

HIGHLIGHTS and SCIENTIFIC CHALLENGES of the TC-T

Andrea Peruzzi

EURAMET GA Reykjavik, 28-29 May 2013

Global warming

"Warming of the climate system is unequivocal from:

- observations of increases in global average air and ocean temperatures,
- uptake of heat by the oceans,
- melting of land ice such as glaciers,
- the associated rise in sea level and
- increased atmospheric surface humidity."

4th Assessment Report of the Intergovernmental Panel on Climate Change, IPCC (2007)

Temperature is the key indicator quantity

Assessing climate change depends crucially on correct interpretation of small changes in long-term climate temperature data series

EURAMET GA

Reykjavik, 28-29 May 2013

> A rigorous metrological approach is required

2

Global temperature

➢ Global average air temperature from 1850 to 2012

Oldest global time series maintained by the UK Met. Office Hadley Centre

Weak metrological basis

- Blue and red rectangles: annual average
- Black line : five year average

(HadCRUT4: Hadley Centre UK Met. Office, from 1850)

Lack of traceability for most, if not all, of the historical and present day records

Lack of complete uncertainty evaluation

EURAMET GA Reykjavik, 28-29 May 2013 Anomaly 2010: +0.540 °C Anomaly 2005: +0.523 °C Anomaly 1998: +0.534 °C

Global temperature

- **Red** and **blue** rectangles: annual average
- Black line: 5 years average

- Black line: best estimate value
- Red band: station uncertainty
- Green band: limited coverage added
- **Blue** band: urbanization, changes in design and siting of thermometer added

World Meteorological Organization (WMO)

Data recorded by satellites, radiosondes, buoys and landbased weather stations around the world

Data processed by different observation systems

> WMO: UN agency, authoritative voice on the state of the earth's atmosphere, the oceans and the climate

> WMO recently recognized the need to base the global observing system of the earth's climate on:

- SI traceable measurement standards with
 - o well-characterized uncertainty analysis
 - o well-monitored and well-maintained stability
- > WMO signed the MRA on April 1st 2010

5

WMO Integrated Global Observing System to be based on robust metrological traceability

EURAMET GA

Reykjavik, 28-29 May 2013

Measurement Challenges for Global Observation Systems for Climate Change Monitoring

Traceability, Stability and Uncertainty

30 March – 1 April 2010 WMO Headquarters Geneva, Switzerland

EURAMET Technical Committ

GRUAN: the first metrologically-based observing network

- > WMO: World Meteorological Organization
 - Oversee all observing systems

GCOS: Global Climate Observing System

- Built on existing observing systems:
 - o GOS: Global Observing System
 - o GAW: Global Atmospheric Watch
 - o GOOS: Global Ocean Observing System
 - \circ GTOS: Global Terrestrial Observing System

GRUAN: GCOS Reference Network for Upper Air Climate Observations (2015)

• First metrologically-based observing network

GRUAN Goals

Maintain observations for several decades

Focus on complete estimates of measurement uncertainty

Ensure traceability of measurements to SI units or internationally accepted standards

Ensure long-term stability by managing instrumental changes

Measure a large suite of co-related climate variables with deliberate measurement redundancy

ENV07: MeteoMet

Meteorology + Metrology = Metrologically-based Global Observing System

ENV07: MeteoMet

• Goal: Traceability of surface and upper air measurements of *P*, *T*, *H*, *V* in the atmosphere

• Coordinator: Andrea Merlone, INRiM

MIKES ~~ SMD le cnam CETIAT Sm' EM

EURAMET GA Reykjavik, 28-29 May 2013

MeteoMet and GRUAN

> MeteoMet is playing a unique and key role in GRUAN implementation

• Procedures: support GRUAN in adopting the appropriate metrological tools (VIM, GUM) and a robust uncertainty definition and evaluation

 \rightarrow Revision of GRUAN manual and guide

• Devices:

 \rightarrow ACQUAVIT2: intercomparison of GRUAN humidity sensors supplied by world leading manufacturers

 \rightarrow Development of calibration chambers for the calibration of radiosondes sensors (-52 °C to +40 °C)

 \rightarrow Development of calibration chambers for ground-based atmospheric measurement stations

Global Warming?

