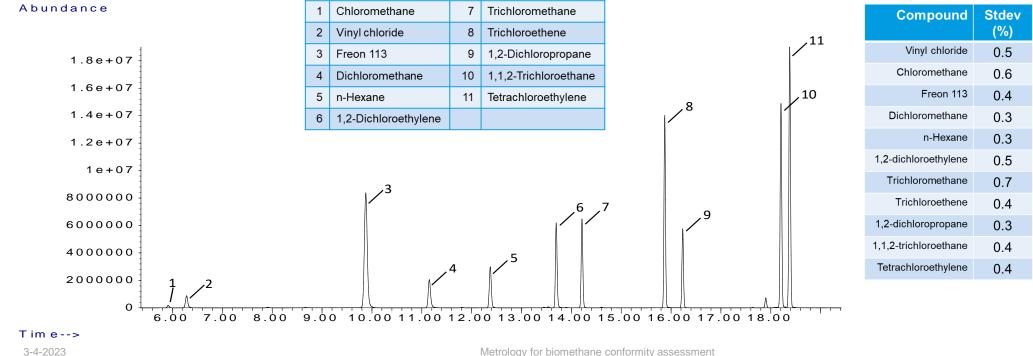
VSL Gas standards and test methods for HF

- Dynamic gas standards: permeation method using magnetic suspension balance
- Test method using direct absorption and wavelength modulation spectroscopy
- Target relative expanded uncertainty (10 %)

3-4-2023

Gas standards and test methods for halogenated VOCs VSL


- Static gas standards developed
 - 50 nmol/mol _

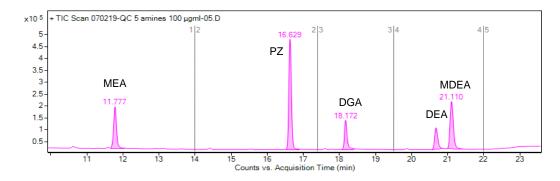

National

Institute

Metrology

- Test method using GC-FID/MS developed
- Long-term stability on-going
- Target relative expanded uncertainty (3 %)

Metrology for biomethane conformity assessment



National Metrology Institute

3-4-2023

SL Gas standards and test methods for alkanolamines

- Used for biogas upgrading into biomethane (to remove H₂S, COS and CO₂)
- Due to low vapor pressure and high viscosity of some selected amines, gas mixtures are not prepared in cylinders
- Instead, five amines are spiked on sorbent tubes
 - Methyldiethanolamine (MDEA)
 - Diethanolamine (DEA)
 - Monoethanolamine (MEA)
 - Piperazine (PZ)
 - Diglycolamine (DGA)
- Method using TD-GC-MS/FID
- Acceptable repeatability and reproducibility

VSL Standardisation

- Much of the work done in the EURAMET projects is taken up in standardisation
- Key committees:
 - CEN/TC408 Biomethane \rightarrow specifications
 - ISO/TC193/SC1/WG25 Biomethane \rightarrow test methods
 - ISO/TC193/SC1/WG20 Sampling
- State of play:
 - EN 16723 underwent a systematic review and will be updated
 - First generation of dedicated test methods well underway

VSL Standardisation of methods (ISO/TC193/SC1/WG25)

Number	Title/subject	SDT	Status	Jan-21 Ech-21	Mar-21	Apr-21	_	Jul-21 Aug-21		Oct-21 Nov-21		Jan-22 Feb-22			_	Aug-22	Sep-22 Oct-22	Nov-22	_		_	May-23 Jun-23	Jul-23	Aug-23 Sep-23	Oct-23	Dec-23	Jan-24 Feh-24	Mar-24	Apr-24	May-24 Jun-24	Jul-24	Aug-24 Sep-24	Oct-24	Nov-24 Dec-24	Jan-25	Feb-25 Mar-25	Apr-25	May-25 Jun-25	Jul-25	Aug-25	Oct-25	Nov-25 Dec-25
							м		м	M	1	м	N	4	м		м		м	ľ	N	м	+																	+	4	
ISO/DTS 2610	Analysis of natural gas - Biomethane — Determination of amines content	24	published							с																																
ISO/CD 2611-1	Analysis of natural gas — Biomethane determination of halogenated compounds — Part 1: HCl and HF content by ion chromatography	36	registered										с																													
ISO/NWIP 2611-2	Analysis of natural gas – Biomethane - Measurement of halogenated VOCs		not yet circulated																					?	?	?															Π	
ISO/DIS 2612	Analysis of natural gas — Biomethane - Determination of ammonia content by Tuneable Diode Laser Absorption Spectroscopy	36	registered							с			с																													
ISO/FDIS 2613-1	Analysis of natural gas — Silicon content of biomethane — Part 1: Determination of total silicon content by AES	36	registered					(2																																Π	
ISO/DIS 2613-2	Analysis of natural gas — Silicon content of biomethane — Part 2: Determination of siloxane content by Gas Chromatography Ion Mobility Spectrometry	36	registered							с																																
ISO/CD 2614	Analysis of natural gas — Biomethane — Determination of terpenes' content by micro gas chromatography	24	registered										с																													
ISO/CD 2615	Analysis of natural gas — Biomethane — Determination of the content of compressor oil	24	registered																																					Τ	\square	
ISO/CD 2620	Analysis of natural gas — Biomethane — Determination of VOCs by thermal desorption gas chromatography with flame ionization and/or mass spectrometry detectors	36	registered													с	с																									
	Analysis of natural gas – Determination of the biogenic carbonfraction - Radiocarbon (14C) method		not yet circulated																																					Τ	\square	
	Carbon monoxide content		not yet circulated																																							
	Particulates' content		not yet circulated																																							
	Ketones		not yet circulated																																							

VSL Concluding remarks

- EURAMET has responded adequately to the introduction of biomethane
- A measurement infrastructure has been established, covering
 - Calibration
 - Analysis
 - Physical properties (calorific value, density etc.)
 - Sampling
- Input provided to CEN/TC408, ISO/TC193/SC1/WG20 (Sampling) and .../WG25
- EMN Energy Gases lists many of the services developed by the NMIs/DIs
- Basis for CCQM-K112 Composition of biogas

National

Institute

Coordinators, WP leads and partners in the named projects

Members of ISO/TC193/SC1 and the experts in ISO/TC193/SC1/WG20 and /WG25

Got interested? Contact me at avdveen@vsl.nl

"These projects have received funding from the European Metrology Research Programme and the European Metrology Programme for Innovation and Research, co-financed from the European Union and by the Participating States."

EMRP European Metrology Research Programme Programme of EURAMET

3-4-2023

National Metrology Institute

The EMRP is jointly funded by the EMRP participating countries within EURAMET and the European Union

The EMPIR initiative is co-funded by the European Union's Horizon 2020 research and innovation programme and the EMPIR Participating States