

On the Use of Artificial Intelligence-based Modeling of Sensor Networks in Energy Systems

Alessandro Corsini

Dipartimento di Ingegneria Meccanica e Aerospaziale, Sapienza University of Rome, Italy

I like work: it fascinates me, I can sit and look at it for hours

Jerome K. Jerome, "Three Men in a Boat", 1889

In collaboration with Fabrizio Bonacina, Eric Stefan Miele

Team for Artificial Intelligence in Complexity Modeling

Full members Associate members AUSTROLAB (Austria) LEBLAB (Lebanon) BELAM (Belgium) MAKLAB (FYROM) TURKLAB (Turkey) **BULLAB** (Bulgaria) **CROLAB** (Croatia) International EUROLAB-CZ (Czechia) affiliates EUROLAB ASCOLAB (Congo) Danmark (Denmark) LA-SA (South Africa) Finntesting (Finland) NCSL (USA) EUROLAB France (France) EUROLAB **Observer** members Deutschland (Germany) **Croatian Metrology** Hellaslab (Greece) ty HMD (Croatia) ICELAB (Iceland) ALPI (Italy) FENELAB (Netherlands) POLLAB (Poland) RELACRE (Portugal) FELAB (Spain) EUROLAB Sverige (Sweden) EUROLAB CH (Switzerland) **EUROLAB** members' areas of focus

Artificial Intelligence Metrology and calibration Cybersecurity Food legislation Sustainability/Green Deal The lab of the future Pandemic Resilience

Grouping over **3 000** conformity assessment bodies and representing over **150 000** technical experts and laboratory practitioners.

eurolab

Representing since 1990

Testing, Measurement and Calibration

laboratories.

18 Full Members.

3 Associated Members,

1 Observer Member and

3 International Affiliates

CSR

Contents

Industrial metrology&cyber-physical systems: the challenge

AI in sensor network analysis: the methodology

Case studies in Energy arena: the problem

Conclusions

Start with why ... challenges

Industry 4.0 key paradigm is about linking operations - in industry (and energy) - and ICT to make production more flexible

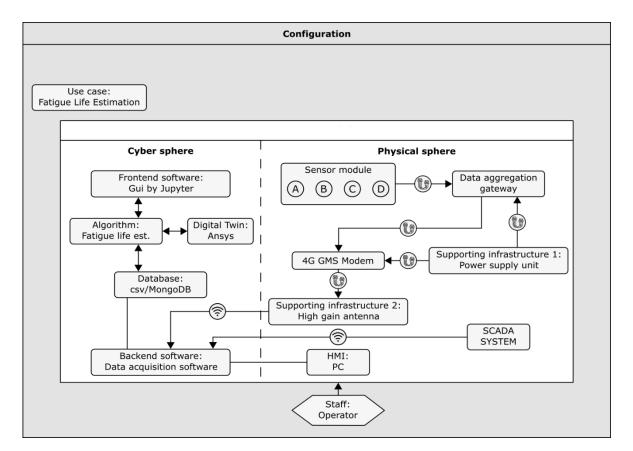
Industrial metrology is the enabling factor to empower individualized products as instrumental to process adjustment

production facilities are frequently reconfigured/or adapted

associated *changes in production control operations* must be implemented efficiently to survive permanently in the market

Industrial metrology is creating/capturing a map of real world (digital twin) virtual planning model

Data collected constitute a central component of **cyber-physical (production) systems** (aka CPPSs) which aim at <u>lifting the current productivity limitations</u> of established processes and meeting the requirements of operability and networkability



Start with why ... CPPS

E.A. Lee et al. (2006): «Integration of computation with physical processes»

