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Abstract   The two main measurement techniques for precision high-ohmic resistance measurements for 

values of 100 M and above are presented and discussed, the current integration technique and the 
adapted Wheatstone bridge. In calibrations using these systems, the quality of high-ohmic resistance 
standards, especially their time constants, temperature and voltage dependence, often is limiting the final 
uncertainty that can be reached. Still, expanded uncertainties (k = 2) of only a few parts in 10

5
 are 

achievable at the 1 T level.  

Current Integrating Teraohmmeter 
Basic principle:  

Charging a capacitor C by the current resulting from a test voltage 
Vtest applied across the resistor Rx that needs to be measured. 

 
From the linear output voltage ramp, Rx can be determined via: 

Rx = – Vtest / (C  V/t ) 
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Main advantage: Best for resistance transfer measurements and 

measurements of very high resistance, well into the P range. 
 
Uncertainty sources: 

 Linearity of the V/t ramp 

 AC/DC difference and leakage of C 

 Noise and stability 

 Calibration of overall system (e.g. parasitic capacitance effects) 
using a lower-ohmic reference resistor Rs 

 Incomplete compensation of input offset current and voltage 

 Time base and voltage comparator errors. 
 

Adapted Wheatstone Bridge 
Basic principle:  

Balancing a Wheatstone-type bridge with two adjustable voltage 
sources in one arm of the bridge.  

 
At balance, Rx can be directly determined from the voltage ratio via: 

Rx = Rs  (–V1/V2) 
 

+-
null

V1 Rx

RsV2

 
 
Main advantage: Lowest uncertainties, low sensitivity to leakage.  
 
Uncertainty sources: 

 Calibration of the voltage sources (voltage ratio) 

 Noise and stability 

 Reference resistor Rs 

 Incomplete cancellation of offset voltages or offset currents (up to 

100 G, either voltage or current null detection can be used)   

Nota bene: there is a big difference in final uncertainty statements made by NMIs for 

measurements of 1 T and above, due to different estimations of the contribution of 

systematic effects, especially those related to the resistance standards.  

Resistance standards 
The performance of high-ohmic resistance standards is critical in 

achieving the best uncertainties in measurements using the current 
integration technique or the adapted Wheatstone bridge.  

Influence factors: 

 Voltage coefficient of resistance (VCR) 

 Temperature coefficient of resistance (TCR) 

 Relative humidity effects 

 Long-term drift 

 Short-term settling time 

 Construction material properties, resistor configuration 

The actual measurement method should take this into account via: 

 Determination of the size of VCR and TCR effects  

 Minimising relative humidity effects via hermetical sealing 

 Minimise short-term settling times (material selection, coatings) 

 Ensure sufficient waiting times in the measurement method  
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Summary 
High-ohmic resistance measurements are relevant for calibration of 
electric isolation meters, low-conductivity meters, and electrometers.  
Both the current integration and the adapted Wheatstone bridge are 
suitable for high-ohmic calibrations at the highest level of accuracy.  
 
Recent comparison results and best achieved uncertainties: 

 Down to a few ppm at 1 G (EURAMET.EM-K2) 

 Around 20 ppm at 1 T (EURAMET.EM-S32) 
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