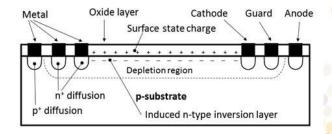


Highlights from TC-PR

Jarle Gran, Justervesenet, TC-PR Chair (in 2 more days)

Madrid and Tres Cantos, Spain 15 – 18 May 2017



Previous presentations

Radiometry

2015:

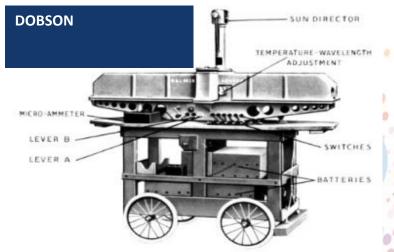
2016:

All projects based on quantum metrology and were complementary in terms of predictable sources and detectors and covers different dynamic range (with a slight overlap). The excellent work is of strategic importance and planned to continue in present fundamental call for both technologies supplemented with new ideas and their promising results.

EMRP project completing 2017

- Environment
 - ► ENV53 MetEOC2 Metrology for earth observation and climate
 - ENV59 Atmoz Traceability for atmospheric total column ozone

- Energy
 - ENG55 PhotoClass Towards an energy-based parameter for photovoltaic classification
 - ENG62 MESaiL Metrology for efficient and safe innovauve lighting



Ozone

- Absorbs UV light prevents sun burn, skin cancer etc.
- UVB radiation 100s of millions more intens outside atmosphere
- Human produced CFCs destroyed ozone layer since 1970s
- Montreal treaty (1987) reduced ozone depletion But, NO recovery observed and model projects no recovery before ~2050
 2070
- Defined as an essential climate variable
 Recovery to pre-1970 levels?
 Measure with 1 % accuracy

A traceable and harmonized Global Total Column Ozone Network

Calibration of station instruments: Dobson intercomparisons (every 4 years, to be extended) (Ulf Köhler): Responsibility of Regional Calibration Centers

- Global network of approx 80 instruments Consistency between instruments to 0.5 %
- Operational history since 1926

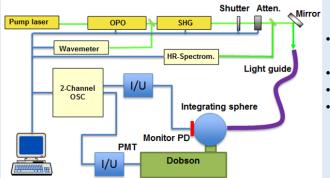
- Manually operated
- Cost intensive
- Stopped manufacturing

Photometry and Radiometry

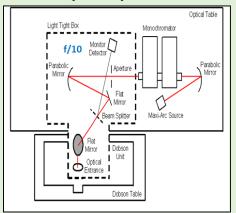
A traceable and harmonized Global Total Column Ozone Network

1) Seasonal relative total ozone differences of up to 3% between Brewer and Dobson:

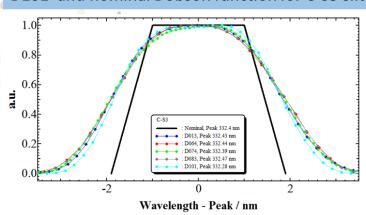
Scarnato et al., 2009

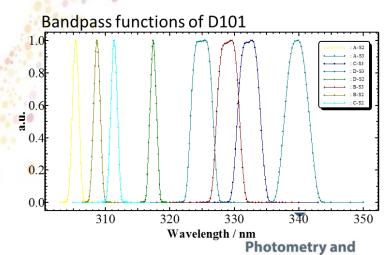

No good way of linking pre 1970 with post 1970 results

Photometry and Radiometry


Wavelength and bandpass characterisation of Dobson spectrophotometers

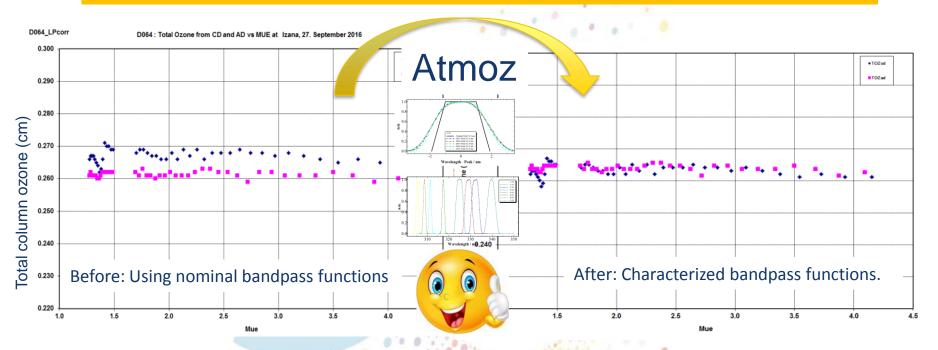
 With tuneable laser at PTB: D064(DWD), D083(NOAA), D101(Arosa), D013(Portugal)


