

"Biological assessment of SARS-CoV-2 variants in the CEPI funded Agility project."

Dr Simon Funnell FRSBiol (Scientific Leader)
UK Health Security Agency

SARS-CoV-2 replication schematic

SARS-CoV-2 replication schematic

- 1. Viral release before cell lysis
- 2. Viral release during cell lysis
- 3. Viral infection of adjoining cell
- 4. Infected cell merger (syncytia)

Antibody mediated viral neutralisation

Humoral Ab only

Doesn't measure T cell immunity

SARS-CoV-2 antibody neutralisation assays

Live virus neutralisation assay – focus-reduction method (adapted)

Bewley et al. (2021) Quantification of SARS-CoV-2 neutralizing antibody by wild-type plaque reduction neutralization, microneutralization and pseudotyped virus neutralization assays. *Nature Protocols.* **16**; 3114–3140

Wild-type virus neutralisation

- Measures functional neutralising antibodies
 Which are a subset of the total population of antibodies against the virus
- Wild-type virus target includes all viral antigens
 - Not just the spike protein
 - Also Matrix, Nucleocapsid and Envelope
- Includes all components of the viral replication machinery (non structural proteins)
- Readily adaptable to analyse non-serological samples e.g. anti-viral compounds

The UKHSA Microneutralisation Assay (MNA)

- Focus Reduction Neutralisation Test (FRNT)
- 96 well format 6 samples per plate
- Reference sera and VOC wells on every plate
- Immunostaining of foci (spots):
 - Primary antibody: Anti-spike-RBD
 - Secondary antibody: HRP-conjugated
 - Substrate: TrueBlue
- 4 days from cell seeding to results
- Routinely testing several thousand samples per month

Calculation of median neutralising dose ND₅₀

- Automated spots counting on CTL scanner with fixed parameters
- Excel data input directly into SoftMax Pro (SMP)
- Curve fitted to a four parameter logistic (4PL) nonlinear regression model
- SoftMax Pro GxP approved software
 - Acceptability by regulators
- Data used in several clinical trials

Agility project: Genomic surveillance and response for COVID-19 R&D

COVAX Enabling Science SWAT team

Isolation of SARS-CoV-2 variants

^{*} VAT cells – Vero E6 overexpressing hACE2 and hTMPRSS2

SARS-CoV-2 Variants

Post-infection fixation time (Gamma, Beta) optimised further to standardise foci appearance for automated counting

- Rapid optimisation for novel variants
- Isolation from clinical sample to first neutralisation results in ~3 weeks

Variant assessment

- Monitor variants using a pre-Alpha
 convalescent serum panel combining
 results from two laboratories (A) and (B)
- Statistically significant fold-changes in ND₅₀ relative to Victoria responses shown

Effect of IS normalisation across variants

- Majority of fold-changes between variants are 'lost' when normalising in this manner
- IU/ml expression needs to include details of which variant was used

Only useful for "within variant" comparison

Utility of IS normalisation between labs Same variant (Vic-01)

- Two labs (A Blue; B Green)
- Panel of convalescent serum assessed in triplicate at each lab
- Raw data: ND₅₀ = **40.4 %GCV**
- Normalised (to IS):
 IU/mL = 22.5 %GCV
- An improvement in inter-lab variability of 17.9%; p<0.001
- Conversion to IU/mL further reduces variability of already comparable data

Validation of the UKHSA MNA Used at GCLP for clinical trial materials

Example Parameter	Acceptance Criteria	Results	Validation Acceptance
Precision	≤ 50% GCV repeatability ≤ 50% GCV intermediate precision	Repeatability: 29% Inter-assay: 8% Intermediate Precision: 30%	All %GCV ≤ 50% Pass
Specificity	SARS-CoV-2 positive sera should show neutralisation; negative sera should be ≤LLOD % relative recovery must be 50 – 200% for the positive mixed 1:1 with a negative sample	GMT of positive samples: ND ₅₀ = 1922 Negative samples: ≤LLOD Geomean of %relative recovery = 112%	Pass
Linearity	Data fitted through a regression line must have coefficient of multiple determinations (R^2) ≥ 0.75 and a slope between 0.75 to 1.25	R ² = 0.91 Slope: 0.79 (90% CI 0.73 – 0.85)	Pass
Relative Accuracy	80% of points must lie between the range of 50% to 200% relative recovery	GMT % recovery between 70 – 111%	Pass

- Qualification and Validation also investigated Dilutability, Analytical Range, LLOQ and ULOQ verification, LLOD,
 Sample stability (serial freeze thaws and refrigeration of samples), and Robustness
 - All parameters passed

Assay Utilisation

- MNA for prototype virus; RCT samples from vaccine developers
 - > 10 developers
 - · Includes trials investigating/supporting human challenge studies, winter booster, 'flu/covid co-vaccination
 - Many thousands of samples processed
- Adapted MNA used to assess virus variant immune escape
 - CEPI-Agility: Nine variants assessed (including all VOCs)
 - https://epi.tghn.org/covax-overview/enabling-sciences/agility_epi/
- Adapted MNA used to assess breadth of protection against virus variants for vaccine developers
- Adapted MNA used to assess in vitro efficacy of:
 - Monoclonal antibody-based therapeutics
 - Antiviral compounds

Summary

- UKHSA has developed a microneutralisation test
 - Qualified and validated for use in regulated clinical trials
- The assay has been adapted for use with VOCs and VUIs
 - Assessments performed using a pre-alpha serum panel to assess 'concern'
 - WHO IS 20/136 used in addition to this panel (also a pre-Alpha pool)
- WHO IS 20/126 use
 - User needs to specifiy which variant usage reduces inter-lab variation significantly
 - Permits inter-laboratory data comparison per variant
 - Distorts the between variant fold-changes (incorrect usage)
- Sender:William Dowling (william.dowling@cepi.net)

Subject: Training Webinar for the calibration of quantitative serology assays using the WHO International Standard for anti-SARS-CoV-2 immunoglobulin **When:** Wednesday, November 10, 2021 8:30 AM-9:30 AM (UTC-05:00) Eastern Time (US & Canada). **Where:** Zoom TBD; https://cepi-net.zoom.us/i/91271954785