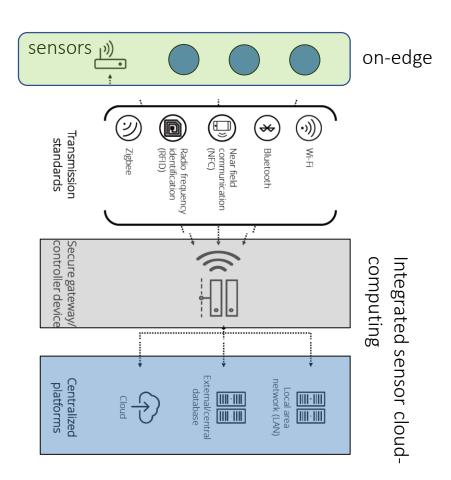
R. Rajkumar et al. (2012): «physical and engineered systems whose operations are monitored, coordinated, controlled, and integrated by a computing and communication core»

V. Gunes et al. (2014): «a term describing a broad range of complex, multidisciplinary, physicallyaware next generation engineered system that integrates embedded computing technologies (cyber part) into the physical world»

* Reference architecture by Sascha Julian Oks et al. (2019)

Start with why ... challenges

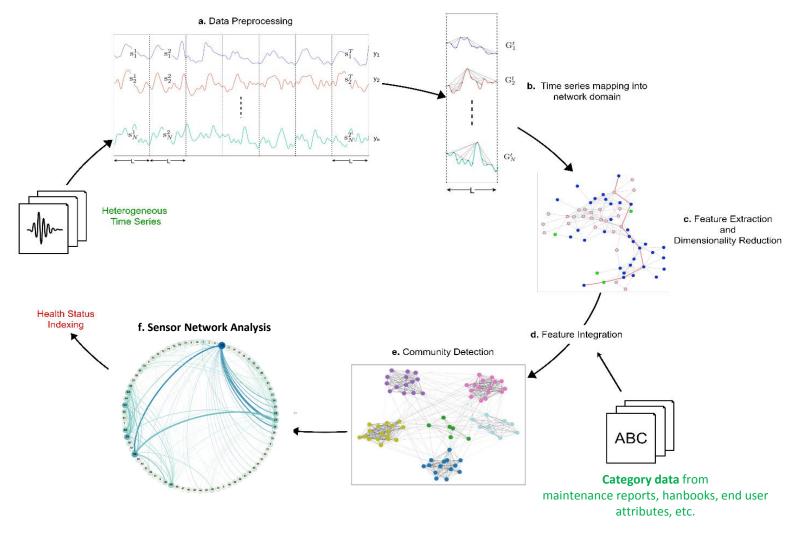
Integrating sensor, measurement technology and data analytics (IIoT) is thus a key element in the success of CPPS


Such integration must advocate the following goals

- i. collecting the "right" measurement data
- ii. at the "right" place, and
- iii. time,
- iv. manageable to process intelligence (form collected data have has a decisive influence on the quality of any derived index or indicator),
- v. sensor layer must also react robustly to redundant and conflicting data (resilient production in a resilient factory perspective)

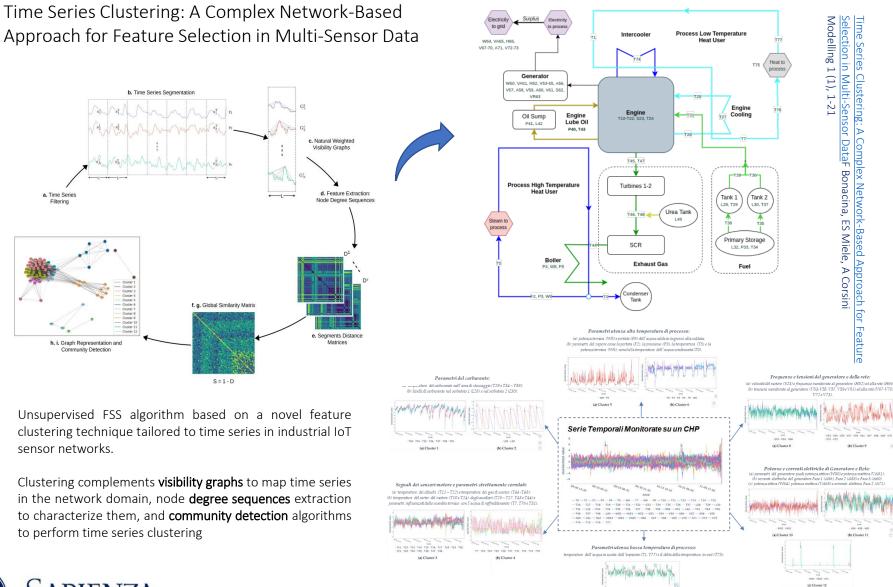
Industrial metrology challenges/trends are *fastness*, *accuracy*, *reliability*, *flexibility* and *holistic* (using sensor networks rather than sensor signals)

