

FINAL PUBLISHABLE REPORT

Grant Agreement number 16ENV06

Project short name SIRS

Project full title Metrology for stable isotope reference standards

Project start date and duration:		June 1st 2017, 42 months			
Coordinator: Dr Paul Brewer, NPL	Tel: +44 (0) 208 943 6007		E-mail: paul.brewer@npl.co.uk		
Project website address: http://www.vtt.fi/sites/SIRS/					
Internal Funded Partners:	External Funded Par	rtners:	Unfunded Partners:		
1. NPL, UK	7. AL, Spain		12. EMPA, Switzerland		
2. DFM, Denmark	8. JSI, Slovenia				
3. INRIM, Italy	9. MPG, Germany				
4. PTB, Germany	10. RUG, Netherlands				
5. TUBITAK, Turkey	11. UEF, Finland				
6. VTT, Finland					

contains.

TABLE OF CONTENTS

1	Overview	3
	Need	
	Objectives	
4	Results	
5	ImpactList of publications	12
6	List of publications	
7	Contact details	1.3

1 Overview

Climate change is one of the greatest risks to society worldwide. The increase of greenhouse gas concentrations in the atmosphere from man-made emissions (CO₂ and N₂O are major contributors) is the main cause of global warming. There is a need to discriminate man-made from natural contributions in the atmosphere, to provide governments with emission inventory data to support verification of nationally determined emission targets and allow pledges of emissions reductions to be demonstrated. This cannot be achieved with existing metrological infrastructure, so new research to underpin measurements of stable isotopes of CO₂ and N₂O, which infers their origin, is vital. The project achieved the establishment of new measurement services for the production and provision of static reference materials for isotope ratio of CO₂, as well as new calibration services from the development of dynamic reference materials of CO₂. The project also achieved an optical Isotope ratio spectroscopy (OIRS) approach harmonised across the partners that advanced the previous state of the art in terms of rigorousness in uncertainty assessments, matrix and concentration artefact corrections and finally in terms of precession in delta value determinations in carbon dioxide and nitrous oxide.

2 Need

Immediate action is required to prevent irreversible changes to the Earth's climate from greenhouse gas emissions. Many of these components also influence the formation of tropospheric ozone and aerosols, so are relevant to air quality (directive 2008/50/EC) and climate. COP21 (Conference of the Parties) renewed and emphasised the agreement that each country would provide nationally determined contributions, pledges to reduce emissions. In Europe, the Covenant of Mayors New signatories now pledge to reduce CO₂ emissions by at least 40 % by 2030.

- To support governments to verify emissions and demonstrate national reduction targets the project need to discriminate between the natural and various manmade sources of greenhouse gases. Verifying emissions requires accurate measurements of baseline concentrations and contributions resulting from emission events. Separating man-made emissions from measured CO₂ (Objectives 1 and 2) and N₂O (Objective 3) concentrations is challenging and requires information on the stable isotopic composition.
- There is no infrastructure to deliver international gaseous CO₂ reference materials (Objectives 1, 2 and 5) to meet demand and no international gaseous N₂O reference materials (Objectives 3 and 5) with stated uncertainties to underpin isotope ratio measurements. This compromises the comparability of measurement data. It proved difficult until this project as the materials defining isotope scales were chosen decades ago with applications of that era (mainly geochemistry) and do not lend themselves to gas mixture preparation to meet high demand with tight uncertainty requirements.
- Advances in optical spectroscopy have made field deployable techniques that meet uncertainty requirements viable but metrological research is required to achieve this (Objective 4).

3 Objectives

The overall goal of this project was to fill a traceability gap by providing a new infrastructure for stable isotopes to deliver international gaseous CO_2 reference materials to meet the increasing demand and international gaseous N_2O reference materials with stated uncertainties to underpin measurements.

The project's specific objectives were:

- 1. To develop static and dynamic reference materials for pure CO₂ and at 400 µmol/mol in an air matrix with uncertainties ($\delta^{13}\text{C-CO}_2$ 0.1 % and $\delta^{18}\text{O-CO}_2$ 0.5 %). Ensure traceability and consistency with VPDB (primary scale) and work towards meeting the WMO compatibility goals ($\delta^{13}\text{C-CO}_2$ 0.01 % and $\delta^{18}\text{O-CO}_2$ 0.05 %).
- 2. To re-measure the absolute CO₂ isotope ratios of the reference materials to provide the data necessary for SI traceability.
- 3. To develop static and dynamic reference materials for pure N_2O and at 300 nmol/mol 1000 nmol/mol in an air matrix. The static and dynamic reference materials should meet the requirements for regionally focussed monitoring studies and have target uncertainties of 1.0 % ($\delta^{15}N^{\alpha}$ and $\delta^{15}N^{\beta}$) and 0.5 % ($\delta^{15}N$, $\delta^{18}O$).

