EUROMET PROJECT FINAL REPORT

1. Ref. No: 634 (please leave blank	2. Subject Field: Ionizing radiation	•					
3. Type of collaboration: comparison							
4A: Partners: (institutions) ČMI, BEV, SMÚ							
5. Participating count	ies: Czech Republic, Austria,	Slovak Republic					
6. Title: Common	calibration of ionizing chambe	ers					
7. Progress:							
All devices (4 ionization calibrated in a week 18 At the same week there ^{99m} Tc, ²⁰¹ Tl, ¹²³ I, ¹³¹ I is ampoules. The standard was in the form of gel. calibrated spectrometer absolute method and set Troubles were found in The more details are det final report.	n chambers) were brought to to 21 September 2001. were provided and prepared in the form of 5 or 4 ml wa ls of ¹³³ Xe and ⁸⁵ Kr were p Specific activity of the solut or calibrated ionization c int to S.I.R the calibration of ¹²³ I and ²⁰ scribed in the technical final	the Czech Metrology Institute and d standards with radionuclides ¹⁸ F, ⁶⁷ Ga, ater solution in the usually two P6-like repared in the gas ampoules. The ¹³⁷ Cs tions and gases were measured either by hamber. The ¹³¹ I was standardized by ¹ TI. report which is an attachment of this					
 8. Coordinator's name: Address: Pavel Dryak, ČMI - IIZ Praha, Radiová 1, Czech Republic Telephone +420 2 66020497 Fax: +420 2 66020466 e-mail: pdryak@cmi cz 							
9. Completion Date: 29 March 2002	10. Coordinator's si	ignature:					

Technical Final Report of the EUROMET Project E634

The aim of the project was a calibration of the secondary chambers especially by short living radionuclides.

If the secondary chambers were calibrated by the producer, the resulting activities from producer's calibration were compared to the CMI standards.

laboratory	Responsible persons	Calibrated devices
Czech Metrology Institute	Pavel Dryák, Veronika Olšovcová	1. NPL-CRC No. 400001
 Inspectorate for Ionizing 		2. BQM 4 No. 33
Radiation		
Czech Republic		
Slovak Metrology Institute	Anton Švec	VacuTec 70 129 No.98012
Slovak Republic		with steel liner 2,2 mm
		connected to
		Electrometer Keithley 6517A
		No.0695463
Bundesamt fuer Eich- und	Petra Jachs, Michael Kreuziger	ISOCAL IV, model 286/SA/102
Vermessungswessen,		
Austria		

Table 1: Participants, persons and devices

All devices were brought to the Czech Metrology Institute and calibrated by responsible persons, given in Table 1, in the week from 18^{th} to 21^{st} September 2001.

During the same week there were provided and prepared standards with radionuclides ¹⁸F, ⁶⁷Ga, ^{99m}Tc, ²⁰¹Tl, ¹²³I and ¹³¹I in the form of 5 or 4 ml water solution in the usual two P6-like ampoules. While the standards of ¹³³Xe and ⁸⁵Kr were prepared in the gas ampoules, the ¹³⁷Cs was in the form of gel. Specific activities of solutions and gases were measured either by calibrated spectrometer or calibrated 4π - γ ionization chamber. The ¹³¹I was standardized by absolute method and sent to S.I.R. Details of the standards used are in the following Table 2.