Start with why ... *IIoT challenges*


Metabolic dynamic mapping and hidden correlation unveiling

KPI identification in genuine Multi-Variate environments and complex engineering (eco)systems

Datafication for the O&M (Predictive and Prescriptive)



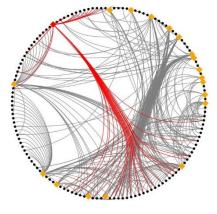
Methodology, Sensor Network Analysis

Methodology (2)

Groups of Similar Time Series

Methodology (3)


For this purpose we have defined an **unsupervised** approach for data labeling based on complex network measurement, in order to also include the precursor phenomena. At the end of this phase all the faults and anomalies identified were then compared and validated with the events included in the maintenance reports



Università di Roma

Complex Network Analysis of Photovoltaic Plant Operations and Failure ModesF Bonacina, A Corsini, L Cardillo, F Lucchetta, Energies 12 (10), 1995

Methodology (4)

Connectivity Matrix

Adiacency matrix (nxn where n is the number of monitored parameters) associated with each temporal window of fixed lenght. Each element e_{ij} represents the existing relation between variables *i* and *j* and it is visualized through the color variation.

Complex Network Metrics: Total Degree

It is a centrality measurement. Centrality is directly related to te potential importance of a node (variable) in the graph. -v

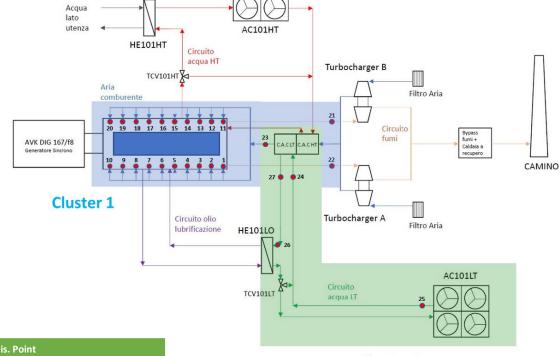
WDC = $\sum_{j=0}^{N} w_{ij}$

where w_{ij} is the weight of the edges connected to the node *i*.

Visual Analytics: Circular Layout

Nodes are positioned along a circumference and are ranked based on node metric.

