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TC-T Meeting 2011 

iMERA-Plus and EURAMET Project 885 
“Determination of the Boltzmann constant
for the redefinition of the kelvin” 
� EURAMET cooperative and multidisciplinary large-scale approach (beyond the 
capabilities of single NMIs and DIs)

� EURAMET taking global lead in the redefinition of the kelvin

� Relevant advances of metrological capabilities in several scientific and 
technological fields:

� acoustics 

� thermodynamics 

� microwave measurements 

� thermometry 

� dimensional measurements 

� residual gas analysis 

� perturbation theory 

� pressure measurements 

� capacity measurements

� laser spectroscopy
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iMERA-Plus and EURAMET Project 885 
� EURAMET Partners: 

• CEM (ES) 

• DFM (DK) 

• INRiM (IT)

• IRMM (EC)) 

• LNE-INM/CNAM (FR)

• NPL (UK) 

• PTB (DE)

� Non-EURAMET Partners: 

• Second University of Naples (IT)

• Polytechnic of Milan (IT) 

• University of Paris Nord (FR)

• University of Valladolid (ES)

Physikalisch-Technische
Bundesanstalt

� EURAMET TC-T contribution to wider CIPM CCT effort:

� Global effort in the change of the International System of Units (SI):

• new definition of the kilogram, ampere, kelvin and mole in terms of fixed 
numerical values of the Plack constant h, elementary charge e, Boltzmann 
constant k and  the Avogadro constant NA

� All the SI base units linked to truly invariant quantities (fundamental constants 
of physics) → SI system more coherent

Background of the project

redetermination of the Boltzmann constant k

redefinition of the kelvin in terms of fixed numerical value of k
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Present definition of the unit of 
thermodynamic temperature (CGPM 1954, Res. 3)

� Assigned numerical value of 273.16 K to the 
triple point of water: Ttp = 273.16 K

� The kelvin is the fraction 1/273.16 of the 
thermodynamic temperature of the triple point of 
water: 1 K = (1/273.16)·Ttp

� This definition requires to set up a particular 
state of matter (the triple point of pure water of a 
specified isotopic composition)

� Any primary temperature measurement 
requires the knowledge of the Boltzmann 
constant k (pV = NkT, <VT

2>=4kTR(T), …)

� The Boltzmann constant is a measured 
quantity: k = (1.3806504 ± 0.0000023)·10-23 J/K 
(k=1)

Present value of the Boltzmann constant
� k = (1.3806504 ± 0.0000023)·10-23 J/K                 
(ur = 1.7 ppm, CODATA 2006)

� Weighted mean of only two results (both acoustic 
methods, measuring the speed of sound in argon at 
a temperature close to the TPW):

• Quinn et al., NPL (1976): ur(k) = 8.4 ppm

• Moldover et al., NIST (1988): ur(k) = 1.8 ppm

� The present value of k is, to a large extent, 
determined only by the NIST result

� Severe lack of independent data

� Before fixing the value of k, more independent 
data (and based on different physical principles) are 
needed
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iMERA-Plus and EURAMET Project 885 

Acoustic Gas Thermometry 
(AGT): CEM, INRiM, LNE-
INM/CNAM, NPL and IRMM

Dielectric Constant Gas 
Thermometry (DCGT): 
PTB

Doppler Broadening 
Thermometry (DBT): Université
Paris Nord, Seconda Universitá di
Napoli, Politecnico di Milano, LNE-
INM/CNAM

� Goal: reliable ur(k) ≈ 1 ppm based on three fundamentally different methods

Acoustic Gas Thermometry (AGT)
� Zero-pressure speed of sound u0 in an ideal gas:

� Measure u0 at the TPW: T = Ttp = 273.16 K

� Spherical cavity resonator:  the cavity resonates when 
excited by sound at a precise frequency f0n

� u0 is determined from the measurement of the internal 
volume V of the resonator and the resonant frequency f0n
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Acoustic Gas Thermometry (AGT)
� Quasi-spherical cavity resonators: remove 3-fold 
degeneracy of the modes and resolve each resonance

� Designing and machining tri-axial ellipsoidal 
resonators 

� Very tight tolerances in hemispheres alignment and 
shape perfection (tens of µm)

V
f

TN

M
k

n

n

tpA

2

0

0

0








=

υγ

Acoustic Gas Thermometry (AGT)
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� State-of-the-art dimensional 
measurements

� Measure of V: CMM, on-lathe 
interferometry, pyknometry
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Acoustic Gas Thermometry (AGT)
� Acoustic eigenvalues of quasi-spherical resonators: second 
order shape perturbation theory

� Frequency corrections due to elasticity and boundary effects

� Measure of M: isotopic composition and impurities of nearly 
mono-isotopic Ar

� Thermometry issues: calibration of the SPRTs 
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Acoustic Gas Thermometry (AGT)

ur(k) = 3.1 ppm
(in 2010)

ur(k) = 2.2 ppm
(in 2010)

ur(k) = 7.5 ppm
(in 2010)

ur(k) = 20 ppm
(in 2010)
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Dielectric Constant Gas Thermometry (DCGT)
� State equation of an ideal gas: pV = NkT

→ Constant-Volume Gas Thermometry (CVGT)

� For an ideal gas: ε = ε0 + α0N/V  (ε = ε0· εr)

� Avoid troublesome density determination of CVGT

� Require the knowledge of α0

� QED ab initio value of α0 for He known with uncertainty 
well below 1 ppm

� Pressure must still be measured to full accuracy

� ε is measured by incorporating a capacitor in the gas cell 
and by measuring its capacitance C(p) at pressure p and 
C(0) at p = 0
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Dielectric Constant Gas Thermometry (DCGT)
� Measure T � Measure p

