

TC Length Highlights and challenges

A. Lassila, TC-L chair

MIKES, Finland

Outline

- Highlights TC-L 2011/2
- Challenges in length metrology
 - Roadmap update
 - New triggers & targets

TC-L highlights: TC-L meeting & Macroscale 2011 conference

- TC-L 2011 meeting was organized at METAS, Wabern 3.-4. October 2011
- It was immediately followed by Macroscale 2011 conference with ~100 participants from all RMO areas, industry and universities

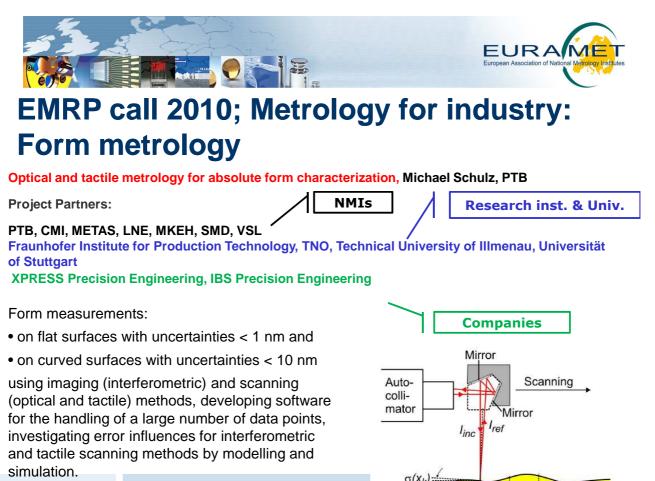
TC-L highlights: 2010 & 2011 EMRP calls

TC-L community was quite successful in 2010/2011 calls

- Funded projects have strong connections to Academia and industry
- In 7 length projects there are 17 university groups and 9 companies as partners
- These JRPs also had ~60 supporters from industry and academia
- In addition at least 6 JPRs with some dimensional metrology related research

First meeting of TC-L EMRP working group at PTB 2/2012

~open meeting with 40 participants


Funded length and length related JRPs

2010	IND05	MeProVisc	Dynamic Mechanical Properties and Long-term Deformation Behaviour of Viscous Materials
	IND10	Form metrology	Optical and tactile metrology for absolute form characterization
	IND11	MADES	Metrology to Assess the Durability and Function of Engineered Surfaces
	IND13	Themal design and dimensional drift	Thermal design and time-dependent dimensional drift behaviour of sensors, materials and structures
	IND14	Frequency	New generation of frequency standards for industry
	IND17	Scatterometry	Metrology of small structures for the manufacturing of electronic and optical devices
2011	HLT02	MetVes	Metrological characterisation of micro-vesicles from body fluids as non-invasive diagnostic biomarkers
	SIB08	Subnano	Traceability of sub-nm length measurements
	NEW01	TReND	Traceable characterisation of nanostructured devices
	NEW05	MechProNO	Traceable measurement of mechanical properties of nano- objects
	NEW06	TraCIM	Traceability for computationally-intensive metrology
	NEW08	MetNEMS	Metrology with/for NEMS
	NEW09	METCO	Metrology of electro-thermal coupling for new functional materials technology

6th EURAMET General Assembly

21 - 25 May 2012, Kongens Lyngby, Denmark

5

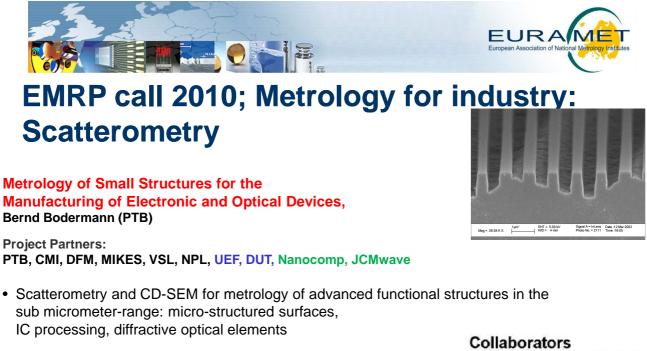
6

6th EURAMET General Assembly 21 - 25 May 2012, Kongens Lyngby, Dei

х

Surface

 x_k


 x_{k+1}

TC-L

FURAME

Length

- Validation and optimisation for applications in industry
- Development of "golden" reference standards for metrology in wafer processing