- 4. To develop spectroscopic methods for isotope ratio measurements of CO₂ with an uncertainty target of 0.1 % for δ¹³C-CO₂ and 0.5 % for δ¹8O-CO₂, and of N₂O, including site specific delta values in real time with a target precision of 0.1 % for δ¹⁵Nα, δ¹⁵Nβ and δ¹8O N₂O. Methods will be suitable for use in the field and include spectral line data measurements to improve isotope-specific line parameters. Study the stability and fractionation of CO₂ and N₂O static reference materials.
- 5. To facilitate the uptake of the technology and measurement infrastructure developed in the project by industry, by standards developing organisations and end users.

4 Results

The SIRS project developed the key infrastructure required to upscale the production of isotopic CO_2 and N_2O reference materials for the greenhouse gas monitoring community by providing traceability for stable isotopes. Additionally, the project validated existing and developed new field-deployable spectroscopy for CO_2 and N_2O and initiated SI traceability of the international CO_2 isotope ratio scale by re-measuring the absolute isotope ratios by gas-source isotope ratio mass spectrometry.

The research work was split into four main objectives:

- 1 New reference materials for δ^{13} C-CO₂ and δ^{18} O-CO₂ to uphold the global measurement infrastructure
- 2 Exploratory absolute measurements
- 3 New international reference materials and scale for $\delta^{15}N^{\alpha}$, $\delta^{15}N^{\beta}$ and $\delta^{18}O-N_2O$
- 4 Advancing optical isotope ratio spectroscopy for CO₂ and N₂O

Objective 1: New reference materials for $\delta^{13}\text{C-CO}_2$ and $\delta^{18}\text{O-CO}_2$ to uphold the global measurement infrastructure

Reference materials of pure CO₂ with assigned δ¹³C-CO₂ and δ¹⁸O-CO₂ values

Pure CO_2 reference materials were produced at three National Metrology Institutes (NMIs) (INRIM, NPL and TUBITAK) to investigate if reference materials were comparable for $\delta^{13}C$ - CO_2 and $\delta^{18}O$ - CO_2 with the required uncertainties. Each NMI produced a range of gas reference materials in high pressure gas cylinders and sampled aliquots for $\delta^{13}C$ - CO_2 and $\delta^{18}O$ - CO_2 assignment using Isotope Ratio Mass Spectroscopy (IRMS) to provide traceability to the international VPDB scale at MPI, RUG and JSI. The repeatability and stability of the amount fraction of the reference materials produced was assessed at MPI and is shown in tables 1 and 2. The aliquots of refreence materials were sampled in different cylinder types after either flushing or evacuating and flushing the sample vessels for IRMS measurements.

The associated standard uncertainties shown in table 1 was calculated by summing in quadrature the spread of delta values across all samples and the largest assigned standard uncertainty in IRMS measurement of a single sample (equation 1).

$$u = \sqrt{spread^2 + \sigma^2}$$
 (1)

Depleted CO ₂	δ ¹³ C Average	δ ¹³ C uncertainty	δ ¹⁸ O Average	δ ¹⁸ O
		(<i>k</i> =1)		uncertainty (k=1)
NMI 1 glass	-42.18	0.067	-35.77	0.091
NMI 2 glass	-42.14	0.026	-35.66	0.046
NMI 3 glass	-42.17	0.032	-35.76	0.044
NMI 1 metal	-42.15	0.014	-35.73	0.020
Combined	-42.15	0.079	-35.71	0.166

Table 1: IRMS measurements for the depleted CO₂ source, showing results from different laboratories.

Enriched CO ₂	δ ¹³ C Average	δ ¹³ C	δ ¹⁸ O Average	δ ¹⁸ O
		uncertainty (k=1)	-	uncertainty (k=1)
NMI 1 glass	1.21	0.035	-7.84	0.070
NMI 2 glass	1.23	0.018	-7.82	0.025
NMI 3 glass	1.20	0.014	-7.86	0.051
NMI 1 metal	1.22	0.013	-7.85	0.019
Combined	1.23	0.057	-7.82	0.088

Table 2: IRMS measurements for the enriched CO2 source, showing results from different laboratories.

Additional reference materials were produced through blending to target intermediate isotopic signatures, such as that of clean atmospheric air. The uncertainty in $\delta^{13}C_{vpdb}$ -CO₂ and $\delta^{18}O$ -CO₂ of the blended reference materials is dominated by the reproducibility in delta values of the sampled aliquots of the CO₂ with variation linked to poor sampling technique. Variability in the assigned delta value of aliquots of CO₂ due to air contamination and kinetic fractionation during the fast release of CO₂ were identified and best practice for the sampling procedure was determined to require evacuation and flushing of the sample vessels rather than flushing alone.

The delta value has shown to be consistent throughout the entire depletion of a gaseous reference material and consistent within the uncertainty in IRMS analysis for over one year of use by AL [ACS Omega 5, 17926–17930 (2020)].

