

COORDINATION AT THE NATIONAL LEVEL

LNE-LNHB PRESENTATION

Ceatech

Laboratoire National

INTRODUCTION

At least two different national organizations for the metrology can be decribed:

- <u>One big institute (NMI)</u> gathering labs to deal with all technical domains in one organization with a very few external labs (DIs) to deal with specific domains
- A rather small institute (NMI) with <u>a lot of labs (DIs)</u> belonging to different organizations

The French organization is in between for scientific and historical reasons

2

list

Ceatech

HISTORY / ORGANISATION

list

Past (since 1969 until 2005)

Bureau National de Metrologie gathered four National Metrological Laboratories

- LNE (Mass, Electricity, Electromagnetism)
- CNAM (Electricity, Electromagnetism)
- SYRTE (Time, Frequency)
- LNHB (Ionizing Radiations)

+ six associated labs (associated labs / DIs)

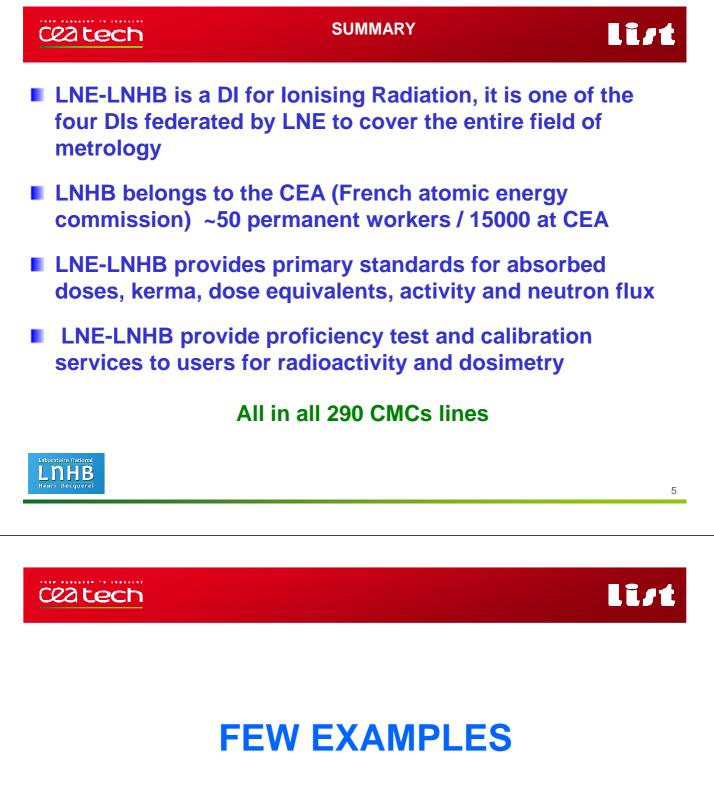
Ceatech

HISTORY / ORGANISATION

How research programs are chosen:

Strategic Research Agenda sent to consultative metrology committee ~every five years

Research Projects proposed/reveiwed (Scientific Council for Ionizing Radiation)


- The Scientific Council gathers representative of nuclear industry, medical physicists, academic research bodies, international bodies. <u>Projects review twice a year</u>
- Scientific Audit of CEA
- Scientific Audit of French Science Academy...

Budget: ~50 permanent workers

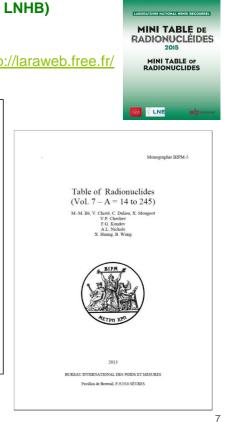
EU research Calls (Framework program) National reseach Calls IMERA/EMRP/EMPIR calls Metrology (CEA) Metrology (LNE) Calibration services Industrial contrats