6th EURAMET General Assembly 21 - 25 May 2012, Kongens Lyngby, Denmar

8

EMRP call 2010; Metrology for industry: **MADES**

Metrology to Assess the Durability and Function of Engineered Surfaces, Mark Gee (NPL)

Project Partners: NPL, BAM, CNAM, DTI, INRIM, MIKES, PTB, FAU, VTT, Alicona

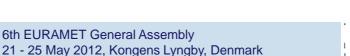
Fundamental aspects of metrology for tribology:

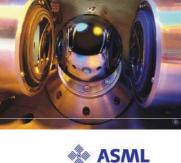
- · measurement of very small wear volumes
- · long term measurement of low friction
- measurement of the temperature at wear interfaces
- · measurement of changes in chemistry that occur at the contact interface between surfaces
- development of methods for the assessment of the durability of tribological surfaces

TecVac - IonBond - Teer Coatings Phoenix Tribology - Tetra - Airbus **Rolls Royce - Aero Engine Controls** Sandvik - Glud Marstrand nCATS - E-Surf! - VITO VAMAS

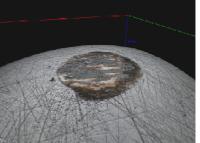
9

6th EURAMET General Assembly 21 - 25 May 2012, Kongens Lyngby, Denma


Traceability of sub-nm length measurements, **Birk Andreas (PTB)**


Project Partners: PTB, CMI, MIKES, NPL, UME, VSL, INRIM, TUDelft, Università di Torino

The purpose of this JRP is to enable traceable measurements in the sub-nm range for optical interferometers as well as improved capacitive sensors.


- Modeling: wave front aberration for interferometers, capacitive sensors alignment & environment
- · Measurement devices technology: wave front sensor, interferometers development, capacitive sensor studies, x-ray interferometer
- Cross validation

10

EMRP call 2011; New Technologies: **MechProNo**

Traceable measurement of mechanical properties of nano-objects, Ludger Koenders (PTB)


Project Partners:

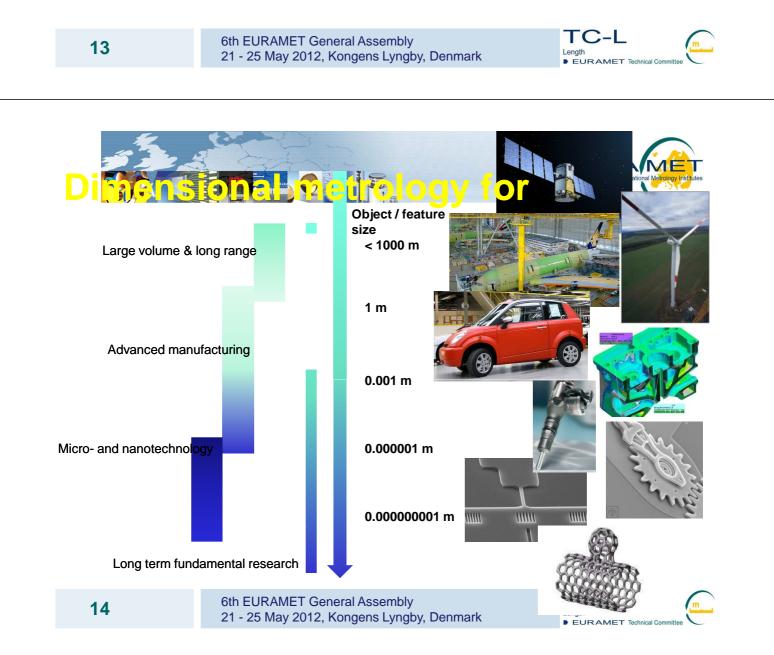
PTB, BAM, CMI, MIKES, NPL, TU Dresden, Uni Helsinki

