

TC for lonising Radiation: Highlights and Challenges

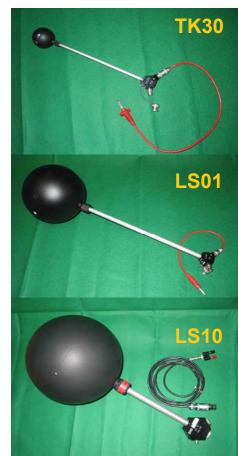
István Csete, TC-IR Chair MKEH ,Hungary

2nd EURAMET General Assembly Marseille, France, 2 to 4 June 2008

OUTLINE

- Conclusions of the EUROMET RI(I)-S3 Supplementary Comparison (EUROMET project No. 545, 2004-2008)
- Scientific challenges of JRP T2.J06 and T2.J07 (EMRP ERANET plus, funded by EC)
- Challenges in radionuclide metrology
- Organisational challenges of IR TC (2008-2011)

Intercomparison of NMI's air kerma standards for ISO 4037 narrow spectrum series X-ray radiation (30 kV-300 kV) *EUROMET RI(I)-S3 Suplementary Comparison*

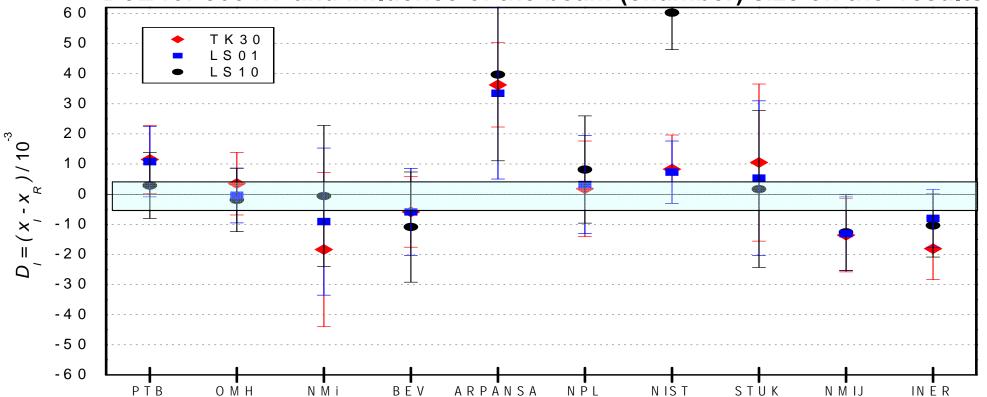

First intercomparison to support the CMCs related to the rad. prot. dosemeter calibration in X-ray beams!

Tasks: 1. Establising the air kerma (K_{air}) SCRV and DoE for the rad. prot. applications ($H^* = K_{air} \times h^*_{K}(10;E)$)

2. Influence of beam size used for calibrations

Participants: PTB; OMH (MKEH); NMi; BEV; NPL; STUK;

ARPANSA; NIST; NMIJ; INER



Conclusions of the EUROMET RI(I)-S3 Supplementary Comparison

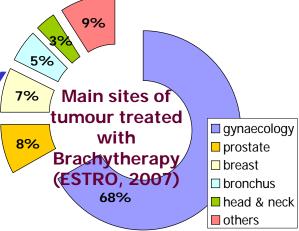
DoE for 300 kV and influence of the beam (chamber) size on the results

Inconsistent (DoE_i/U_i>1) results for all qualities were 9%,10.5% and 16% for TK30;LS01;LS10 chambers respectively

Conclusions of the EUROMET RI(I)-S3 Supplementary Comparison

- 1. Review of calibration procedures using broad beam for low dose rate
- 2. Investigation of X-ray beam profiles
- 3. Re-evaluation of published CMCs uncertainties of participants
- 4. Encourage the missing 5 NMIs having primary standard to link this supplementary comparison to use singe SCRV and DoE matrix.