This work is summarised in a good practice guide "Good practice guide on selection of suitable source gases for CO_2 reference materials, including an uncertainty budget for upholding and upscaling the existing VPDB scale with target uncertainties of 0.1 % for $\delta^{13}C$ - CO_2 and 0.5 % for $\delta^{18}O$ - CO_2 "

Static and dynamic stable isotope reference gas mixtures of CO₂ at 400 μ mol mol⁻¹ compared to the VPDB scale for CO₂ in air mixtures - Develop static and dynamic reference materials for pure CO₂ at 400 μ mol/mol in an air matrix with uncertainties of δ_{13} C-CO₂ 0.1 % and δ_{18} O-CO₂ 0.5 %. Ensure traceability and consistency with the VPDB primary standard and to work to meet the WMO compatibility goals (δ_{13} C-CO₂ 0.01 % and δ_{18} O-CO₂ 0.05 %).

The measurement community requires ambient amount fraction reference materials with assigned delta values linked to the current VPDB scale. The pure reference materials produced were diluted to ambient amount fraction by the NMIs (NPL, INRIM and TUBITAK) by a range of different gravimetric methods to assess comparability and repeatability in amount fraction and delta value. An uncertainty budget for amount fraction at each NMI showed the k=2 uncertainty to be lower than the 0.1 μ mol mol⁻¹ required by the project. The amount fraction was compared by EMPA to existing amount fraction scales.

As was found for pure CO_2 reference materials, sampling technique for IRMS measurements is the largest factor in the uncertainty of assigned delta values of the reference materials. Figure 1 shows pure (filled shapes) and ambient (open shapes) amount fraction reference materials produced at three different NMIs. Some of the samples of the ambient reference materials agree well with the values of the pure samples while some samples are shifted to more enriched isotopologues. A range of sampling techniques were used for the aliquots sent for IRMS with non-optimised sampling techniques for ambient CO_2 reference materials leading to varying shifts to in $\delta^{13}C$ and $\delta^{18}O$ values.

Using the most optimised sampling procedure gravimetric uncertainties (k=2) of 0.036 ‰ and 0.05 ‰ for $\delta^{13}C_{vpdb}$ -CO₂ and $\delta^{18}O_{vpdb}$ -CO₂ were achieved for ambient reference materials blended to atmospheric $\delta^{13}C_{vpdb}$ -CO₂ values. This is within the targeted uncertainties for the project of 0.1 ‰ for $\delta^{13}C_{vpdb}$ -CO₂ and 0.5 ‰ for $\delta^{18}O_{vpdb}$ -CO₂.

The agreement of amount fraction and $\delta^{13}C_{vpdb}$ -CO₂ and $\delta^{18}O_{vpdb}$ -CO₂ of the reference materials with that of atmospheric CO₂ is important for the monitoring community. As $\delta^{18}O_{vpdb}$ -CO₂ values of the reference materials couldn't be blended to match that of CO₂ in the atmosphere an equilibration process for tuning the $\delta^{18}O$ value towards that of atmospheric CO₂ was achieve at RUG. The obtained results for $\delta^{18}O$ agreed within 0.1 ‰ of the intended values. The stability of $\delta^{13}C_{vpdb}$ -CO₂ and $\delta^{18}O_{vpdb}$ -CO₂ in ambient amount fraction reference materials was demonstrated to be within the measurement uncertainty of \pm 0.5 ‰, upon depletion of the reference materials.

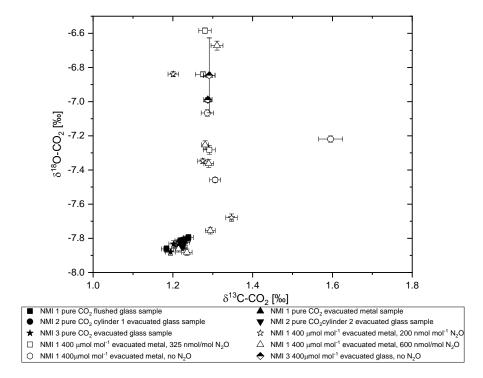


Figure 1: IRMS assigned values for enriched CO₂ reference materials at pure (closed shapes) and ambient amount fraction (open shapes).

A shift to more enriched $\delta^{13}\text{Cvpdb-CO}_2$ and $\delta^{18}\text{Ovpdb-CO}_2$ values was observed for most of the ambient reference materials compared to the pure reference materials (Figure 2). This may be due errors in following best practice for taking aliquots of the reference materials for IRMS measurements or due to preparation technique where dilution may cause fractionation or contamination. The effects of contaminant CO₂ in the matrix gas was calculated to be very small (\pm 0.001 %) and thus unlikely to cause the observed differences in $\delta^{13}\text{Cvpdb-CO}_2$ and $\delta^{18}\text{Ovpdb-CO}_2$ Agreement between pure and ambient amount fraction reference materials may be improved with optimised production methods.

