

TC-AUV Highlights and forward look

Stephen Robinson

Madrid and Tres Cantos, Spain 15 – 18 May 2017

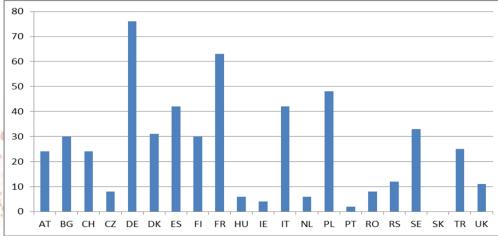
Summary

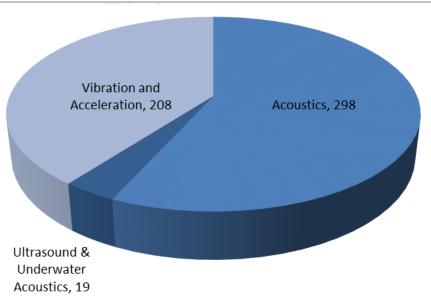
- TC-AUV
 - Introduction
 - General activities
- Highlights
 - Projects
- Emerging metrology challenges

Overview of TC-AUV

- Sub-committees:
 - SC-A: Sound in Air
 - SC-U: Ultrasound & Underwater acoustics
 - SC-V: Vibration & acceleration
 - CMC review
 - Strategy (road maps –ad hoc)
- Members: 24
- Meetings: February 2-3, 2017
 - MIKES, Espoo, Finland
 - Guest delegates
 - GULFMET, COOMET....
- New Chair of TC-AUV
 - Stephen Robinson, NPL

Delegates at 2017 meeting of TC-AUV at MIKES, Finland


Convenors:


- SC-A; Erling Sandemann-Olsen (DPLA)
- SC-U: Gianni Durando (INRIM)
- SC-V: Claire Bartoli (LNE)

General activities

- 21 EURAMET NMIs & DIs have
 525 CMC entries on BIPM KCDB
 - reduction compared to 2016 mainly due to the removal of the CMCs for NPL Sound in Air
- Recent comparisons:
- CCAUV.V-K3 EURAMET.AUV.A-K5, EURAMET.AUV.A-S2, CCAUV.U-K4, AFRIMETS.AUV.A-K5, CCAUV.W-K2
- Road maps being updated
- RMO CMC review
- Active projects (non-EMPIR):
 - Project 1281 reference data for microphone calibration (IEC61094-2)
 - Project 1418 calibration of accelerometers at MF and HF

Acoustics, Ultrasound and Vibration

15HLT03
Metrology for modern hearing
assessment and protecting public
health from emerging noise sources

EARS II

May 2016 – April 2019

EARS II: Vision and objectives

New metrology and strategies will be implemented for improved diagnosis and conservation of hearing, leading to better quality of life for all. This will be achieved by:

- Metrology for modern hearing assessment based on the universal ear simulator concept and novel calibration methods
- Robust normative data and validated technical performance underpinning the next generation of standards
- Understanding perception mechanisms and impact of infrasound and ultrasound on hearing, mental health and wellbeing
- Innovation in assessing such noise hazards in public and workplace environments with new instrumentation and methods

EARS II: summary

Metrology for infrasound and airborne ultrasound

Further development of a Universal Ear Simulator and novel calibration methods

EARS II-Project

- 5+6 partners from 6 countries: CH, DK, DE, UK, SI, TK
- Official start: 1 May 2016
- Withdrawal of NPL from Project to end of September
- Subcontract with Acoustic Sensor Networks Ltd
- Last project meeting was in Ljubljana 16 18 January 2017

EARS II: Progress

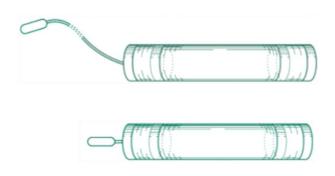
- Re-evaluation of specification of ear simulator:
 matching calibration with patient characteristics;
 universal ear simulator: reduction of number of
 devices to three; concept for transient calibration
- Ultrasound measurement systems based on single microphones established and tested; Workplaces and public sites as potential application locations for measurements are characterised and chosen;
 Calibration procedures at ultrasound frequencies
- Source for distortion-free generation of infrasound and audible sound developed; First pilot study about interaction of infrasound with audible sound; new ultrasound source for application in MEG and fMRT has been developed

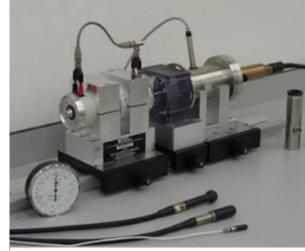
15PRT02

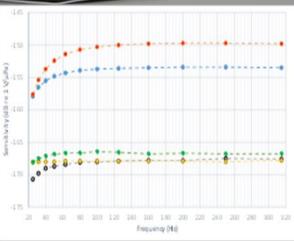
Underwater acoustic calibration standards for frequencies below 1 kHz