R&D ; TRANSFER ACTIVITIES AND MEANS AT LNE-LNHB

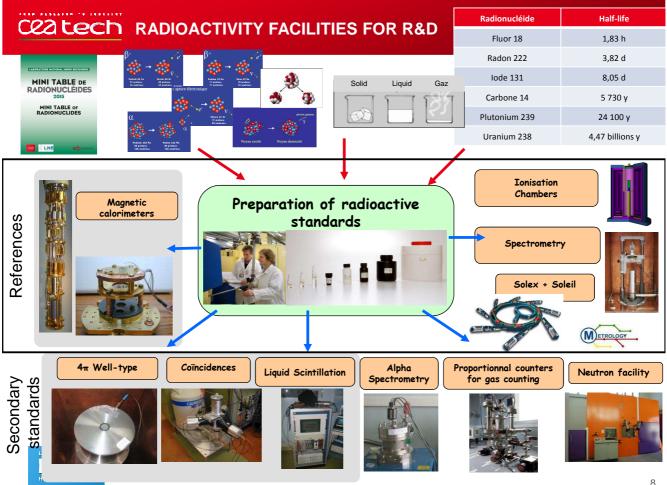
Ceatech

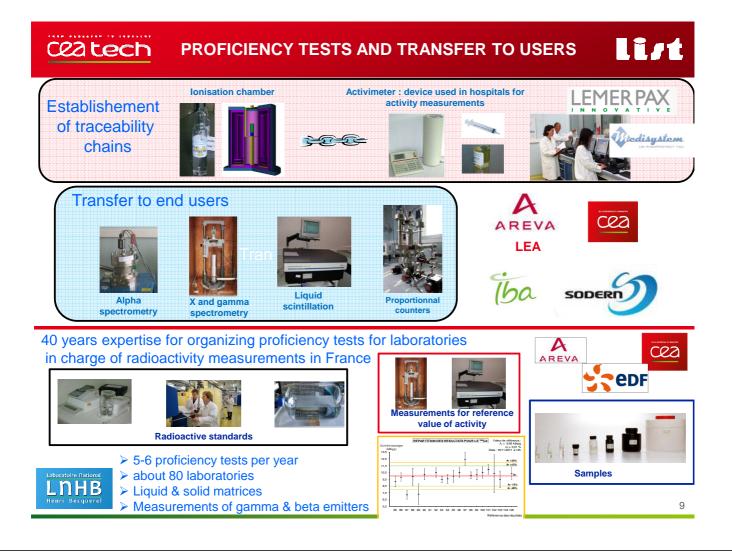
ATOMIC AND NUCLEAR DATA

- > Collaboration with BIPM to publish the monographie
- > Free access to library for gamma and alpha emissions <u>http://laraweb.free.fr/</u>
- > Publication of the pocket table of radionuclides


• Volume 7 of the Table of Radionuclides (Monographie BIPM - 5) published in 2013, including the IAEA CRP Actinide evaluations:

¹⁴C, ³⁵S, ³⁶Cl, ³⁷Ar, ⁴⁵Ca, ⁶⁷Ga, ⁶⁸Ga, ⁶⁸Ge, ¹²⁷Sb, ¹²⁷Te, ^{127m}Te, ¹³⁴Cs, ¹⁴¹Ce, ¹⁴⁷Nd, ¹⁴⁷Pm, ¹⁹⁵Au, ²⁰⁶Hg, ²⁰⁷Tl, ²⁰⁸Tl, ²⁰⁹Tl, ²¹¹Pb, ²¹¹At, ²¹³Bi, ²³⁸Th, ²⁴²Cm, ²⁴³Cm, ²⁴⁴Cm, ²⁴⁵Cm


- See also: www.nucleide.org/NucData.htm
- 24 new evaluations


LNHB

• 5 re-evaluations ⁶⁷Ga, ²⁰⁸Tl, ²³⁸Th, ²⁴²Cm, ²⁴⁴Cm

11/1

Ceatech LNE-LNHB WORLD UNIQUE BETA SPECTROMETER

BETA SPECTROMETRY

Aim :

Results

MeV)

Better knowledge of the form of the beta spectra for : Metrology of activity Internal dosimetry for radiotherapy

Use of cryogenic detectors

Measurements of beta spectra

Waste storage, calculation of residual power of powerplants

Conception of a prototype with a semi-conductor

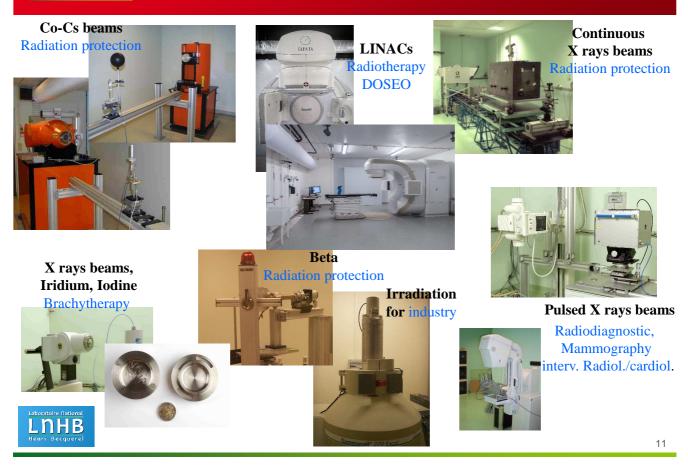
Conception of codes to calculate the spectra