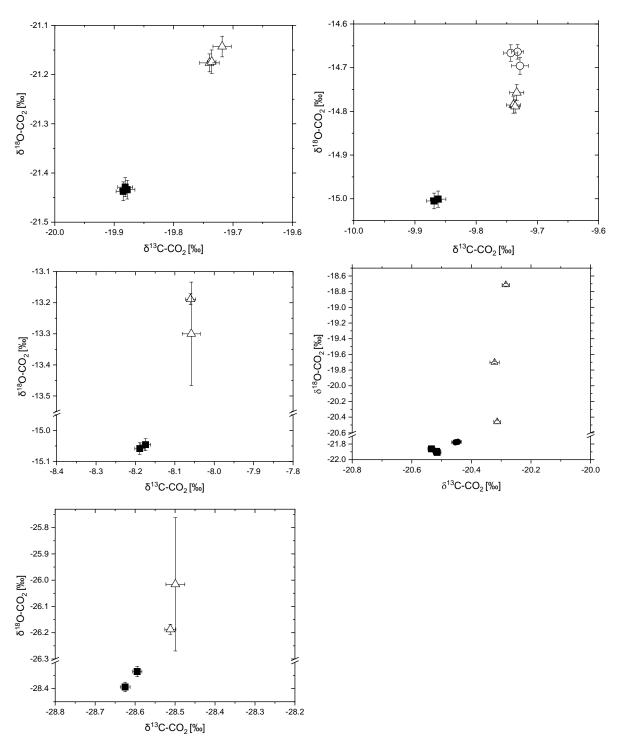


Figure 2: Agreement between IRMS assigned values for samples of blended reference materials at pure and ambient amount fraction CO₂ in synthetic air, error bars on the y-axis are not always visible. a) black squares, pure CO₂, open triangles, nominally 390 μmol mol⁻¹ for evacuated glass flasks b) black squares, pure CO₂, open triangles, nominally 412 μmol mol⁻¹, open circles nominally 390 μmol mol⁻¹ for evacuated glass flasks c) black squares, pure CO₂, open triangles, nominally 400 μmol mol⁻¹ for flushed glass flasks d) filled squares, flushed glass samples of pure CO₂, filled circles, evacuated metal samples of pure CO₂, open triangles pressure reduction sampling at nominally 400 μmol mol⁻¹ e) black squares, pure CO₂, open triangles, nominally 400 μmol mol⁻¹ for flushed glass flasks.

Further details can be found in the report on this work:

"At least three gas mixtures of pure CO₂ and three in air at ambient amount fractions (400 μ mol mol-1) of varied isotopic composition will be developed which are value assigned for isotope ratio and amount fraction with a target stability period of at least 2 years. Expanded uncertainties of 0.1 % for δ^{13} C-CO₂ and 0.5 % for δ^{18} O-CO₂ for isotope ratio and 100 nmol mol⁻¹ for amount fraction. Reference materials compared to existing infrastructure."

Objective 1 was fully achieved with uncertainty targets reached when implementing the best practice in handling the pure carbon dioxide and preparing the ambient amount fraction reference materials with an optimised method. The reference materials produced will allow end users of optical based instruments to measure isotope ratios with vastly improved comparability and uncertainties that approach the WMO-GAW data quality objectives.

Objective 2: Exploratory absolute measurements - Re-measure the absolute CO2 isotope ratios of the reference materials, in order to provide the data necessary for SI traceability.

Isotopic measurements of CO₂ are currently linked to a scale rather than having SI traceability. This work aimed to re-measure the absolute CO₂ isotope ratios of reference materials in order to provide the data necessary for SI traceability.

Significant progress has been made on determining the feasibility of absolute values of isotope ratios for CO_2 and realising measurements on an SI basis: PTB has developed a mathematical tool capable of solving a system of linear equations to derive correction factors (K-factors) of gravimetric isotope mixtures. The tool can be used for any number of isotopes. An open access paper about the tool was published. In a second open access publication PTB described the calculation of the uncertainties associated with the correction factors via a Monte Carlo simulation. This is an important metrological contribution to the field of isotope reference materials.

A fundamental study on potential sources of mass bias has been conducted. It investigates the impact of the ion source, the ion lenses, adsorption and desorption effects and the fragmentation of carbon dioxide in the ion source. PTB has designed and built a gas mixing apparatus to mix highly enriched and depleted CO₂. As a prerequisite for its successful operation, PTB has developed a mathematical approach for correcting the masses of gas for air buoyancy. This approach has been published in two open access papers. PTB, RUG and NPL published jointly an open access paper describing first attempts of applying an adopted version of the gravimetric mixture approach to derive absolute isotope ratios of carbon dioxide.

Objective 2 was partially achieved, with the necessary data provided for an SI traceable delta scale, however further improvements are required to meet the uncertainty requirements.

Objective 3: New international reference materials and scale for $\delta^{15}N^{\alpha}$, $\delta^{15}N^{\beta}$ and $\delta^{18}O-N_2O$ - Develop static and dynamic reference materials for pure N2O and at 300 nmol mol⁻¹ – 1000 nmol mol⁻¹ in an air matrix. The static and dynamic reference materials should meet the requirements for regionally focused monitoring studies and have target uncertainties of 1.0 % ($\delta^{15}N^{\alpha}$ and $\delta^{15}N^{\beta}$) and 0.5 % ($\delta^{15}N$, $\delta^{18}O$).

