

TC for ionising radiation; Dosimetry, Radionuclides and Neutrons

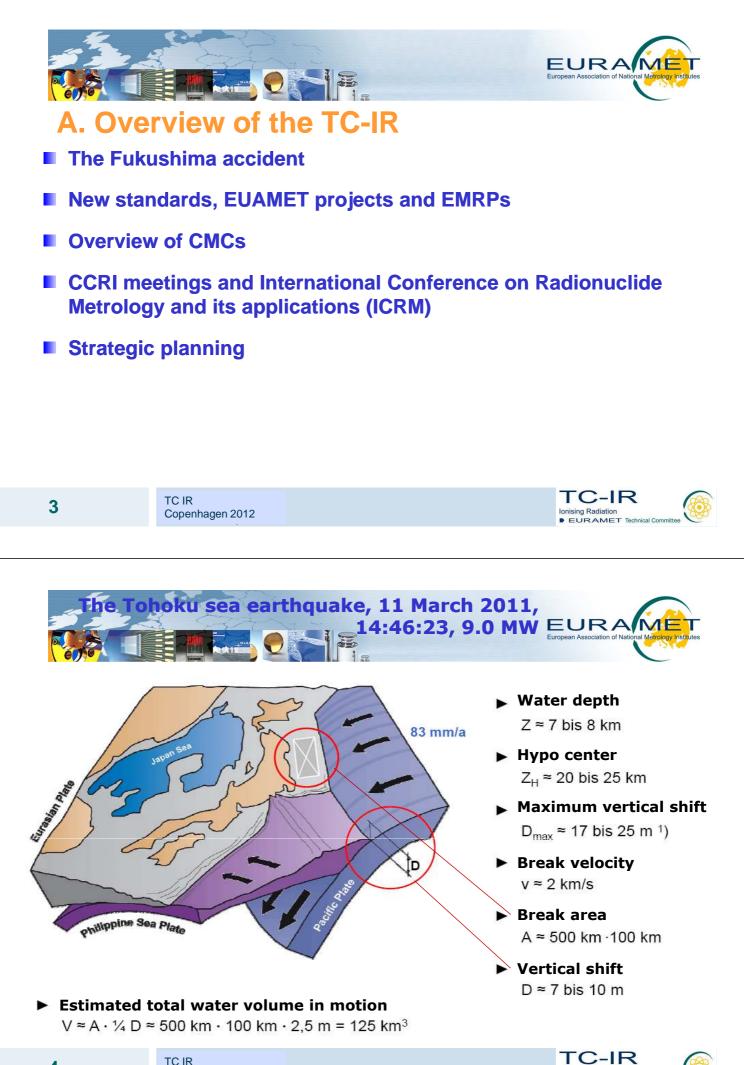
TC-IR

Hans Bjerke, TC-Chair IR, NRPA Norway Copenhagen May 2012

TC-IR

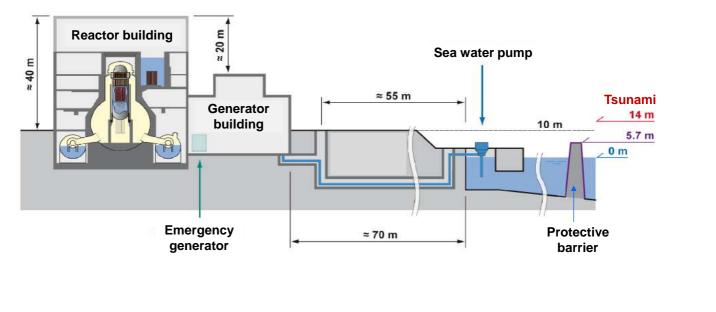
Ionising Radiation

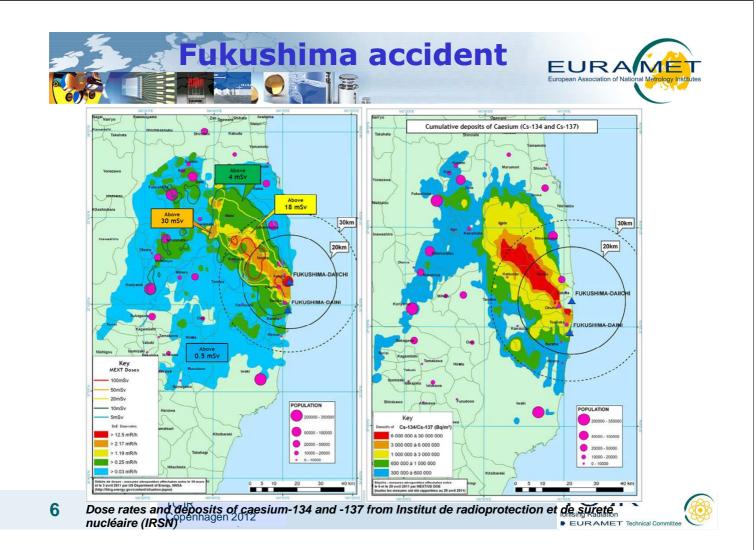
EURAME



Outline

- A. Overview of the TC-IR
- B. Research in ionising radiation
- C. Roadmaps
 - 1. Dosimetry and Radionuclides in Health Care
 - 2. Anthropogenic and Natural Radionuclides in Environment and Industry
 - 3. Novel dosimetry concept for ionising radiation interaction with matter




TC-IR Ionising Radiation

Fukushima Daiichi – cross section

5 TC IR Copenhagen 2012

Overview of the ionising radiation CMCs

	Country/lab	dosimetry	date of publ.	reviewed	a cli vity	date of publ.	reviewed	ne utron	date of publ.	reviewed	totel	
1	Aus tha/BEV	50	11.03.2005	52	100	15.09.2003					150	
ka	Bulgaria BIM NCM	7	14.02.2007				11(new)				1	
10	Czech Republic CMI	7	11.03.2005	Х	104	15.09.2003		12	19.05.2005	Х	122	
4	Finland/STUK	31	11.03.2005	30							5	I
1	FranceLNE-LNHB	63	11.03.2005	х	166	15.09.2003		15	19.05.2005	Х	24	-
1	Germany FITB	88	19.11.2010		158	20.01.2010		20	19.05.2005	х	28	١.
7	Greek GAEC	35	12.10.2009								50	
9	Hungary/MKEH	20	11.03.2005	28	84	15.09.2003	71				104	
8	IAEA	13	23.02.2007								12	
đ	RMM				110	15.09.2003					110	
11	Italy ENEA	76	11.03.2005	х	13	15.09.2003		9	19.05.2005	х	88	