 Traceable force and displacement calibration of nanomechanical test systems (force range 10 mN to 10 pN, displacement resolution 0.1 nm)

6th EURAMET General Assembly

- Provision of reference materials
- · Development of validated modeling techniques
- · Validated procedures to characterize size, shape and mechanical properties of nano-objects
- Intercomparison to evaluate the effectiveness of using reference materials

11


- computationally-intensive metrology, like e.g. 3D coordinate metrology
- Encoding formal statements of computational aims in clear, unambiguous terms
- Reference data (or numerical artefacts, numerical standards, softgauges) associated with computational aims, Data Generators
- Criteria to assess the performance of software
- Enabling ICT to perform the software validation or 'numerical calibration'

Challenges of length metrology

- TC-L WG EMRP 2/2012
 - Decided to maintain the topics of EMRP roadmaps, but to update content
 - Draft versions of the updated roadmaps ready last week

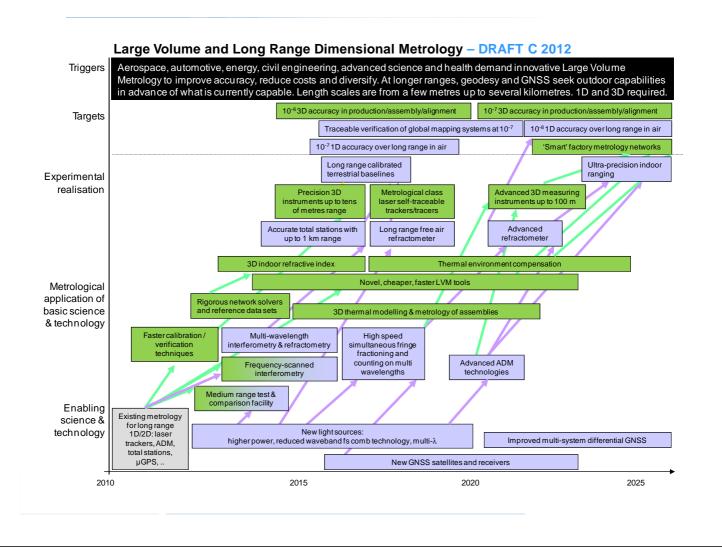
Large volume & long range metrology

New triggers:

- Next generation '**super jumbo' aircraft** are now routinely manufactured: needs to improve automation and assembly accuracy
- Increasing need of renewable energy sources (wind, future fusion, reconsideration of nuclear fission new build). =>large scale civil engineering.
- Galileo satellites have been launched => validated improvement in accuracy
- European industry focusing to lower-volume, high-value, customised

manufacturing – the concept of the 'smart factory' which uses omnipresent metrology.

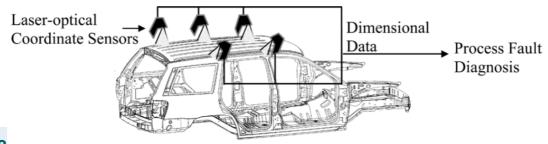
Large volume & long range metrology


New targets:

• **3D refractive index** covering the typical working volume of a factory, eventually to 10⁻⁶ or 10⁻⁷ accuracy level, to enable omnipresent optical metrology systems.

• Techniques for **thermal compensation of large structures** which cannot be assembled in controlled environments.