In contrast to CO₂, no Central Calibration Laboratory (CCL) exists to provide N₂O reference materials as a unifying scale anchor to the international isotope ratio scales AIR-N₂ for $\delta^{15}N^{\alpha}$ as well as $\delta^{15}N^{\beta}$ and Vienna Standard Mean Ocean Water (VSMOW) for δ^{18} O-N₂O. Also, no international reference materials in the form of gaseous N₂O with stated uncertainties are available.

Pure N_2O reference materials were developed at EMPA after discussion with stakeholders on their expectations of the isotopic composition of future nitrous oxide reference materials. Ambient (300 nmol/mol – 1000 nmol/mol) reference materials were developed in an air matrix at NPL. Static and dynamic reference materials were compared for amount fraction and delta values at NPL.

A set of seven pure N_2O isotope RMs anchored to international isotope ratio scales were developed via the use of a gas mixing line. As currently available commercial N_2O gases offer only limited isotopic variability, high purity N_2O (99.999%, Linde, Germany) was supplemented with defined amounts of ^{15}N -enriched / ^{15}N depleted and ^{18}O -enriched N_2O . The dopant gases were commercial $^{15}N^{14}NO$, $^{14}N^{15}NO$ (isotopic purity of > 98%, Cambridge Isotope Laboratories Inc., USA), and ^{18}O - enriched N_2O (36.25 ± 0.10 % $NN^{16}O$, 63.75 ± 0.76 % $NN^{18}O$) as well as $^{15}N^{\beta}$ -depleted N_2O (δ $^{15}N^{\alpha}$ = -2.54 ± 0.005 ‰, δ $^{15}N^{\beta}$ = -162.21 ± 0.03 ‰, δ ^{18}O = 38.92 ±

0.003~%), both produced and characterized at Empa. Homogeneity of the prepared salts by repetitive IRMS analysis of sub samples has been confirmed. NH₄NO₃ salts were sent out to different laboratories for δ^{15} N-bulk and δ^{15} N-NH₄ as well as δ^{15} N-NO₃ analysis. Based on these NH₄NO₃ salts a technique to characterise N₂O gases for their ¹⁵N site preference with reference to the AIR-N₂ scale has been developed by EMPA. A technique for δ^{15} N-N₂O and δ^{18} O-N₂O analysis including an uncertainty assessment has been developed by MPI-BGC. The seven newly established N₂O isotope RMs were analysed by EMPA, MPI-BGC, Tokyo Institute of Technology and UEA to provide their isotopic composition and uncertainties. The confirmed spread in isotopic composition of the N₂O isotope reference materials with δ^{15} N values between 0 ‰ and 100 ‰, and δ^{18} O values between 40 ‰ and 150 ‰ meets stakeholder expectations.

Static and dynamic reference materials were developed by dilution of the pure N_2O reference materials at NPL to produce amount fractions in the ambient range of 300 nmol mol⁻¹ – 1000 nmol mol⁻¹ in an air matrix for use in instrument calibration. The uncertainty in assigned amount fraction of the N_2O reference materials combined contributions from gravimetric preparation and analytical uncertainty. The combined expanded uncertainty of ambient amount fraction N_2O reference materials is calculated to be 0.11 % (k=2) or 0.36 nmol mol⁻¹ which is within the uncertainty of 5% aimed for in the project.

The effect of passivation chemistry of cylinders and influence on N_2O amount fractions and isotope deltas was studied alongside fractionation effects during dilution and storage in cylinders and the effect of different matrix gases on the measured isotope ratio of the ambient amount fraction N_2O reference materials. No effect in amount fraction or delta value was found on decant with the effect on the amount fraction and delta value assessed on the depletion of the reference materials produced via decanting a parent mixture into four smaller cylinders (Figure 3).

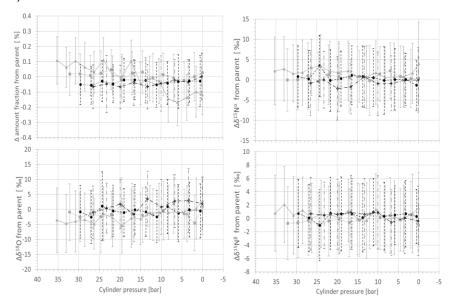


Figure 3: Temporal change in (a) N_2O amount fraction and delta values: (b) $\delta^{18}O$, (c) $\delta^{15}N^{\alpha}$, (d) $\delta^{15}N^{\beta}$ in response to changes in cylinder pressure of four 0.85 L aluminium cylinders. Each data point represents a five minute average of analyser response, error bars represent one standard deviation across the five minute average.

Dynamic dilution systems allowing for dilution to 1 in 2000 were developed and used to assess the agreement between statically and dynamically produced reference materials in the amount fraction range 300-1000 nmol mol⁻¹ (figure 4).