N	Netherlands /VSL	28	11.03.2005	25	57	15.09.2003					95	
12	Norway/NRPA	22	14.02.2007	22							22	
4	Poland'GUM	5	11.03.2005	4	68	15.09.2003					72	
ц.	Fortugal ITN	43	11.03.2005	х							42	ľ
ñ	Romania IFIN				34	15.05.2008					3	
17	Slovekia SikiU	30	15.05.2008		37	15.05.2008		9	15.05.2008		R	
<u>1</u>	9psin ≎lEMAT	52	15.05.2008		97	15.05.2008					149	
18	Sweden/SSM	29	11.03.2005	28							29	
z	Switzerland/METAS	8	11.03.2005	3	21	15.09.2003					29	
21	United Kingdom NFL	36	11.03.2005	x	116	15.09.2003		42	19.05.2005	x	194	
	total	643		188	1165		82	107		0	1915	

X selected for second round

TC IR Copenhagen 2012

European IR laboratories have dominated the international IR forums

Where will it goes?

New engine: the EMRPs

Forum: CCRI, ICRM

A brake: the economy

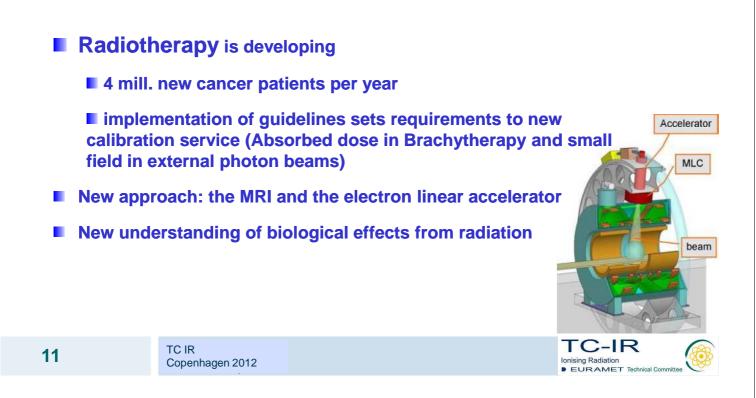
Involvement: Stakeholders (users, industry and authorities)

Copenhagen 2012

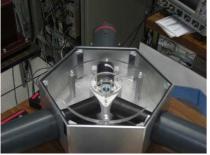
TC IR

B. IR research 1: Strategic planning

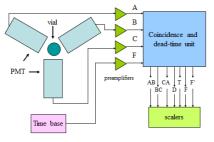
- Separate session at our annual meeting
- Workshop on new Roadmaps
- Three pilot roadmapper appointed
- Active in CCRI meetings
- Formalisation of the relation between EURAMET and the Atomic Energy Agency (IAEA) laboratory


situated at Seibersdorf, Austria

performing IR- comparisons, important CCRI-stakeholder, publishing calibration standard methods