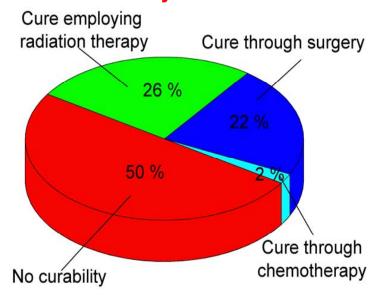
ISO 4037 Narrow beam quality CMC claims 10 beam qualities							
	NMI	Country	CMC U S		Traceable to	U(DoE) %	incon. results (small beam)
1	ARPANSA	Australia	1 ,5			1.0-3.6	1
2	BEV	Austria	0,8			0.7-1.1	0
3	NMi	Netherland	1,5			1.3-2.6	2
4	NPL	UK	1,6			1.6-2.0	0
5	NIST	USA	1			0.7-1.1	1
6	MKEH	Hungary	1			0.7-1.0	0
7_	PTB	Germany	0,77			0.7-1.1	0
8	INER	Taiwan	1			0.6-1.1	2
9	NMIJ	Japan	1,2			0.7-1.2	2
10	STUK	Finland			PTB	2.5-3.0	1
11	NIM	China	3,3			?	
12	LNE-LNHB	France	1,8			?	
13	ENEA	Italy	2,8			?	
14	GUM	Poland	1			?	
15	VNIIM	Russia	1,5			?	
16	Belgim	Belarus	5		VNIIM		
17	СМІ	Czech Rep.	4		IAEA		
18	IAEA	Int. Org.	1,2		PTB		
19	RMTC	Latvia	3		PTB		
20	ITN	Portugal	1,8		PTB		

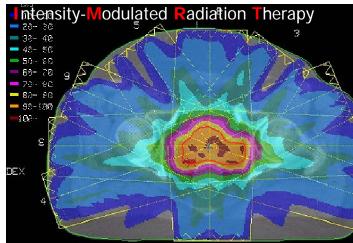


Scientific challenges of iMERA+ JRP T2.J06

INCREASING CANCER TREATMENT EFFICACY USING 3D BRACHYTHERAPY

- 1. Development of two different wide-angle water-equivalent extrapolation chambers, waterproof X-ray spectrometer for LDR I-125, water and graphite calorimeter for HDR Ir-192 to determine the absorbed dose to water u(D_w)<2% at 1cm from the sources. (183 work months)
- 2. Accurate determination of 3D dose distributions (MC calc.,gel, 1mm³ scintillation probe, TLD, alanine, semiconductor, liquid ionization chambers, 2D multidetector systems, radiochromic films tech. Collaborators: PTW, Wellhöfer, Linköping Univ.)

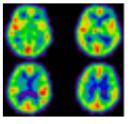

Scientific challenges of iMERA+ JRP T2.J07


External Beam Cancer Therapy

High conformity between the tumor volume and dose distribution is required, (u(D)<2.5% ICRU)

- 1. Development of water (PTB) and graphite calorimeters (NPL, LNHB) to determine the absorbed dose to water u(Dw)<0.5% in 3 cm diameter, 6-25 MeV energy photon beams
- 2. Determine the 3D dose distribution by Alanine/ESR dosimeters, (~ 1Gy?) diamond and MOSFET detectors, and radiochromic film

2.3 Mio cancer/ year in the EU 3 %/year increase





Challenges in radionuclide metrology

Standardisation, decay data evaluation and international traceability of radionuclides emerging in medical applications

- for radio immunotherapy


(At-211; Cu-67; Lu-177; Sc-47; Sn-117m; Y-86; Sc-44m; Sr-82;

Ac-225; Bi-213; Bi-212; Re-186; Re-188; Th-226...)

- for PET imaging (Cu-64; Sc-44; Fe-52; Zr-89; Co-55; I-124...)

Develop primary standardisation techniques ($4\pi\beta$ - γ ; TDCR-LSC) for short–lived radionuclides (F-18; C-11; N-13; O-15) for PET Apply the possibilities offered by digital signal processing techniques

Organisational challenges of IR TC

- 1. Nomination of the most competent persons for TC chair and convenors at the next CP meeting in this October
- 2. Maintain the integrity of the IR TC (16 DIs, 15 NMIs), more efforts to involve the emerging laboratories into the EMRP and supporting comparisons of CMCs (11 ERANET+ partners, 21 labs have CMCs)
- 3. Maintaining common absorbed dose to water primary standards for high energy photon and electron beams, and fluence determination of reference neutron beams?