� Measure relative capacitance 
change 
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Dielectric Constant Gas Thermometry (DCGT)

� Liquid bath 
thermostat: ±1 mK

� Electrically shielded 
room with air 
conditioning: ±0.5 K

� Temperature control 
of the central platform: 
±0.1 mK
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� Temperature control stability: 0.4 ppm

Dielectric Constant Gas Thermometry (DCGT)

� Pressure stability and pressure 
measurement up to 7 MPa at 1 ppm level: 

• Achieved pressure repeatability: 1 ppm

• Achieved uncertainty pressure 
measurement: 1.9 ppm

� Pressure balances:
• Aeff = 20 cm2 (0.02 – 0.75) MPa
• Aeff = 5 cm2 (0.1 – 7.5) MPa
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Dielectric Constant Gas Thermometry (DCGT)

� Design of capacitors

� Relative capacitance change 
measurement:

•

• to be measured with relative 
uncertainty smaller than 1 ppm

• The capacitance bridge must have a 
resolution of 0.1 ppb (but 1 ppm
accuracy) 

• Development of high-resolution and 
high-precision ratio transformer 
capacitance bridge

001.0
)0(

)0()( ≈−
C

CpC

Dielectric Constant Gas Thermometry (DCGT)
Component U(k)/k ·106

Type A

Scatter of capacitance bridge 3.5

Pressure repeatabiity 1

Temperature stability 0.5

Capacitance stability 5

Type B

Capacitance change 1

Determination of effective compressibility 5.8

Temperature traceability to TPW 0.3

Pressure measurement (7 MPa) 1.9

Pressure head correction 0.2

Gas impurities 2.4

Impurities surface layers 1

Polarisability ab inicio calculations (Theory) 0.2

Combined standard uncertainty 9.2
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Doppler Broadening Thermometry (DBT)

� A laser beam propagating through an absorption 
cell containing a gas at uniform temperature

� Maxwell-Boltzmann distribution of the velocities 
of the atoms (or molecules) of the gas

� Gaussian Doppler-broadened absorption line 
profile accurately modeled by:

� Doppler width ∆ωD:
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ω = laser frequency
ω0 = resonant frequency
m = mass of the atom or molecule
c = speed of light
∆ωD = full width at half maximum (FWHM)

Doppler Broadening Thermometry (DBT)

Two independent DBT experiments developed in the project:

1. Laboratoire de Physique de Lasers, CNRS, Université Paris 13 
and LNE-INM/CNAM

� Gas: 14NH3
� Roto-vibrational line ν2 saQ(6,3): 28 953 694 MHz (10.3 μm)

� Present uncertainty: ur(k) = 37 ppm

2. Dipartimento di Scienze Ambientali, Seconda Universitá di 
Napoli

� Gas: CO2
� Line: 2 μm

� Present uncertainty: ur(k) = 160 ppm
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EOM 
8-18 GHz 

Polarizer

Tunability and modulation

Thermostated cell 
273.15 K

Detector

14NH3

Fabry-Perot 
Cavity

Intensity Control

Detector

Frequency 
stabilized 
CO2 laser

Experimental set-up 1 (France)

Experimental set-up 1 (France)
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Absorption cell and thermostat bath (France)

Temperature control stability: 1 ppm

Experimental set-up 2 (Italy)
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Present state

Preliminary weights for the mean value of k 
(2010)

0,87
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Future definition of the unit of 
thermodynamic temperature (CGPM 20XX, Res. XX)

� Assigned numerical value of the Boltzmann constant : k = 1.3806X·10-23 JK-1

(exactly)

� Definition based on true time and space invariant

� The temperature of the triple point of water becomes a measured quantity (to be 
determined by a primary thermometry measurements at the TPW)

� The value chosen for k is consistent with Ttp = 273.16 K

� The best estimate for the temperature of the triple point of water at the time of the 
redefinition is Ttp = 273.16 K

�The relative thermodynamic uncertainty in Ttp is equal to that of the measured value 
of k at the time of the redefinition (for example, if ur(k)=1.8·10-6 → ur(Ttp)=1.8·10-6 → 

u(Ttp)= 0.49 mK)

� Subsequent measurements of Ttp in terms of the new definition may result in a 
slightly different value for Ttp

Future definition of the unit of 
thermodynamic temperature (CGPM 20XX, Res. XX)

� Single statement: “The Boltzmann constant k is exactly 1.3806X·10-23 JK-1”

� Rescale the magnitude of the kelvin K to give the Boltzmann constant k the 
specified numerical value

� Quantity calculus:

• the value of a quantity Q is expressed by the product of a number {Q} 
and a unit [Q]:

• Q = {Q}∙[Q]

• k = {1.3806X·10-23}∙ [JK-1]

• k is invariant but we can choose the two factors in different ways without 
changing the value of their product

• If the unit is defined independently (present definition), the value of k 
must be determined by experiment

• If we choose to define the numerical value to suit our convenience 
(future definition), then in the process we define the unit.
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EMRP Call 2011 “SI Broader Scope”

Implementing the new Implementing the new kelvinkelvin
Novel techniques for traceableNovel techniques for traceable
temperature disseminationtemperature dissemination

Development of essential primary
thermometry methods for:

• a direct dissemination of the kelvin to
the users at the extremes of
temperature

• measuring the differences T–T90

and/or T–T2000 to provide a sound
foundation for the MeP-K.

Development of new advanced
techniques for providing traceability to
the kelvin by:

• optimizing the realization of the
ITS-90

• developing new methods and
means for providing traceability to
the kelvin.