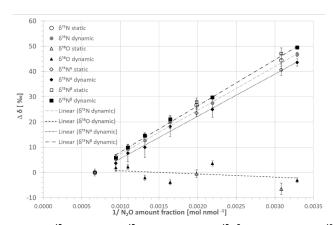


Figure 1: CRDS analyser response for $\delta^{15}N$ (circles), $\delta^{15}N^{\alpha}$ (diamonds), $\delta^{15}N^{\beta}$ (squares) and $\delta^{18}O$ (triangles) with reciprocal of N_2O amount fraction for static (open data labels) and dynamic (filled data labels) reference materials in the amount fraction range of 300-1500 nmol mol⁻¹. Error bars represent the repeatability in ∞ between the four repetitions of a five-minute average. The dotted and dashed lines represent the linear regression of dynamic reference materials for each isotopocule.

A number of high-accuracy gravimetric N_2O in N_2 gas mixtures were produced by NPL and provided to Empa for N_2O isotopic analyses. Standards were made using an intermediate mixture (12 cmol mol⁻¹ N_2O in N_2). Most standards were produced from one intermediate volume (2620) in the following order: CG5 – (CG4, CG3, same day but order unclear) – CG2 – CG1. Thereafter the intermediate volume was refilled (2620R) and CG6 and CG7 were filled the same day with unclear order.

The N_2O amount fractions of the CGs were validated by an additional gravimetric dilution to 325 nmol mol⁻¹ in synthetic air and subsequent analysis against NPL in-house standards by cavity ring-down spectroscopy (G5131-I, Picarro Inc., Santa Clara, CA, USA). Possible fractionation effects during production of the CGs were characterised by analysis of CG1–CG7 using QCLAS against reference gases anchored to the international scales. Prior to analysis, all gases were diluted to 100 μ mol mol⁻¹ N_2O in synthetic air (20.5% O_2 in N_2 ; Messer Schweiz AG).

The analytical results obtained using QCLAS for the mother tanks, agree with the δ values of CG1–CG7 within their expanded uncertainty limits. Nonetheless, a systematic effect was observed with higher delta values for cylinders filled first and a decreasing trend towards cylinders filled later. This could point towards fractionation effects.

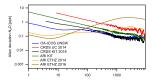
Table 1: Characteristics of the gravimetric calibration gases provided by NPL. N_2O amount fractions (xN_2O), related uncertainty, δ values for the N_2O calibration gases (CG1 – CG7) and the N_2O validation gas (VG1) with standard deviations (rel. to Air-N2 and VSMOW, analysed by QCLAS). The uncertainty of the N_2O amount fraction is given as a standard uncertainty multiplied by a coverage factor (k=2), while for δ values the standard deviation for repeated measurements is reported, which does not include the uncertainties of the calibration chain.

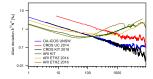
mixture	x _{N2O} / mmol mol ⁻¹	uncertainty / mmol mol ⁻¹	□ ¹⁵ N□ / ‰	□ ¹⁵ N□ / ‰	□ ¹⁸ O / ‰
CG1	15.0079	0.0030	-0.29±0.06	0.70±0.06	38.42±0.23
CG2	15.2040	0.0030	-0.31±0.10	0.81±0.17	38.41±0.26
CG3	15.2961	0.0031	-0.16±0.09	0.92±0.08	38.77±0.23
CG4	15.4035	0.0031	0.21±0.16	1.03±0.01	38.64±0.08
CG5	15.5976	0.0031	0.28±0.03	1.07±0.08	38.76±0.12
CG6	17.0044	0.0034	-0.10±0.06	0.68±0.06	38.64±0.16
CG7	18.5054	0.0037	-0.27±0.05	0.64±0.05	38.17±0.12
mother tank CG	pure	-	-0.11±0.20	0.95±0.21	38.57±0.25
VG1	15.3048	0.0031	16.07±0.13	16.62±0.14	54.05±0.12
mother tank VG1	pure	-	15.69±0.25	16.89±0.30	53.87±0.25

The isotopic standards used by QCLAS for the analysis of the CGs and their original pure N_2O gas were: (1) $\delta^{15}N^{\alpha} = (2.06 \pm 0.05)$ %; $\delta^{15}N^{\beta} = (1.98 \pm 0.20)$ %; $\delta^{18}O = (36.12 \pm 0.32)$ %; and (2) $\delta^{15}N^{\alpha} = (-48.59 \pm 0.25)$ %; $\delta^{15}N^{\beta} = (-46.11 \pm 0.43)$ %; $\delta^{18}O = (27.37 \pm 0.11)$ %. The standards used for the analysis of the VG1 and its original pure N_2O gas were: (1) $\delta^{15}N^{\alpha} = (25.73 \pm 0.24)$ %; $\delta^{15}N^{\beta} = (25.44 \pm 0.36)$ %; $\delta^{18}O = (35.86 \pm 0.22)$ %; and (2) $\delta^{15}N^{\alpha} = (-48.59 \pm 0.25)$ %; $\delta^{15}N^{\beta} = (-46.11 \pm 0.43)$ %; $\delta^{18}O = (27.37 \pm 0.11)$ %. The uncertainty is expressed as expanded standard uncertainty at the 95% confidence interval.