Parameter ID	Description	Mis. Point	
Ex_1a_F	Cylinder 1A Temperature (°C)	1	
Ex_2a_F	Cylinder 2A Temperature (°C)	2	
Ex_3a_F	Cylinder 3A Temperature (°C)	3	
Ex_4a_F	Cylinder 4A Temperature (°C)	4	
Ex_5a_F	Cylinder 5A Temperature (°C)	5	
Ex_6a_F	Cylinder 6A Temperature (°C)	6	
Ex_7a_F	Cylinder 7A Temperature (°C)	7	
Ex_8a_F	Cylinder 8A Temperature (°C)	8	
Ex_9a_F	Cylinder 9A Temperature (°C)	9	
Ex_10a_F	Cylinder 10A Temperature (°C)	10	
Average_A_F	Average Cylinder's A Temperatures (°C)		
Ex_1b_F	Cylinder 1B Temperature (°C)	11	
Ex_2b_F	Cylinder 2B Temperature (°C)	12	
Ex_3b_F	Cylinder 3B Temperature (°C)	13	
Ex_4b_F	Cylinder 4B Temperature (°C)	14	
Ex_5b_F	Cylinder 5B Temperature (°C)	15	
Ex_6b_F	Cylinder 6B Temperature (°C)	16	
Ex_7b_F	Cylinder 7B Temperature (°C)	17	
Ex_8b_F	Cylinder 8B Temperature (°C)	18	
Ex_9b_F	Cylinder 9B Temperature (°C)	19	
Ex_10b_F	Cylinder 10B Temperature (°C)	20	
Average_B_F	Average Cylinder's B Temperatures (°C)	-	
EX_T_BF_TURBO_B_F	Turbocharger B Inlet Temperature (°C)	21	
EX_T_BF_TURBO_A_F	Turbocharger A Inlet Temperature (°C)	22	
Parameter ID	Description		
CA_TEMP_F	Supercharging Air Temperature (°C)		Í
LT_W_TEMP_INLET	Cooling Water Temperature at Engine Inlet (°C)		
TT06LT	Cooling Water Temperature at Engine Inlet (°C)		
TT103LT	Cooling Water Temperature at Air Cooler Outlet (°C)		

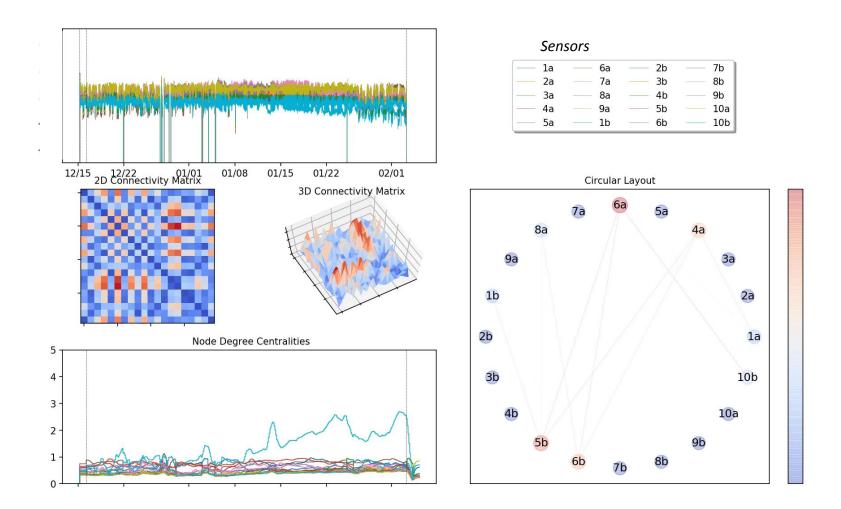

Cooling Water Temperature at Oil Cooling Exchanger Outlet(°C)

Cooling Water Temperature at Engine Outlet (°C)

26 27

Fault prognosis in multi-MW ICE gen-set

Sensor networks and clustering

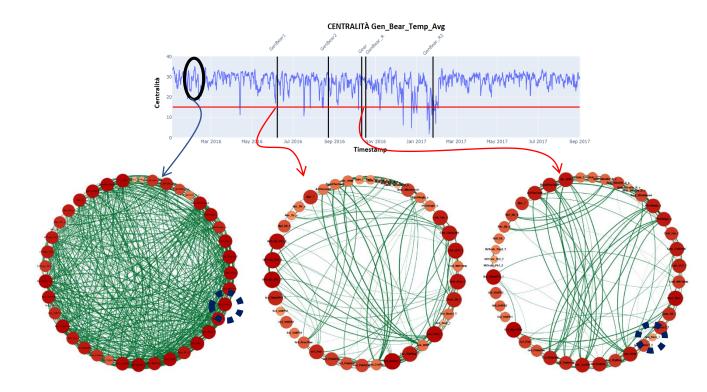

....