detector (for an energy range between 500 keV and 3

Comparison measured spectra with calculated spectra

Prototype with a semi-conductor detector

Cryogenic detectors



list

Metrobeta JRP begining in June 2016

Beta spectra of Pu-241

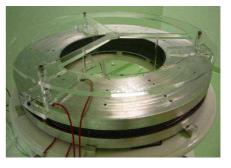
Ceatech DOSIMETRY FACILITIES & DOSEO PLATE FORM

Ceatech

PRIMARY STANDARDS

li/t

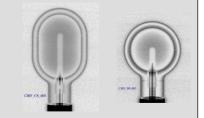
Free air ChamberS, air kerma standard for low and medium energy Xrays


15 cm , 1 kg 0.33 cm³ Mammography

40 cm, 50 kg 3.8 cm³ Diagnosis

80 cm , 300 kg , 4.8 cm³ Continuous soft X rays

1150 cm³, brachytherapy

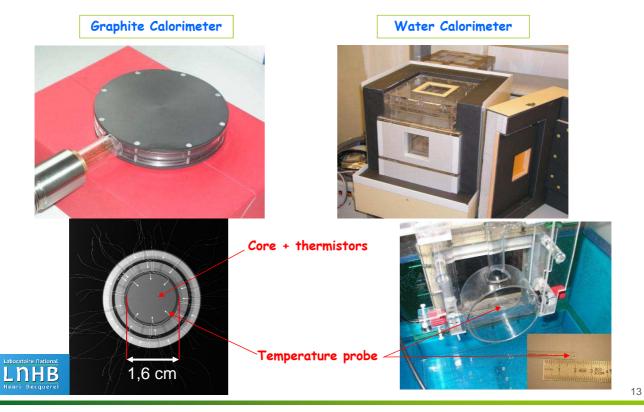

Cavity chamberS, air kerma for high energy photons

Spherical chambers from 4 to 7 cm³

Cylindro-sphérical chambers from 7 to 12 cm³

Leakage curent ~ 10⁻¹⁶ A

Collaboration: IST – Portugal ; IFIN HH – Romania ; CIEMAT - Spain to diseminate primary standard