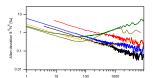
The pure and ambient N_2O isotope reference materials produced will enable future users to implement a recommended two-point calibration approach for their analysers. The availability of $\delta^{17}O$ data for N_2O RMs is expected to improve data quality / correction algorithms with respect to SP analysis by mass spectrometry. N_2O isotope RMs will improve data quality within and compatibility between laboratories and accelerate the progress in this emerging field of research.

Objective 3 was fully achieved with respect to the established pure and diluted N_2O isotope reference material and their uncertainties and the provided reference materials are expected to be taken up by the scientific community.


Objective 4: Advancing optical isotope ratio spectroscopy for CO₂ and N₂O - Develop spectroscopic methods for isotope ratio measurements of CO₂ with an uncertainty target of 0.1 % for δ^{13} C-CO₂ and 0.5 % for δ^{18} O-CO₂, and of N₂O, including site specific delta values in real time with a target precision of 0.1 % for δ^{15} N^{α}, δ^{15} N^{β} and δ^{18} O-N₂O. The methods will be suitable for use in the field and include spectral line data measurements to improve isotope-specific line parameters.


PTB, VTT and Empa prepared a protocol which outlines the metrological characterization of spectroscopic isotope analysers; PTB and RUG characterized two commercial spectroscopic analysers (Thermo Scientific Delta Ray and Aerodyne dual laser spectrometer). VTT has finished the development of a field deployable carbon dioxide analyser, INRIM has developed a FTIR based method for $\delta^{13}\text{C-CO}_2$ determination in carbon dioxide/air mixtures. Uncertainty budgets have been estimated for OIRS by PTB and RUG. Both OIRS measurements methods meet the uncertainty target of 0.1 % for $\delta^{13}\text{C-CO}_2$ and 0.5 % for $\delta^{18}\text{O-CO}_2$. Meeting the uncertainty targets of the project.

PTB's field-deployable system was investigated as a candidate optical isotope ratio standard. Based on this research and the underlying spectroscopy of CO₂ isotope lines, PTB demonstrated that the known matrix and concentration dependency artefacts could mostly been eliminated. Data, processed results and conclusions are due to be published as J. Braden-Behrens et al. "Eliminating the effect of air composition in optical isotope ratio spectroscopy", AMDT, in preparation 2021, and shall not be disclosed here prior to original publication.


Empa and VTT reviewed suitable spectral regions for N_2O isotope analysis; Empa reported and implemented factors to enhance performance of a QCLAS analyser to target precision of 0.1 % for $\delta^{15}N^{\alpha}$, $\delta^{15}N^{\beta}$ and $\delta^{18}O$.

Empa metrologically characterised N_2O isotope laser spectrometers from Aerodyne Research Inc. (QCLAS, 4 x CW-QC-TILDAS-200), Los Gatos Research Inc. (LGR 914-0027) and Picarro Inc. (2 x G5131-I) and a research – grade instrument from Empa (TREX-QCLAS) for spectral interferences (CO₂, CH₄, CO), gas matrix effects (N_2 , N_2 , N_2 , non-linearities and temperature effects (Figure xx). Empa compiled an uncertainty budget for the tested laser spectrometers and finalized the validation report with input from partners.

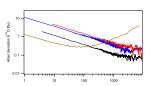


Figure 5: Exemplary Allan deviation (square root of Allan variance) plots for the OA-ICOS I (blue), CRDS I (red), CRDS II (black), QCLAS I (green), QCLAS II (yellow) and QCLAS III (brown) at 1000 ppb N₂O. The Allan deviations of all analyzers tested were reproducible on three separate occasions prior to the test results presented here.

Objective 4 was fully achieved.

5 Impact

Ten peer reviewed, open access scientific publications have been written, including two in the Analytical and Bioanalytical Chemistry journal, titled "Gas weighing challenge" and "Solution to gas weighing challenge". A full list of publications is below. Twenty-one presentations/poster displays were conducted at conferences including: European Geosciences Union General Assembly (EGU-2018 and 2019); 19th/20th WMO/IAEA meetings on Carbon Dioxide, Other Greenhouse Gases, and Related Measurement Techniques (GGMT-2017/2019). An invited oral presentation on "SI Traceability of Isotope Ratios of CO2 - A Feasibility Study" was given at the CCQM Isotope Ratio Working Group Spring Meeting 2019 in April 2019. The development of reference materials for CO2 and N2O will support future Key Comparisons organised by the working group, for example (N2O: CCQM-K68.2019), for global comparability, new calibration and measurement capability claims for amount fraction and isotopic composition. A pilot study for isotope ratio of CO2 is currently in operation (CCQM-P.204). The project partners were also actively involved in the Subcommittees for Gas Analysis (SCGA) and Inorganic Analysis (SCIA) of the EURAMET Technical Committee for Metrology in Chemistry (TC-MC). Nine training courses based on project results were held during the project, for various scientific audiences.