B. IR research 2: evolution of RT



B. IR research 3: nuclear power

Triple to Double Coincidence Ratio

TC IR

Copenhagen 2012

- New generation fission nuclear power plants
- The radioactive waste
- Handling of fallout from accidents
- Nuclear fuel account and the Non Proliferation Treaty (NPT)
- Political priorities

- The IR community look to EUARAMET's research program
- Results published on large scale
- Implementation of EMRPs results on-going
- Transparency to CCRI and users
- Taking account on CCRI strategy and user needs

Dosimetry and Radionuclides in Health Care Health care: Radiotherapy and Radiation Protection for both patients and workers

About 75% of **4 million new European patients** with cancer are treated using radiotherapy. This rate is expected to increase due to:

- Improvement of diagnostic methods
- Global ageing
- New treatment modalities and irradiation techniques

About one diagnostic exam per person and per year. A need to control radiation protection of patients in:

- New improved diagnostic modalities
- New diagnostic equipment
- Global ageing

About 23 mill. workers exposed to radiation world wide mainly in developed countries. 7,5 millions in medical uses.

- lower limit of exposure (e.g. cataract)
- Increased number of workers due to production and decommissioning issues
- Needs for better definition of quantities and measurement protocol

Ionising Radiation

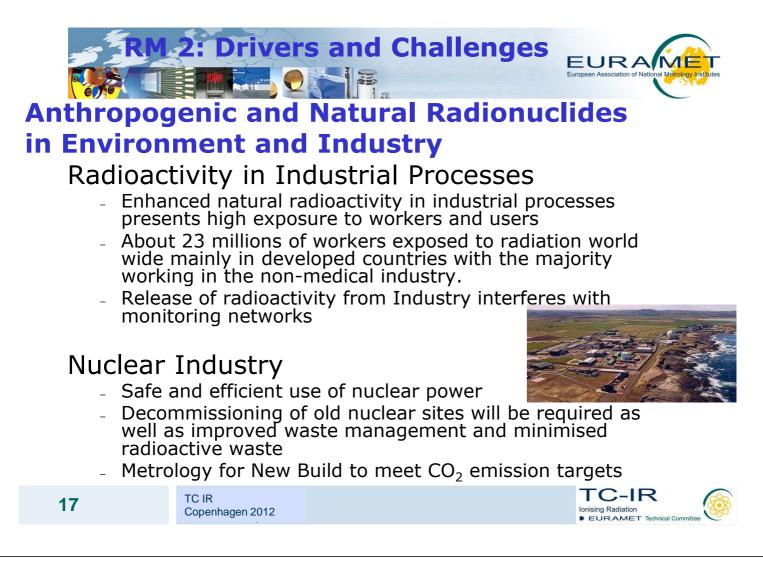
EURAMET Tech

TC IR Copenhagen 2012

Dosimetry and Radionuclides in Health Care

- Traceability of the patient dose in complex forms of radiotherapy
 - Rotational therapy and robotic techniques using small fields
 - Online imaging (Conebeam CT, MRI linacs)
 - New electron brachytherapy sources
 - Protontherapy, Hadrontherapy
 - Targeted radionuclide therapy
- Novel diagnostic equipment
 - new CT scanners (two tube scanners, 256 line scanners)
 - new or adapted quantities well suited for new diagnostic modalities
- Challenges for radiation protection dosimetry
 - Stricter limits on eye lens
 - Definition of operational quantities

Dosimetry and Radionuclides in Health Care



Improved metrology for dosimetry will:

- improve sustained patients' Quality of Life (higher cure rate and reduction of side effects)
- facilitate faster clinical dissemination of new radiotherapy, and diagnostic techniques
- enhance safety of European working environment
- lower the radiation burden to the European citizen by improved optimisation of dose and image quality.

Anthropogenic and Natural Radionuclides in Environment and Industry

Homeland Security

- Prevention and reduction of significant security threats
- Preparedness in case of "event", e.g. terrorism or Fukushima

Climate Change

- Climate change is one of the major concerns of today's politics, economy, technology and research.