Radiography chambers

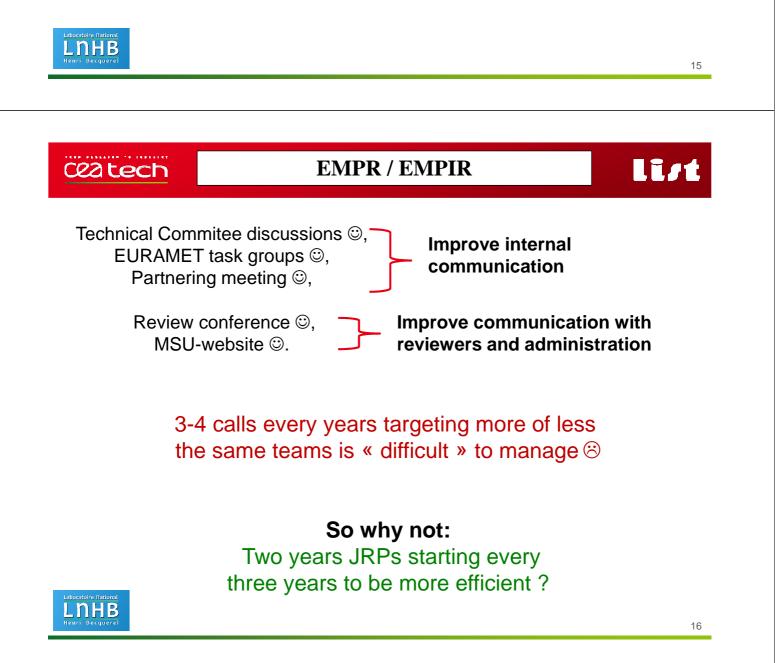
EMPIR JRP Absorb

li/t

CalorimeterS: absorbed dose standard

Ceatech iMeraPlus-EMRP-EMPIR 20/26 ; FP7 1/1

iMera+	JRP7 External Beam Cancer Therapy (2010) (Health) / JRP6 3D Brachytherapy (2010) (Health)	
FP7	ORAMED optimisation of radiation protection of medical staff (2011)	
EMRP	ENG08 MetroFission - Metrology for new generation nuclear power plants (2014)	Finished
	ENV09 MetroRWM - Metrology for Radioactive waste management (2014)	75
*	IND04 MetroMetal - Ionising Radiation for Metallurgical Industry (2014)	Ned
	IND07 Thin Films - Metrology for manufacturing thin films (2014)	<i>Y</i>
	HLT09 MetrExtRT - Metrology for radiotherapy using complex radiation fields (2015) (Coordination LNHB)	
	HLT11 MetroMRT – Metrology for Molecular Radiotherapy (2015)	
	NEW01 TReND - Traceable Characterization of Nano-Structured Device (2015)	
	IND57 MetroNORM - Metrology for processing materials with high natural radioactivity (2016)	
	ENG53 ThinErgy-Traceable characterisation of thin-film materials for energy applications (2017)	
	ENV54 MetroDecom-Metrology for decommissioning nuclear facilities (2017)	
	ENV57 MetroERM - Metrology for Radiological Early Warning Network in Europe (2017)	
	SIP07 DIGITAL STD – Standard for Digital Data Format for Nuclear Instrumentation (2018)	
	IND01 3DMetChemIT – Advanced 3D chemical metrology for innovative technologies (2018)	
Ļ	RPT04 ABSORB - Absorbed dose in water and air (2017) (Coordination LNHB)	
	HLT18 MRTDosimetry: Metrology for clinical implementation of dosimetry in molecular radiotherapy (2019))
	SI07 MetroBeta: Radionuclide beta spectra metrology (2019) (Coordination LNHB)	
	HLT15 MetMRgRT: Metrology for MR guided RadioTherapy; (2019)	
	N11 UHV Techniques for ultra-high voltage and very fast transients (2019)	
Henri Becqu		114



So we are altogether (MNIs <u>AND</u> DIs) EURAMET

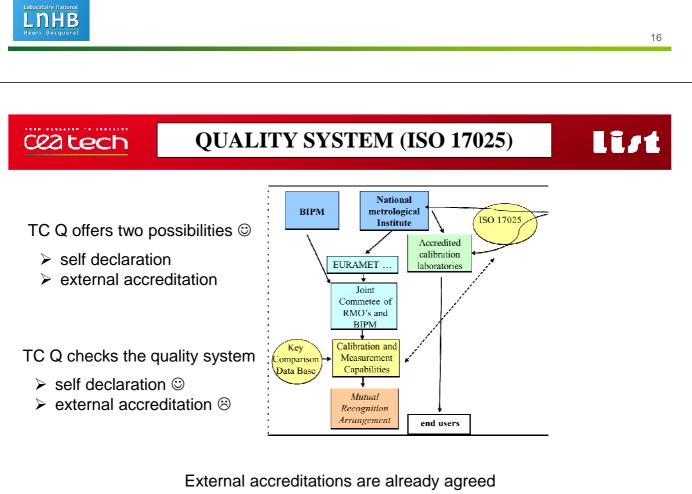
For the French organization, it works well

This does not mean that one cannot find improvements

Here after three ideas which are for both NMIs and DIs

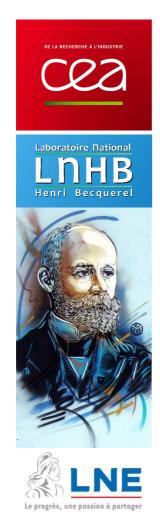
Ceatech

Due to the **relatively high uncertainties** of primary standards (~0,2%;~1%) compared to those needed by end users (2,5% RT), the traceability chain must be short. And National Metrology Laboratories have often a direct link to end users (nuclear medicine, radiotherapy, radio diagnosis).


In case of accident, the national authorities are accountable to the public.

So, ionizing radiation requires a high-quality "local" or "distributed" metrology.

<u>Capacity building JRPs</u> are one of the tools to deal with potential errors, (i) helping laboratories to develop the expertise required to **answer the specific needs of their countries** and therefore (ii) allowing more researchers to **develop innovative solutions**.


For the same reasons, a "redundancy" of primary standards should not be considered as a problem, but an **opportunity and a strength for Europe**, to prevent potential biases and their propagation, especially in the medical field.

National Metrology Laboratories should have the capability to adapt their references to **specific regulations or specific medical practice of their countries**.

at the international level through the *Multilateral Agreement* therefore TC Q could rely on the decisions of the **external** accreditation bodies.

I thank you for your attention