Radionuclide	Activity [MBq]	Reference time	Volum	Weight	Chemical	Impurities at	Remark
Vial number	(σ)	Day, hour, min	e	[g]	composition	reference time	
			[ml]				
¹³⁷ Cs 591-15	11,682(105)	18.9.2001 12:00	5 ml	5,0720	gel		1)
¹³⁷ Cs 591-16	11,903(107)	18.9.2001 12:00	5 ml	5,0394	gel	¹³⁴ Cs	
¹³⁷ Cs 591-17	11,566(104)	18.9.2001 12:00	5 ml	5,0250	gel	0,09 % ± 10%	
¹³⁷ Cs 591-18	12,070(109)	18.9.2001 12:00	5 ml	5,0338	gel		
¹³⁷ Cs 591-19	11,828(106)	18.9.2001 12:00	5 ml	5,0029	gel		
¹³¹ I 799-01	19,870(199)	18.9.2001 12:00	5 ml	5,0783	NaI in H ₂ O	¹²⁶ I	2)
¹³¹ I 799-02	19,448(194)	18.9.2001 12:00	5 ml	5,0545	NaI in H ₂ O	< 0,05%	
¹⁸ F 800-002	52,494(787)	18.9.2001 13:00	4 ml	4,0727	$KF + Na_2S_2O_3$	< 0,1%	3)
¹⁸ F 800-003	52,091(781)	18.9.2001 13:00	4 ml	4,0473	+Na ₂ CO ₃		
¹²³ I 801-002	91,00(109)	18.9.2001 15:00	5 ml	4,9991		¹²⁴ I 0,004%	
¹²³ I 801-003	91,45(110)	18.9.2001 15:00	5 ml	5,0136	$KI + Na_2S_2O_3$	¹²⁶ I 0,01%	3)
						¹³¹ I 0,007%	
⁶⁷ Ga 802-001	103,32(155)	19.9.2001 10:00	5 ml	5,0261	GaCl ₃ +HCl	⁶⁶ Ga	3)
⁶⁷ Ga 802-002	101,34(152)	19.9.2001 10:00	5 ml	5,0214		< 0.015%	
²⁰¹ Tl 803-001	74,571(820)	19.9.2001 12:00	5 ml	5,0083	$KCl + Tl_2SO_4$	²⁰⁰ Tl 0,113%	3)
²⁰¹ Tl 803-002	73,993(814)	19.9.2001 12:00	5 ml	4,9949	+HNO ₃	²⁰² Tl 0,251%	
²⁰¹ Tl 803-003	75,289(828)	19.9.2001 12:00	4 ml	4,0173			
^{99m} Tc 804-002	96,510(965)	19.9.2001 13:00	5 ml	5,0031	NaCl +	⁹⁹ Mo 9.10 ⁻⁵ %	3)
^{99m} Tc 804-003	97,637(976)	19.9.2001 13:00	5 ml	5,0160	NH ₄ OH	131 I < 3.10 ⁻⁶ %	
¹³³ Xe	188,6(70)	19.9.2001 12:00	33 ml		nitrogen	131m Xe < 0,66 %	4)
⁸⁵ Kr	2437(120)	20.9.2001 12:00	33 ml		nitrogen	None gamma	5)

Table 2: Standards prepared for E634

Remarks

- 1) The solution was standardized by absolute method. The composition of the gel is similar to water, with density 1 g.cm⁻³.
- 2) The solution was standardized by absolute method. It was sent to S.I.R.. The difference from the last four records (NIST, OMH, NPL, LNMRI) was 0,5%.
- 3) The solutions were standardized by calibrated CMI ionization chamber which was calibrated by CMI standard solutions .
- 4) The activity of gas in the 33 ml glass ampoule (length 55 mm, int. diam. 27 mm, glass wall 1,5 mm) was standardized by calibrated HpGe spectrometer. The calibration factor is valid for 33 ml glass ampoule.
- 5) The activity of gas in the 7 ml glass ampoule (length 5 cm, int. diam. 1,3 cm, glass wall 1 mm) was standardized by calibrated HpGe spectrometer. The calibration factor is valid for 7 ml glass ampoule.

The calibration factors given by producers and used in the comparison are listed in the following Table 3.

The comparison of the CMI values and response of the devices is given in the Table 4.

	NPL-CRC	BQM [*]	VacuTec ^{**}	ISOCAL IV ^{***}
	(pA/MBq)	(pA/MBq)	(pA/MBq)	(pA/Bq)
¹³⁷ Cs	5,751	5,102	6,812	5,751
¹³¹ I	3,999	3,984	7,347	3,999
¹⁸ F	10,35	9,524	13,947	10,35
¹²³ I	1,685	4,000	10,83	1,685
⁶⁷ Ga	1,547	2,849	10,52	1,547
²⁰¹ Tl	0,8557	4,762	10,89	0,8557
^{99m} Tc	1,227	2,146	12,58	1,227
¹³³ Xe	Not given	3,610	4,878	Not given
⁸⁵ Kr	0,0320	0,613	0,376	0,0320