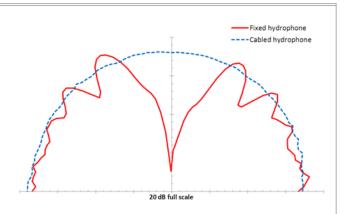
UNAC-LOW

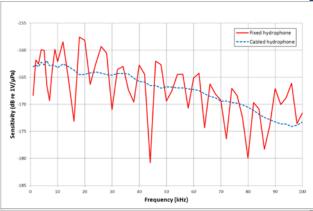
May 2016 – April 2019


UNAC-LOW: drivers & objectives

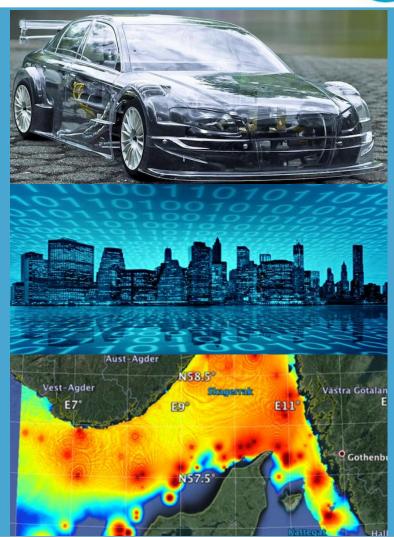



- TUBITAK MAM (TR), NPL (UK), DFM (DK),
- FOI (SE), CNR & ISPRA (IT)
- Increasing need for low frequency measurements of sound in the ocean to satisfy environmental regulation
- Recent developments in instrumentation (autonomous recorders)
- Only one European NMI with comprehensive capability
- Objectives
- Develop traceable measurement capabilities for calibration of hydrophones and autonomous sound recorders and systems
 - low frequency region from 20 Hz to 1 kHz including the 63 Hz and 125 Hz third-octave bands cited by the EU Marine Strategy Framework Directive.
- Develop a coherent strategy for long-term operation of the developed measurement capabilities,
 - provide a coherent approach to traceability for absolute acoustic measurements in the ocean, establish a European research capability


Calibration of hydrophones and marine autonomous recorders


- Pressure calibration by absolute or relative method by comparison in small chamber
- Free field calibration in tanks and open water facilities

Further progress



- Last meeting: March 2017, London, UK
- Stakeholder Group formed
 - more than 20 so far from manufacturers, academia, users, regulators, metrology and standards community
- Input to standards and calibration committee of International Quiet Oceans Experiment
- Underpinning work for North Sea noise monitoring proposals (JOMOPANS)
- New Work Item agreed in principle at IEC TC87 WG15
- NPL launched new LF calibration service for recorders
- Presentation at national underwater sound forums
- Abstracts submitted for two 2017 conferences (journal paper in preparation)
- Input to European metrology strategy via TC-AUV

TC-AUV

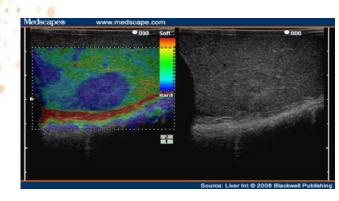
Emerging metrology challenges

AUV sensor networks - metrology challenges

- The measurement paradigm for many AUV quantities is moving rapidly towards the use of sensor networks
- Multiple, remotely deployed, low cost sensors with known performance
- Methods of maintaining traceability
 - In-situ calibration
 - Analysis of network stability
 - Exploiting redundancy
- Network design, optimisation and deployment
- Multi-modal or multi-parameter real-time network big data!

Data --> Knowledge

- Exploiting synergy & correlation more than the sum of the parts
- Trend analysis and prediction
- Estimating confidence in the knowledge to better inform decision processes


Extended frequency ranges

- Air acoustics: infrasound and ultrasound are topics of research (EARS II)
- Medical ultrasound: high MHz used for eye, skin and intravascular scans
- Vibration: LF for seismic and tsunami detection
- Marine acoustics: low frequency monitoring
- Example: CTBTO
 - Needs traceability for global sensor network for vibration, hydroacoustics, infrasound

Quantitative acoustic imaging

- Medical ultrasound and marine acoustics
- Ability to relate image to physical properties
- Important for:
 - comparison between images (before and after)
 - classification of image features

Digital sensor calibration



- Sensors play a vital part in AUV metrology and applications
 - Microphones for sound in air
 - Hydrophones for ultrasound and underwater acoustics
 - Accelerometers for vibration measurement
- Increasingly the transducers used in practical sensing and measurement applications have digital outputs
- Devices are often embedded into their surroundings and cannot be separated for calibration (no access to analogue signals)
- The challenge of traceable dynamic calibration of digital sensors cuts across all AUV themes
- Work in TC-AUV to examine the issues in preparation for more prenormative work

Acoustics, Ultrasound and Vibration