TT106LT

TT102LT

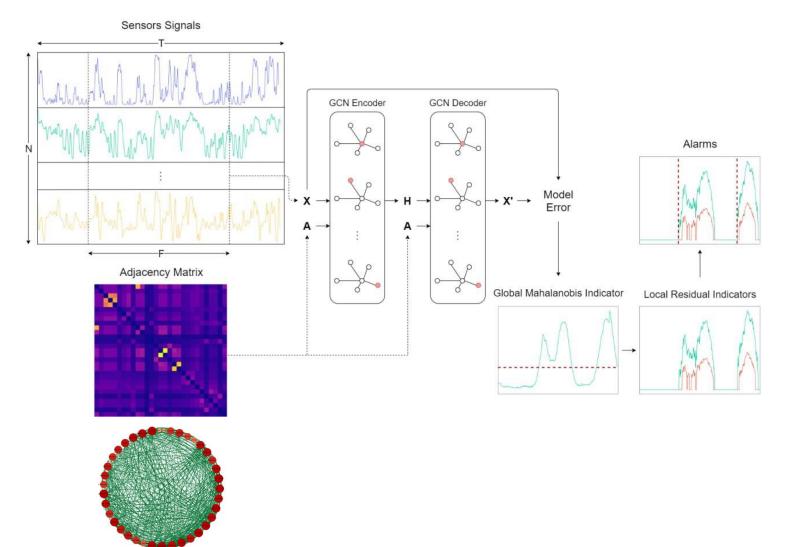
VM

Fault prognosis in multi-MW ICE gen-set


Data is collected from a wind farm consisting of five WTs, each with a rated power of 2 MW Wind farm is ranked as class 2 according to the standard IEC 61400

EDP. Wind Farm 1 - Failures, 2016. Data retrieved from EDP Open Data, https://opendata.edp.com/ 396 explore/dataset/htw-failures-2016/information/.

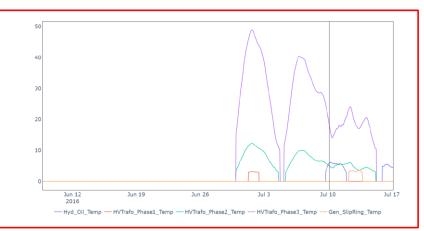
		Signal ID	Description	
		Gen_Bear_Temp	Temperature in generator bearing 1 (Non-Drive End)	
		Gen_Bear2_Temp	Temperature in generator bearing 2 (Drive End)	
		Gen_RPM	Generator rpm	
		Gen_Phase1_Temp	Temperature inside generator in stator windings phase 1	
		Gen_Phase2_Temp	Temperature inside generator in stator windings phase 2	
		Gen_Phase3_Temp	Temperature inside generator in stator windings phase 3	
Table 1: Technical information of each turbine.		Gen_SlipRing_Temp	Temperature in the split ring chamber	
·		Hyd_Oil_Temp	Temperature oil in hydraulic group	
Rated power (kW)	2000	Gear_Oil_Temp	Temperature oil in gearbox	
Cut-in wind speed (m/s)	4	Gear_Bear_Temp	Temperature in gearbox bearing on high speed shaft	
Rated wind speed (m/s)	12	Nac_Temp	Temperature in nacelle	
Cut-out wind speed (m/s)	25	Nac_Direction	Nacelle direction	
Rotor diameter (m)	90	Rtr_RPM	Rotor rpm	2 april
Rotor swept area (m^2)	6362	Amb_WindSpeed	Wind speed	X
Number of blades	3	Amb_WindDir_Relative	Wind relative direction	
Max rotor speed (rpm)	14.9	Amb_WindDir_Abs	Wind absolute direction	
Rotor tip speed (m/s)	70	Amb_Temp	Ambient temperature	REEL
Rotor power density $1 (W/m^2)$	314.4	Prod_TotActPwr	Total active power	
Rotor power density 2 (m^2/kW)	3.2	Prod_TotReactPwr	Total reactive power	
Gearbox Type	Planetary/spur	HVTrafo_Phase1_Temp	Temperature in HV transformer phase L1	
Gearbox stages	3	HVTrafo_Phase2_Temp	Temperature in HV transformer phase L2	
Generator type	Asynchronous	HVTrafo_Phase3_Temp	Temperature in HV transformer phase L3	
Max generator speed (rpm)	2016	Cont_Top_Temp	Temperature in the top nacelle controller	
Generator voltage (V)	690	Cont_Hub_Temp	Temperature in the hub controller	
Grid frequency (Hz)	50	Cont_VCP_Temp	Temperature on the VCP-board	
Hub height (m)	80	Cont_VCP_ChokcoilTemp	Temperature in the choke coils on the VCS-section	
Tower Type	Steel tube	$Cont_VCP_WtrTemp$	Temperature in the VCS cooling water	
Tower Shape	Conical	Spin_Temp	Temperature in the nose cone	
Tower corrosion protection	Painted	Blds_PitchAngle	Blades pitch angle	


