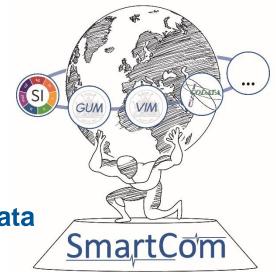


The Digital SI meta-data format

Ian Smith National Physical Laboratory

Digital processes in the quality infrastructure: the digital calibration certificate contribution 29 September 2021

Why is it needed?



- More and more measurement data is being captured, transmitted and processed
 - Data from different sources being combined to inform decision making
- Degree of human interaction with data is decreasing
 - Automation of measurement processes, AI, etc.
- It is imperative that data can be interpreted correctly
 - Interpretation must not rely on assumptions, e.g., of unit of measurement
 - Data must not be ambiguous
- Ensures a consistent approach may be applied to all metrology domains and enhances the reporting of measurement information

What are its key requirements?

- Treat all common types of measurement data
 - Real, complex, univariate, multivariate, etc.
- Ensure that unit of measurement is always provided
- Allow uncertainty information to be provided
 - Expanded uncertainty, coverage interval, covariance matrix, coverage regions
- Alignment with key metrology documents and standards
 - VIM, GUM and its supplements, BIPM SI brochure, etc.
- Facilitate ease of use and trustworthiness of measurement data

- Easiest to think about a single real quantity...
- What information must be representable?
 - Quantity value
 - Unit of measurement
 - Uncertainty information
 - Expanded uncertainty
 - Coverage interval
 - Label (optional)
 - Date and time of measurement (optional)

- Easiest to think about a single real quantity...
- What information must be representable?
 - Quantity value
 - Unit of measurement
 - Uncertainty information
 - Expanded uncertainty
 - Coverage interval
 - Label (optional)
 - Date and time of measurement (optional)

Decimal	point as	separator

IEEE 754

- Easiest to think about a single real quantity...
- What information must be representable?
 - Quantity value
 - Unit of measurement
 - Uncertainty information
 - Expanded uncertainty
 - Coverage interval
 - Label (optional)
 - Date and time of measurement (optional)

Base units, derived units, non-		
SI units accepted for use with		
the SI		
Decimal multiples		
Powers of units		
BIPM SI brochure		
LaTeX package siunitx		

- Easiest to think about a single real quantity...
- What information must be representable?
 - Quantity value
 - Unit of measurement
 - Uncertainty information
 - Expanded uncertainty
 - Coverage interval
 - Label (optional)
 - Date and time of measurement (optional)

Standard uncertainty	
Lower limit of interval	
Upper limit of interval	
Coverage probability	
Inherited unit	
GUM	

- Easiest to think about a single real quantity...
- What information must be representable?
 - Quantity value
 - Unit of measurement
 - Uncertainty information
 - Expanded uncertainty
 - Coverage interval
 - Label (optional)
 - Date and time of measurement (optional)

UFT-8 character string

- Easiest to think about a single real quantity...
- What information must be representable?
 - Quantity value
 - Unit of measurement
 - Uncertainty information
 - Expanded uncertainty
 - Coverage interval
 - Label (optional)
 - Date and time of measurement (optional)

ISO 8601

- XML used within SmartCom but use of alternative languages such as JSON is equally valid
- Example: Single real quantity with coverage interval

```
<si:real>
<si:value>838</si:value>
<si:unit>\nano\metre</si:unit>
<si:coverageInterval>
<si:standardUnc>36</si:standardUnc>
<si:intervalMin>745</si:intervalMin>
<si:intervalMax>932</si:intervalMax>
<si:coverageProbability>0.99</si:coverageProbability>
</si:coverageInterval>
</si:real>
```


- Single complex quantity
 - Real and imaginary parts or magnitude and phase
 - Uncertainty information represented by covariance matrix
 - Coverage region (rectangular, ellipsoidal)
- Multivariate quantities
 - "List" structure
 - Same measurement unit for all quantities?
 - Same uncertainty value for all quantities
- Quantities that use unconventional units
 - "Hybrid structure"
 - Represented using both non-SI and SI units

Looking to the future

- Development of software tools
 - Digital SI representation of measurement data acquired by measuring instruments
 - Processing of measurement data
 - Integration of the Digital SI into commercial software packages?
- The Digital SI is subject to updates
 - New versions of the BIPM SI Brochure
 - Feedback from user communities
 - Dealing with reference materials and procedures
 - Backwards compatibility
- Continued use within higher level data structures, e.g., DCCs

Thank you for your attention