Science

- Applications of radionuclide metrology to new or other fields of science
- Relation between the Bq and the SI base units for mole and mass

Anthropogenic and Natural Radionuclides in Environment and Industry

Radioactivity in Industrial Processes

Development of metrology for:

- Consistent and reliable control of naturally occurring radioactive material
- Conformity with recommendations and EU council directives
- Improved accuracy in monitoring networks for radioactive releases

Nuclear Industry

- Improved safety, sustainability and reduced environmental burden in the use of nuclear power
- Better and safer control in Decommissioning operations
- Improved accuracy in waste sentencing
- Reduced environmental impact and socio-economic benefits from better radioactive waste management

19

TC IR Copenhagen 2012

Anthropogenic and Natural Radionuclides in Environment and Industry

Homeland Security

- Prevention of significant security threats by
- improved detection networks and monitoring of food stuff
- Development of Nuclear Forensics
- Development of quick, specific, high yield chemical analyses
- Improved de-contamination methods

Climate Change

- Development and support for radionuclide tracer methods including low-level techniques and mass spectrometry
- Provide accurate and traceable measurements of radionuclides
 - and isotope ratios for accurate conclusion regarding climate change

Science

- **Detector developments applied to other fields e.g. X-ray detection in space applications**
- Relation between activity and mass investigated as a unit by implementing new technology such as single atom counting

TC-IR

EURAMET Tech

Ionising Radiation

RM 3: Drivers and Challenges

Novel dosimetry concept for ionising radiation interaction with matter

Medical applications – radiotherapy

- different biological effectiveness of radiation qualities on cancerous and healthy tissue
- different irradiation conditions for external photon beam therapy and radionuclide therapy using alpha emitters
- different patient radio-sensitivity

The ESTRO 2020 vision of individualised radio-therapeutic treatment using a multi-disciplinary approach

- A dosimetric concept that facilitates the combination of different treatment modalities
- Providing metrology support based on the virtual human approach
- Development of a unified dosimetric concept for radiation quality
- Developing a measurement protocol for biological effects
- Measuring individual radio-sensitivity, enabling treatment plans based on patient-specific rather than population-averaged dose-effect curves

21

Copenhagen 2012

TC IR

Novel dosimetry concept for ionising radiation interaction with matter

System of physical operational quantities in dosimetry (Unit: sievert) is based on phenomenological weighting factors that are almost exclusively based on epidemiological evidence Metrological challenges:

- Prevention and reduction of significant security threats
- Extension of the range of applicability of biological dosimetry toward lower doses by enhancing the through-put and reliability of biological assays through better control of experimental conditions by application of metrology
- Establishing a traceability chain of biological dosimetry to physical standards of ionising radiation or, alternatively, develop biological standard systems

New materials of geometrical dimensions of particle track diameters.

A measurand quantifying damage due to radiation interaction:

- in nano-tech components
- electronics and bio-systems
- in space application
- at fusion reactor experiments
- in accelerator-based treatment units in clinics

TC-IR

EURAMET Te

Ionising Radiation

Novel dosimetry concept for ionising radiation interaction with matter

Medical applications of ionising radiation

- combination of different treatment modalities
- optimisation of image-guided techniques in radiotherapy
- development of radio-sensitizers and patient-specific treatment planning based on quantitative measures of <u>individual radiation sensitivity</u>

New or redefined <u>operational quantities</u> in dosimetry

- Improved standards for occupational radiation protection
- Better data base for decision maker and regulatory bodies
- Reduction of radiation risk to occupationally exposed personnel and the general public

Facilitation the development of radiation-resistant

- nano-electronics and other nano-structured devices
- reliable biological-cell based production techniques

Realisation of the components of the <u>virtual human</u> that are related to ionising radiation

23	TC IR Copenhagen 2012	TC-IR Ionising Radiation • EURAMET Technical Committee

First	rad			ay	1	.00		O National Metrology Institutes	
5)	3			Uskrevet					
R	Dato	Ne.	Navne	Le budit	(bud ing	Gad	Rekvirent	Sygdom	
Reçu de ve l'Hofitar	15/10/2 31/10 79/2		Jamiet Bagetion	22	1	2	Dep. Findad R-I	There caveres colo	
cing	10 12 21 947 11 12	3 4			1-	CH.	Boregund Takel M.	Maria police	
four 200	11- 12 5 3400 11 45612 6/ 1120	6	Jugebry Silver Pattien		////		Sep.	Turun paroles . Concertagence ? Concertagence	
he plantight	9, 122) 9, 122) 9, 12/2 9, 12/3 12	89	Jaus aando Inguluais Hom -				Dep.	Cause highed aug. Meter professor. Opthickness Consister.	
le Appeller	a/ 1202/ 12/ 1253/2 19/ 1263/ 19/ 1263/	1.8	Mile Hausen Glen Hilter Mathelde Reg		1		Kap.	Caucer oragium Caucer oragium Caucer buaum	
TITLE CONTRACTOR	11- 120/12	13	fur Sinkurol		/ hil	K. 13_		Canon labis poris	

TC IR Copenhagen 2012