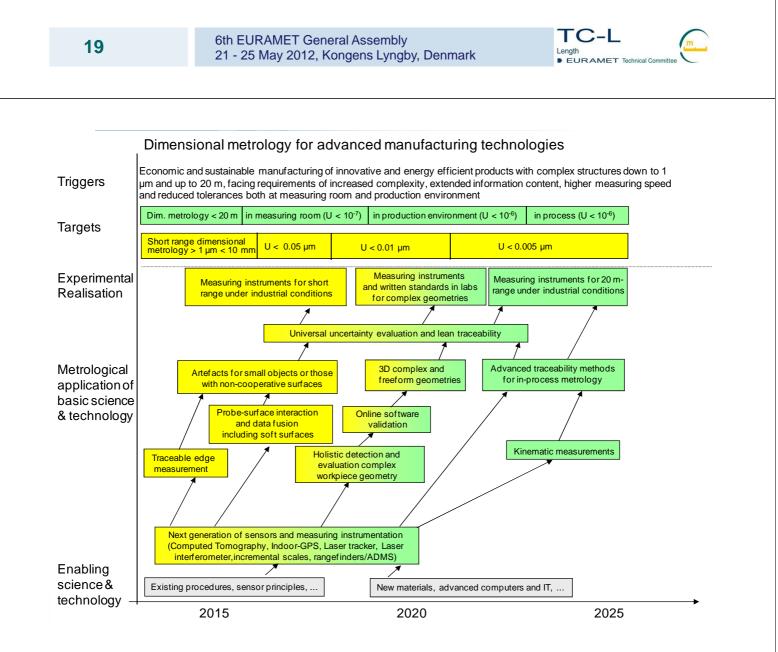
• Novel measuring systems based on innovative technologies, taking **accurate metrology directly to the shop-floor**, whilst lowering costs, to extend the uptake by smaller companies (SMEs).

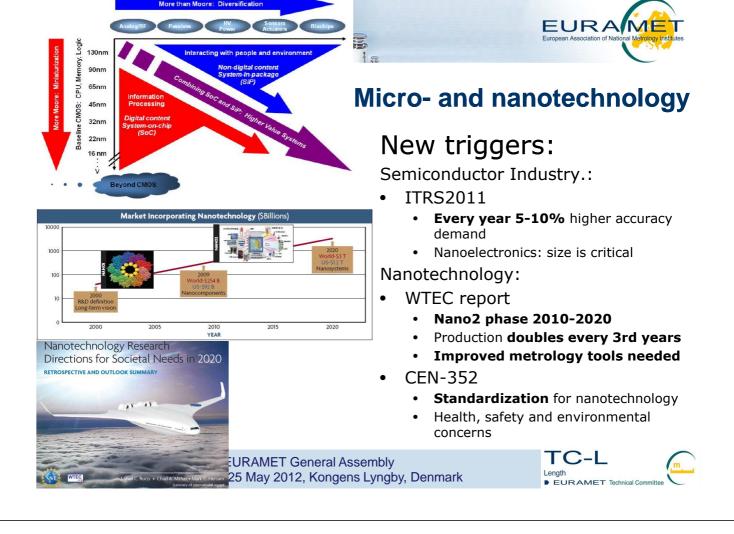


Advance manufacturing

New triggers:

- European industry focusing to **lower-volume**, **high-value**, **customized manufacturing** the concept of the 'smart factory' which uses omnipresent metrology.
- In process coordinate measurement is becoming an important tendency of high accurate and cost efficient production.
- Lean calibration concept is spreading in car and aviation industry, requires new inline concepts