Impact on industrial and other user communities

This project has developed new reference materials, instrumentation, methods and recommendations which are compiled as final reports and good practice guides. N₂O isotope reference materials have been requested by and provided to expert laboratories. This links to Objective 3. Gas metrology and external partners will benefit from enhanced capabilities and primary reference materials which will lead to increased revenue from measurement services. Instrument manufacturers will benefit from accurate calibration standards, ensuring their instruments are traceable and provide valid data for atmospheric monitoring. Speciality gas companies will benefit from traceability to support gas mixture production under accreditation which will open new opportunities for reference mixtures for isotopic composition. The atmospheric monitoring community will have access to new traceable reference materials. A new range of stable ratio reference gases for Atmospheric monitoring analysis, which are available for purchase (e.g. Natural Air, CO₂ in Natural Air, Natural Air without CO₂) has been supplied to various customers which consist of universities, research institutes and NMIs. This will provide long-term impact and sustainability. End users (atmospheric monitoring) will benefit from traceable spectroscopic methods with improved specifications (e.g. CRDS) which is more cost effective and more portable for field use. They will also benefit from harmonised guidelines and instructions for commercial instrument validation and best practice guides for traceable reference standard measurements. This will lead to more isotopic measurements in the field and local source apportionment.

Impact on the metrology and scientific communities

The project partners were actively involved in the CIPM Consultative Committee for Amount of Substance: Metrology in Chemistry and Biology - Working Group on Gas Analysis (CCQM-GAWG) and - Working Group on Inorganic Analysis (CCQM-IAWG), and one of the project partners (PTB) participated in the committee meetings of these working groups in April 2019. Outputs from this project will be presented to global experts. A new working group under the CCQM on isotope ratio measurement (CCQM-IRWG) has been created, and one of the project partners (PTB) participated in the committee meeting of this working group in April 2019.

Partners of this project have been central to these developments and disseminating the output from this work in this forum. The achievements in this project have been transferred into PTB's participation in CCQM-P204, an international pilot study comparing global capabilities of gas metrology groups and stakeholder labs to perform isotope ratio determinations in CO₂.

Impact on relevant standards

The developments in this project will be used to update reference methods to allow isotopic analysis in documentary standards under ISO/TC158 (Gas Analysis) and CENTC/264 (Air Quality) and will improve comparability of atmospheric and stack measurements by end users. In particular, there are new activities in ISO/TC158 WG2 on isotope ratio where the results from the SIRS project are have a direct input.

The vital infrastructure developed in the SIRS project will be maintained after completion of the project. This will be disseminated to key stakeholders via calibrations and reference materials. It will also provide the foundation for new research opportunities to provide a measurement infrastructure where isotope ratio measurements are realised on an SI basis and tackle new pressing components such as methane. Advances in the state of the art of reference materials will continue in the successor project STELLAR where the focus is to improve the uncertainty of CO₂ reference materials and target methane to address the requirements for global atmospheric observations.

6 List of publications

- N2O isotopocule measurements using laser spectroscopy: analyzer characterization and intercomparison, article published in Atmospheric Measurement Techniques, https://doi.org/10.5194/amt-13-2797-2020
- Absolute isotope ratios Analytical solution for the determination of calibration, article published in Spectrochimica Acta Part B: Atomic Spectroscopy, https://doi.org/10.1016/j.sab.2019.04.008
- Preliminary assessment of stable nitrogen and oxygen isotopic composition of USGS51 and
 USGS52 nitrous oxide reference gases and perspectives on calibration needs, article published in
 Rapid Communications in Mass Spectrometry,
 https://www.dora.lib4ri.ch/empa/islandora/object/empa:17210
- UncorK A Monte Carlo simulation tool for calculating combined uncertainties associated, article published in Spectrochimica Acta Part B: Atomic Spectroscopy, https://doi.org/10.1016/j.sab.2020.105866
- Gas weighing challenge, article published in Analytical and Bioanalytical Chemistry, https://doi.org/10.1007/s00216-019-02168-4
- Solution to gas weighing challenge, article published in Analytical and Bioanalytical Chemistry, https://doi.org/10.1007/s00216-020-02697-3
- What can we learn from N2O isotope data? Analytics, processes and modelling, article published in Rapid Communications in Mass Spectrometry, https://www.dora.lib4ri.ch/empa/islandora/object/empa:22957
- Absolute isotope ratios of carbon dioxide a feasibility study, article published in Journal of Analytical Atomic Spectrometry, http://dx.doi.org/10.1039/d0ja00318b

The list is also available here: https://www.euramet.org/repository/research-publications-repository-link/?no cache=1#c1384

7 Contact details

Professor Paul Brewer

paul.brewer@npl.co.uk, Tel: +44 (0) 20 8943 6007