EURAMET

Challenges EURAMET

Challenges

EURAMET

- Securing matching funding for successful EMPIR proposals
- Funding mechanisms for smaller collaborative research projects that do not fit the EMPIR funding model
- NMI/DI involvement in standards bodies such as ISO etc.
- Reducing national metrology budget with increasingly diverse client requirements
- Get funding for new facilities to build up a metrological infrastructure (LNG, high pressure, high temperature, high viscosity, complex fluids, ...)
- Build up metrology awareness in the medical field

EMPIR Industry Workshop

EMPIR Industry Workshop

EURAMET

FLOW MEASUREMENT INSTITUTE

Coventry sis

Goal of the workshop

EURAMET

* Priorities
 * PRTs

Over 60 delegates

* $1 / 3$ NMIs
* 1/3 Industry
* 1/3 Academia

Results

EURAMET

- Five different themes were covered
- Flow Meter Diagnostics
- Multiphase, wet gas and steam
- High pressure and/or high temperature flows
- Sensor networks and big data
- Waste Water and

Large Diameter Pipes

Liquid Milli-Flow Facility, various liquids

EURAMET

(A) syringe pump, (B) beaker on balance,
(C, D, E) pressure sensors, ($\mathrm{F}, \mathrm{G}, \mathrm{H}$) temperature sensors,
(I) pressure security valve, (J) water reservoir

EURAMET

Micro-Flow and Milli-Flow Facilities

Accurate and fast calibration method for flow rates from $100 \mathrm{nl} / \mathrm{min}$ to $400 \mathrm{ml} / \mathrm{min}$!

EURAMET

Syringe Pump	Micro-Flow	Milli-Flow
Flow rates:	$\mathbf{1 0 0 ~ \mathbf { ~ l l } / \mathrm { min } - 5 \mathrm { ml } / \mathrm { min }}$	$0.2 \mathrm{ml} / \mathrm{min}-\mathbf{4 0 0} \mathbf{~ m l} / \mathrm{min}$
Pressure range (upstream DUT):	$0-8 \mathrm{bar}(2.5 \mathrm{bar})$	$0-8 \mathrm{bar}$
Temperature:	$22^{\circ} \mathrm{C}$ (ambient)	$22^{\circ} \mathrm{C}$ (ambient)
Uncertainty $(\mathrm{k}=2):$	$0.70 \%-0.15 \%$	0.07%

Planned developments

Planned developments

EURAMET

- Extension of European metrology reference network for multiphase flows through new multiphase EMPIR project and develop a Centre of Excellence
- Produce new TC-Flow roadmap for European flow metrology to cover the changing metrology landscape and align with industry needs.
- However, we all are also continuously trying to improve our existing facilities to meet customer demands (lower uncertainty, range expansion, higher level of automatization, etc.)

EURAMET

Parameter	Operation range
Pressure	$15-150 \mathrm{bar}(\mathrm{g})$
Temperature	$20-50 \mathrm{Deg} \mathrm{C}$
Gas flowrate	$500-3000 \mathrm{~m}^{3} / \mathrm{hr}$
Oil flowrate	$125-550 \mathrm{~m}^{3} / \mathrm{hr}$
Water flowrate	$125-550 \mathrm{~m}^{3} / \mathrm{hr}$
Combined liquid flowrate	$1100 \mathrm{~m}^{3} / \mathrm{hr}$

The facility should also provide means to visualise and control flow patterns upstream of the test flow meter.

Metrology for LNG

EURAMET

What is LNG

EURAMET

- LNG is natural gas temporarily converted to liquid form
- LNG takes up about $1 / 600$ the volume of natural gas
- Easier to store or transport
- Predominantly methane

Distribution chain

>Whe ever there are meas. there are errors and urpeegitalipthes involved.

Trucks

LNG research and calibration facility

EMPIR 2016 Energy call

EURAMET

- Development of a hydrogen infrastructure for hydrogen vehicles
- Hydrogen fueling is critical to the success of a hydrogen economy
- Goal of hydrogen fueling is to achieve a high range in a short fillling time
- No metrological infrastructure for
- Flow metering
- Hydrogen quality assurance
- Hydrogen quality control
- Sampling

Compress hydrogen to 70 MPa to get the needed amount

EURAMET

- Challenges
- High pressure
- Manage heat of compression, storage tanks have a maximum temperature rating of $85^{\circ} \mathrm{C}$.
- Compressed hydrogen heats up when expanding at ambient temperature
- Fueling performed in accordance to standard SAE J2601
- Provides guidance for hydrogen fueling
- Maximum Gas Temperature: $85^{\circ} \mathrm{C}$
- Maximum Pressure: 87.5 MPa (70 MPa NWP)
- Hydrogen Delivery Rate
- Cooling of hydrogen before delivery down to $-40^{\circ} \mathrm{C}$

Flow

EURAMET

Supported by