SCADA-based characterization of normal operation

SCADA-based characterization of faults

Fault early identification (<u>generator</u>) using Sensor Network Analysis AI

Sensor network mapping using AI



SAPIENZA Università di Roma

Jul 2 2017 Aug 27 Jul 9 Jul 16 Jul 23 Jul 30 Aug 6 Aug 13 Aug 20 Type of failure Component Turbine ID Gearbox Pump damaged T01 Generator Replacement Generator T06Generator Damaged T07 Electric circuit error T11 Generator Bearings T07 High temperature High temperature T09 Generator Replacement T09 Transformer T01 Fan damaged High temperature T07 Hydraulic Group Error in pitch regulation **T**06 Oil leakage in hub T07Error in the brake circuit T11

Predictive Maintenance in Wind Turbines

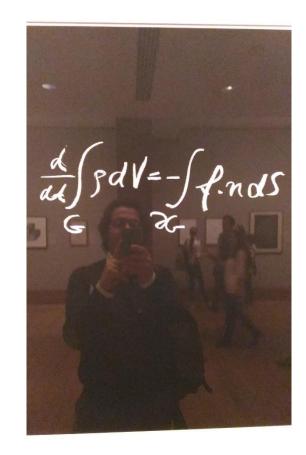
Plot of the model reconstruction errors of the turbine SN (vertical black line represents the failure occurrence time)

Jul 2 2017 Aug 27 Jul 9 Jul 16 Jul 23 Jul 30 Aug 6 Aug 13 Aug 20 Type of failure Component Turbine ID Gearbox Pump damaged T01 Generator Replacement Generator T06Generator Damaged T07 T11 Electric circuit error Generator Bearings T07 High temperature High temperature T09 Generator Replacement T09 Transformer T01 Fan damaged High temperature T07 Hydraulic Group Error in pitch regulation **T**06 Oil leakage in hub T07Error in the brake circuit T11

Predictive Maintenance in Wind Turbines

Plot of the model reconstruction errors of the turbine SN (vertical black line represents the failure occurrence time)

F (hh)	Avg Advance (dd, hh:mm:ss)	P (%)	R (%)	F1 (%)
1	4 days, 4:21:12	13	14	14
6	25 days, 21:53:34	55	79	65
12	26 days, 5:40:42	69	79	73
24	33 days, 11:53:51	81	93	87
36	32 days, 5:48:51	86	86	86
48	32 days, 1:47:25	92	86	89
58	29 days, 1:37:51	92	79	85
72	29 days, 8:37:51	79	79	79
84	32 days, 13:44:34	71	86	77


Conclusions

Industrial metrology is the enabling factor to disclose digital twin potentials and create so-called physical data servers

Sensor network perspective enables a *holistic view* of production systems meaning that all the relevant qualities are brought together to form a complete basis for evaluating process/product/operation quality

Grazie

Signals are not to provide numbers but insights