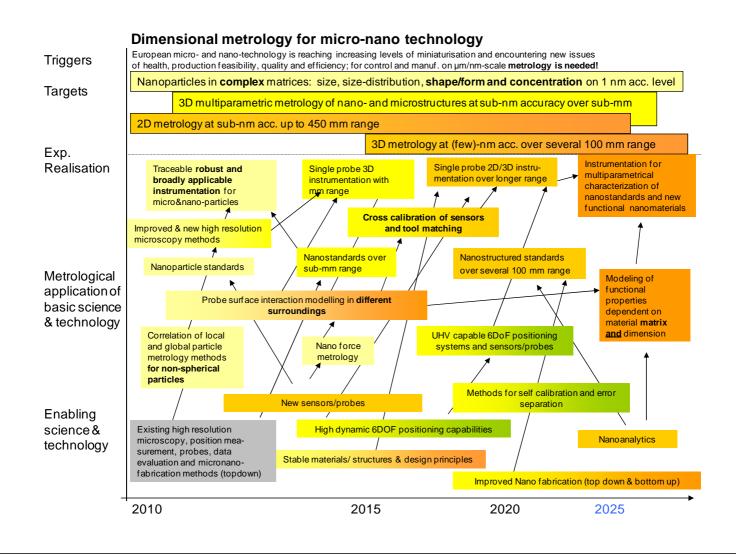

Automotive Body Assembly



Advance manufacturing

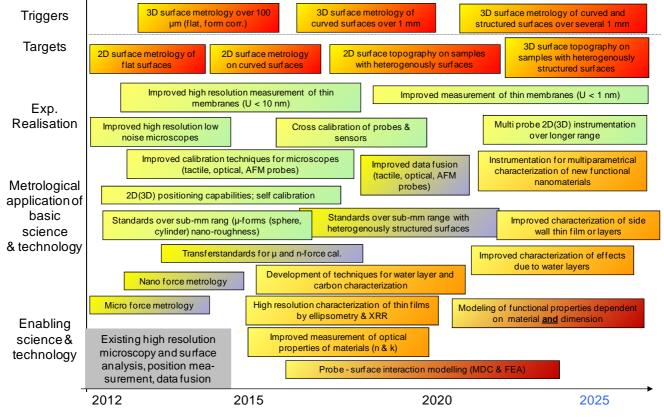
New targets:

- traceable inline metrology tools in production environment
- traceable lean calibration methods for industry
 - transfer standards, artefacts
 - probe sample interaction with various sensors
 - software validation
 - etc.



Micro- and nanotechnology

New targets:


- Multiparametric metrology of nanostructures : size(3D), shape, thickness, overlay and materials characteristics at the sub-nm level
- 6 DOF metrology stages with sub-nm uncertainty and thermaland long-term stability in ambient and vacuum conditions
- Shape and form measurements of nano-particles and nano-objects, like fibres, rods, wires, plates or surfaces
- Traceability for the shop floor
- Multi-parameter **measurements in different media** (solid, air, liquid) and state (individual or agglomerate): Dimensional: (size, size-distribution, shape morphology, porosity, concentration)

Dimensional Nano /Micro technology: Functionalized surfaces and membranes

European nanotechnology has improved the functionalization of surfaces (superhydrophobic, self-cleaning, scratchresistance, low reflectance, low friction) and membranes used for filtering or in energy porductions to save resources due to improved lifetime and/or energy saving properties. Furthermore new functionalized surfaces and techniques are produced to provide improved feeling (haptic, fingeprintfree surfaces) or are under investigation to save resources or reduce energy (bio-fouling). All those need an improved 3D resolution capability, a more multi-instrumental characterization of nanostructured surfaces of different materials. This includes the characterization of thin films, porous surfaces, thin membranes including the filtering characterization.

Dimensional metrology for fundamental research

New targets & triggers:

Re-definition of the SI

- mass unit, kg, Avogadro route (sphere *d*), Watt balance route (weight *v*)
- temperature scale, Boltzmann constant *k*, Dielectric-Constant Gas Thermometry (DCGT) route (piston *A*), Acoustic Gas Thermometry (AGT) route (resonator *d*)

TC-L

EURAMET T

Length

Fundamental research

- Gravitational constant G (torsion balance l, α)
- $N_A \cdot h$, (α , nrad)
- equivalent principle
- non-Newtonian forces
- ...

25

6th EURAMET General Assembly 21 - 25 May 2012, Kongens Lyngby, Denmark

