

Technical Highlights Future Challenges from TC Flow

IC- Chair Petra Mileta

years of

collaboration

in European metrology 1987–2017

> Madrid and Tres Cantos Soc 15 – 18 May 2017

Challenges

11th EURAMET General Assembly

17th May 2017

Challenges

- Securing matching funding for successful EMPIR proposals
- Funding mechanisms for smaller collaborative research projects that do not fit the EMPIR funding model
- NMI/DI involvement in standards bodies such as ISO etc.
- Reducing national metrology budget with increasingly diverse client requirements
- Get funding for new facilities to build up a metrological infrastructure (LNG, high pressure, high temperature, high viscosity, complex fluids, ...)
- Build up metrology awareness in the medical field

EMPIR Industry Workshop EURAMET

EMPIR Industry Workshop

Goal of the workshop

11th EURAMET General Assembly

Five different themes were covered

- Flow Meter Diagnostics
 Multiphase, wet gas and steam
 High pressure and/or
 - High pressure and/or
 high temperature flows
 - Sensor networks and big data
 - Waste Water and Large Diameter Pipes

Liquid Milli-Flow Facility, various liquids

(A) syringe pump, (B) beaker on balance,
(C, D, E) pressure sensors, (F, G, H) temperature sensors,
(I) pressure security valve, (J) water reservoir

Micro-Flow and Milli-Flow Facilities

Accurate and fast calibration method for flow rates from 100 nl/min to 400 ml/min !

	Capability to calibrate	Method
	Flow sensors	Flow Generator Or Balance
 ✓ portable flow generator ✓ any liquid 	Flow generators	Balance
	10 a.	

Syringe Pump	Micro-Flow	Milli-Flow
Flow rates:	100 nl/min – 5 ml/min	0.2 ml/min – 400 ml/min
Pressure range (upstream DUT):	0 – 8 bar (2.5 bar)	0 – 8 bar
Temperature:	22°C (ambient)	22°C (ambient)
Uncertainty (k=2):	0.70 % – 0.15 %	0.07 %

Planned developments

11th EURAMET General Assembly

17th May 2017

Planned developments

- Extension of European metrology reference network for multiphase flows through new multiphase EMPIR project and develop a Centre of Excellence
- Produce new TC-Flow roadmap for European flow metrology to cover the changing metrology landscape and align with industry needs.
- However, we all are also continuously trying to improve our existing facilities to meet customer demands (lower uncertainty, range expansion, higher level of automatization, etc.)

New Multiphase Facility

Parameter	Operation range	
Pressure	15 – 150 bar(g)	
Temperature	20 – 50 Deg C	
Gas flowrate	500 – 3000 m ³ /hr	
Oil flowrate	125 – 550 m ³ /hr	
Water flowrate	125 – 550 m ³ /hr	
Combined liquid	1100 m ³ /hr	
flowrate		

The facility should also provide means to visualise and control flow patterns upstream of the test flow meter.

What is LNG

- LNG is natural gas temporarily converted to liquid form
- LNG takes up about 1/600 the volume of natural gas
- Easier to store or transport
- Predominantly methane

11th EURAMET General Assembly

17th May 2017

LNG research and calibration facility

EURAMET

2012

2014

2016

2018

Capacity

11th EURAMET General Assembly

2022

2020

17th May 2017

2024

EMPIR 2016 Energy call

- Development of a hydrogen infrastructure for hydrogen vehicles
- Hydrogen fueling is critical to the success of a hydrogen economy
- Goal of hydrogen fueling is to achieve a high range in a short filling time
- No metrological infrastructure for
 - Flow metering

- Hydrogen quality assurance
- Hydrogen quality control
- Sampling

Electrical Vehicle Charging Hydrogen Vehicle Fueling (standard SAE TIR J2601) (standard SAE J1772) nuclear Catalyst Proton Ex Memo prage fusion 🔣 chemical 100 000 Vh coal fission num (H) nergy density (kWhm⁻³) electrochemical 10000 hydrides Hydrogen and inertia city in kWh from Tank hydrogen oil biomass strorage 1000 ultimate flywheel % Reference battery Li ion deper battery 100 voltage level. electrostatic Pb-acid hot natural gas mag. coil battery water 30 mir 10 1.0079 % Fast gravitation - 252.7 1 - 259.2 H (60 – 200 k' hydrocomp. air EDLC hydrogen power 160 k 100 rence Range 0.01 0.1 10 capacitor energy density (kWhkg⁻¹) Philosophical Transactions of the Royal Society A - Journals

Compress hydrogen to 70 MPa to get the needed amount

11th EURAMET General Assembly

17th May 2017

Flow

- Challenges
 - High pressure
 - Manage heat of compression, storage tanks have a maximum temperature rating of 85 °C.
 - Compressed hydrogen heats up when expanding at ambient temperature
- Fueling performed in accordance to standard SAE J2601
 - Provides guidance for hydrogen fueling
 - Maximum Gas Temperature: 85 ° C
 - Maximum Pressure: 87.5 MPa (70 MPa NWP)
 - Hydrogen Delivery Rate
 - Cooling of hydrogen before delivery down to -40 ° C

Flow

Flow

11th EURAMET General Assembly 17th May 2017

Flow

17th May 2017