Table 3: The producers' calibration factors

* recalculated from the original calibration factors which were given as kBq/pA

* recalculated from the original calibration factors which were given as MBq/pA

*** equivalent to NPL-CRC calibration

Radionuclide	CMI activity, A	NPL	$(A_r - A)/A$	BQM	$(A_1 - A)/A$	VacuTec	$(A_2 - A)/A$	ISOCAL IV	$(A_3 - A)/A$
Vial number	MBq	response,	%	response,	%	response,	%	response,	%
		Ar		A_1		A_2		A ₃	
137Cs 591-15	11,682(105)	11,509***	-1,48	11,47(31)	-1,82	11,82(12)	+1,2	11,51(25)***	-1,44
137Cs 591-16	11,903(107)	11,729***	-1,46	11,79(31)	-0,96	12,06(12)	+1,3	11,73(25)***	-1,44
137Cs 591-17	11,566(104)	11,389***	-1,53	11,35(31)	-1,88	11,69(12)	+1,1	11,39(25)***	-1,50
137Cs 591-18	12,070(109)	11,889***	-1,50	11,89(31)	-1,50	12,21(12)	+1,1	11,89(25) ***	-1,48
137Cs 591-19	11,828(106)	11,669***	-1,34	11,63(31)	-1,68	11,98(12)	+1,2	11,65(25) ***	-1,50
131I 799-01	19,870(199)	20,025	+0,78	19,30(58)	-2,86	20,52(30)	+3,3	19,99(15)	+0,62
131I 799-02	19,448(194)	19,587	+0,71	18,91(58)	-2,78	20,11(30)	+3,4	19,56(15)	+0,58
18F 800-02	52,494(787)	53,14	+1,23	50,0(20)	-4,78	54,96(82)	+4,7	52,93(107)	+0,82
18F 800-03	52,091(781)	52,857	+1,47	49,6(20)	-4,88	54,28(82)	+4,2	52,52(107)	+0,82
123I 801-02	91,00(109)	96,554	+6,10	96,74	+6,31	97,5(1,5)	+7,1	95,8(21)	+5,27
123I 801-03	91,45(110)	97,025	+6,10	97,16	+6,25	98,0(1,5)	+7,1	96,3(21)	+5,31
67Ga 802-01	103,32(155)	103,827	+0,49	94,3(47)	-8,70	102,1(1,5)	-1,2	103,0(28)	-0,32
67Ga 802-02	101,34(152)	101,665	+0,32	92,4(47)	-8,80	100,2(1,5)	-1,1	100,9(27)	-0,42
201Tl 803-01	74,571(820)	83,78*	+12,3	72,82*	-2,4	$80,0(1,2)^*$	+7,3	84,33(89)*	+13,1
201Tl 803-02	73,993(814)	83,76*	+13,2	72,16*	-2,5	79,3(1,2)*	+7,2	83,77(89)*	+13,2
201Tl 803-03	75,289(828)	84,14*	+11,7	72,82*	-3,4	**		84,23(89)*	+10,6
99mTc 804-02	96,510(965)	98,171	+1,72	97,7(29)	+1,25	98,9(1,5)	+2,4	97,34(165)	+0,86
99mTc 804-03	97,637(976)	99,288	+1,69	98,8(29)	+1,16	100,0(1,5)	+2,4	98,49(167)	+0,88
133Xe	188,6(70)	**		189(9)	+0,4	202,1	+7,1	**	
85Kr	2437(120)	**		**		2569	+5,4	**	

Table 4: CMI activity values and responses of the NPL-CRC, BQM, VacuTec and ISOCAL IV secondary chambers. In case of NPL-CRC secondary chamber the uncertainty of the calibration factors were not given, type A uncertainty is less than 0,5%.

* corrected to impurities

** not measured

gel compound; provided calibration factor for liquid solution only

From the data presented in Table 4 it is clear that there is some problem in the calibration of the CMI chamber for 123 I and 201 Tl.

When the activity measured with NPL-CRC chamber is taken as the reference activity of ¹²³I and ²⁰¹Tl, the resulting activities and deviations from the NPL-CRC reference value for BQM, VacuTec and ISOCAL are shown in the following Table 5.

Table 5: Activities of ¹²³I and ²⁰¹Tl measured by BQM, VacuTec, ISOCAL when compared with NPL-CRC chamber results.

Radionuc lide Vial	NPL-CRC activity, A _r	BQM response,	$(A_1-A_r)/A_r = \frac{0}{2}$	VacuTec response,	$(A_2-A_r)/A_r = \frac{0}{2}$	ISOCAL IV response,	(A ₃ -A _r)/A _r %
number	MDq			Π2		Λ3	
123I	96,554	96,74	+0,19	97,5	+0,98	95,801	-0,78
801-02							
123I	97,025	97,16	+0,14	98,0	+1,0	96,301	-0,75
801-03	-				-		
201Tl	83,78	72,82	-13	80,0	-4,5	84,333	+0,66
803-01							
201Tl	83,76	72,16	-14	79,3	-5,3	83,768	+0,01
803-02	-				-		
201Tl	84,14	72,82	-13			84,234	+0,11
803-03							

Comment

The calibration of ¹³⁷Cs, ¹³¹I, ¹⁸F, ⁶⁷Ga and ^{99m}Tc is acceptable. The individual deviation can be used for the new calibration of chambers.

The calibration of ¹³³Xe and ⁸⁵Kr was possible only for BQM and VacuTec, due to the dimensions of well of chambers. However, results are not comparable due to different calibration conditions. It is generally acceptable for both chambers.

The real problem is in the calibration of CMI chamber for ¹²³I and ²⁰¹Tl. The calibration was done 5 years ago by commercially available material. This knowledge leads to necessity of recalibration of CMI chamber for the above-mentioned radionuclides. Then a new comparison of activity measurements of these radionuclides would be advisable.