- Pulsed optical parametric oscilator (OPO), 5ns-7ns pulses
- FWHM < 0.05 nm
- $u_{wl} = 0.01 \text{ nm}$
- PMT-anode and mon. photodiode photocurrents measured by an osciloscope or electrometers


 With monochromator at CMI: D074(CHMI)

- · Double grating subtractive
- Wavelength scale u = 0.015 nm
- FWHM of measuring beam 0,1 nm
- Output beam at F= #/10
- Low photon flux reference SSDS detector system used as a monitor detector
- · Custom made light tight box
- Flipping mirror used to align the beam with the #074 Dobson spectrophotometer

Bandpass functions of D013, D064, D074, D083, D101 and nominal Dobson function for C-S3 slit



Radiometry

A traceable and harmonized Global Total Column Ozone Network

- Work by Atmoz solved discrepancy between channels of Ozone measurements
- Major impact on linking global network centennial data pre- and post ozone depletion 1970s
- Enabling replacement of instrument and reliable SI traceable data.

Radiometry

A traceable and harmonized Global Total Column Ozone Network

Project Coordination: SFI DAVOS,

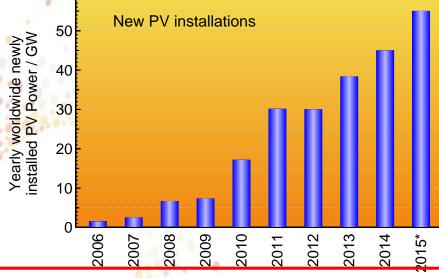
Julian Gröbner pmod wrc

Duration: 10/2014 – 9/2017

o Total Budget: 2.5 M€

9 Partners NMI-DI, Industry, Universities

Stakeholders and Collaborators

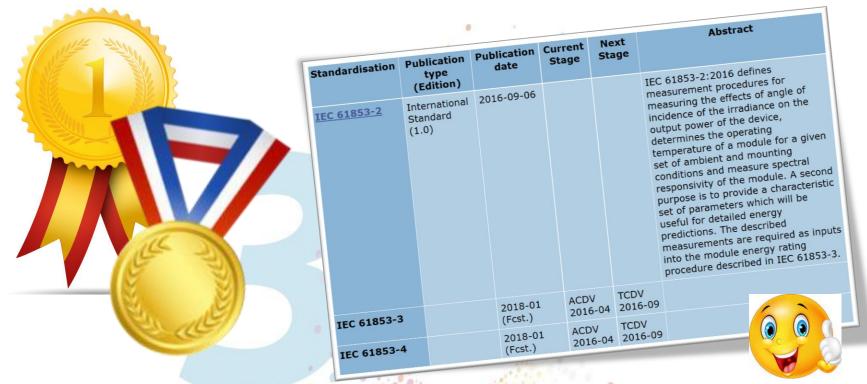


Standard test conditions

- Reference solar spectrum AM1.5
- Irradiance E_{STC} = 1000 W/m²
- Cell temperature 25 °C
- Undefined angle

Peak-Power conditions

Photometry and Radiometry



Radiometry

MEMS based system by NPL improves characterizations with less measurements and increased speed

Prices: Loughborough University

Best Paper Prize at the 11th Photovoltaic Science Application and Technology (PVSAT-11) conference Best Student Award during 31st European PV Solar Energy Conference and Exhibition (31st EU PVSEC).

PhotoClass

Funded Partners (NMI, EU):

Unfunded Partners (Industry):

Scuola universitaria professionale della Svizzera italiana

REGs (Universities, Research Institutes)

Fraunhofer Institut
Solare Energiesysteme

Photometry and Radiometry

Photometry & Radiometry

Thank you for your attention!

