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SMART GRIDS AND THE LOWER INERTIA ISSUE
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MEASUREMENTS AND CONTROL TODAY

Emerging
power
systems
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MEASUREMENTS AND INFORMATION. NEED OF HIGH REPORTING RATES

by averaging the measurement result, the message becomes less sensitive to measurement errors;

However, there is a lack of significance of the quantity at the end of aggregation process:

the decimation introduces an additional uncertainty which is associated NOT with the
measurement but with the meaning of the resulting quantity; this error can be related to

the “adequacy’ of the information [output message] to the model (of the physical system) =
definitional uncertainty, an estimate of the semantic noise

uy, - model/definitional uncertainty

Ugy - Uncertainty associated with the
Measurement is a — — ) Uy, measurement value; | |
[lossy] information u = \/(u M) +(uRM) ; Upy= N ugp - uncertainty associated with the reported
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[ENERGY VS. POWER] METERING. ENERGY COMMUNITIES AND NEW BUSINESSES
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[ENERGY VS. POWER] METERING. SMART METERS AND INHERENT DATA COMPRESSION

energy consumed on ..15.05.2020 has been 5.351kWh
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SYNCHRONIZED MEASUREMENTS. WAMCS
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SYNCHRONIZED MEASUREMENTS. Role of inertia

Cernavoda Nuclear Power Plant
2x700 MW

CNPP_ev1: 1st June 2017
Moldova .
* One unit was under planned
maintenance (half inertia available)
« Sudden full disconnection of the unit
(no inertia remained)
* The instant of perturbation:
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CNPP_ev2: 16 August 2018

Serbia
« Both units in operation
LR cor B o  Sudden full disconnection of the unit
ﬁ * The instant of perturbation:
S » 4.4% wind generation

Kozlodui Bulgaria Varna

= 6% power export

L. Toma, M. Sanduleac, M. Albu, C. Diaconu,

C. Stanescu, Frequency analysis in the
Modelling and data analytics in smart grids— 25.11.2021 Romanian power system under major grid

disturbances , CIGRE e-Session, 2020




SYNCHRONIZED MEASUREMENTS. Role of inertia
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The local mechanical inertia determines the frequency dip, which is double when both units of CNPP are

disconnected

earlier than the time delay specific to the primary frequency

The frequency is stabilized within 1 second,

control

L. Toma, M. Sanduleac, M. Albu, C. Diaconu,
C. Stanescu, Frequency analysis in the

Romanian power system under major grid

disturbances , CIGRE e-Session, 2020
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EMBEDDED FORECASTING AND ANOMALY DETECTION FOR POWER PROFILES

Short Term Load Forecasting (STLF) - local control to enable DR schemes and mitigate
the risk of anomaly occurrences - flexibility!
Classical system identification / statistical models Local control loops executed on the edge in real time
Good performance with expert knowledge for model structure L
selection
Machine learning models i L
Data-driven modelling that can incorporate domain knowledge Micro/Grid | .-
in the feature engineering stage Manager
Good performance and adequate explainability

Deep learning models /

State-of-the-art performance OEI @ campus
Opagque models with large computational requirements .

‘ . @ @ . - " - .

Task: to predict power profile P(t,) on a variable prediction
horizon (hour, day, week) with associated confidence intervals

. oMV TEHN,
Subtask: anomaly detection N
Grigore Stamatescu, Irina Ciornei, Radu Plamanescu, Ana- i E
Maria Dumitrescu, Mihaela Albu, Reporting Interval Impact on E.bf?.
. .. . Deep Residential Energy Measurement Prediction, Proc. of -
Modelling and data analytics in smart grids— 25.11.2021 AMPS2021, 1 Oct. 2021 ) ml')ER
| |




MuLTI-SCALE DATA ANALYTICS FOR POWER PROFILES

* Development of data driven models that operate in a robust manner at various timescales

* Incorporate domain knowledge at pre-processing and feature engineering stages

* Potential for model compression to run on embedded hardware with resource constraints
* Micro-load forecasting and classification e.g. steady state and transients labelling

* How do data-driven models perform under varying input reporting rates? Can we keep the same models w/o

retraining?

* One month of residental energy measurements sampled at 1s; Offline processing of daily text record files
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Must be an anomaly in the original
/ data, in this region.

We call these Time Series Discords

| L | | |

500 1000 1500 2000 2500 3000

" Must be conserved shapes (motifs) in the original data,
in these three regions

Grigore Stamatescu, Irina Ciornei, Radu Plamanescu, Ana-
Maria Dumitrescu, Mihaela Albu, Reporting Interval Impact on
Deep Residential Energy Measurement Prediction, Proc. of
AMPS2021, 1 Oct. 2021




DATA ANALYTICS FOR ENERGY COMMUNITIES
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for enhanced grid monitoring and services for energy communities," M

in IEEE Transactions on Industrial Informatics, 2021
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[INSTEAD OF] CONCLUSIONS

* [NEW] CONTROL ALGORITHMS IN SMART GRIDS REQUIRE FASTER MEASUREMENTS
*  ACCURATE MODELLING/VALIDATION OF MODELS

*  NEW SOLUTIONS FOR [LOSSLESS!] DATA COMPRESSION

*  HIGH REPORTING RATE MEASUREMENTS [SMART METERS]

*  DATA ANALYTICS FOR ENERGY COMMUNITIES

.... = DATA SECURITY?
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